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Abstract

We introduce a natural new network formation game in which buyers and sellers may purchase edges
representing trading opportunities between themselves, and then accrue wealth in the resulting exchange
economy. Our main result is an exact characterization of the set of bipartite graphs G that are Nash equi-
libria for this game. This characterization provides sharp limits on the amount and structure of wealth
variation that can occur, as well as on the allowable equilibrium exchange rates.



1 Introduction
Recently there has been interest in both the computer science and economics communities in network for-
mation games. Broadly speaking, in these multiplayer games, individuals may choose to share the cost of
building a network by purchasing edges incident on themselves. Each player’s overall utility consists of two,
usually competing, components — on the one hand, the edge costs incurred by the player, and on the other,
some measure of “benefit” accrued to the player by their participation or position in the network.

For instance, in one well-studied model [9, 1], individuals wish to minimize their edge purchases plus
the sum of their (shortest-path) distances to all other players. Clearly there is a trade-off between these two
components. Within such models there have been studies of the structural properties of those networks that
are (pure strategy) Nash equilibria of the game, Price of Anarchy bounds, and other analyses. (See Related
Work.)

As in the example above, in much of the prior research the benefit to a player for participating in the
network measures some notion of their centrality or connectivity — shortest-path distances to other players,
number of other players in the same component, and so on. In this paper we introduce and analyze a natural
alternative — namely, we view the network formed by the players as defining trading opportunities, and
measure the network benefit to a player by the wealth they accrue from those trading opportunities.

Our point of departure is a recently introduced networked version of classical exchange economies [14],
and more specifically its specialization to bipartite buyer-seller networks [15]. In the latter, there is an exoge-
nously specified bipartite network between n buyers (who each have an endowment of 1 divisible unit of an
abstract commodity called cash) and n sellers (who each have an endowment of 1 divisible unit of an abstract
commodity called wheat). Buyers have utility only for wheat and sellers only for cash, thus ensuring mutual
interest in trade. The bipartite network is viewed as specifying all and only those pairs of buyers and sellers
who may trade. Earlier work [14] established the existence of (market-clearing) equilibria in which prices and
wealths may vary across the network due to topological asymmetries, paving the way for the later study [15]
in which the network is generated according to standard stochastic (non-strategic) network generation models.
There it was established (for example) that Erdos-Renyi networks exhibit essentially no price or wealth varia-
tion, while those generated according to preferential attachment have unbounded wealth variation (growing as
a root of the population size).

In this paper we start with the same bipartite buyer-seller model, but now endogenize the creation of the
network to arrive at a natural network formation game. More precisely, we assume that any buyer (respec-
tively, seller) is free to purchase an edge to any seller (respectively, buyer) at a cost of α. The selection of
which edges to purchase by all parties specifies an undirected bipartite network G, and in this network each
party i achieves some exchange equilibrium wealth ω(G, i). Our network formation game is then defined by
specifying the overall utility to i as

ui = −α× e(G, i) + ω(G, i)

where e(G, i) is the number of edges in G purchased by i. We view the ui as defining a one-shot, simultaneous
move game over the 2n players, in which each player’s action is a selection of which edges to purchase; see
Section 2 for a formal definition and discussion of the game.

The network formation game given by the ui is similar in broad spirit to previous network formation
games, but quite different in its details. As with previous models, each player is balancing an outlay of
wealth for edge creation (trading opportunities) against some resulting participatory benefit in G; but now
the participatory benefit is measured in terms of wealth gained from trade rather than connectivity or shortest
paths.

Our main results provide a precise structural characterization of all the networks G that are Nash equilibria
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of the game defined by the payoffs ui above. More precisely, we establish exact conditions on the amount of
exchange equilibrium wealth variation that can occur for any given values of α and n, and show that this in
turn sharply limits the connectivity structure of any Nash equilibrium network G. We then show that these
limits are tight by demonstrating specific Nash equilibrium networks G that saturate them, thus yielding a
comprehensive catalog of all Nash equilibria. The resulting characterization also places sharp limits on the
possible exchange rates or prices that are possible. For example, while with an exogenously specified graph,
any rational exchange rate can be achieved, only very specific exchange rates can be achieved in a graph that
is a Nash equilibrium of the formation game — an exchange rate of 2/5, for instance, is impossible.

To our knowledge this is the first network formation game of comparable complexity for which such a
complete understanding of its Nash equilibria has been given; for prior models only broad structural restrictions
have been established.

Related Work. Networks play a major role in the economics literature. The structure and characteris-
tics of such networks were first theoretically researched by Aumann and Myerson [4], but were empirically
studied long before. For example, Granovetter [11] found that most residents of Massachusetts found their
jobs through social contacts. For a recent and detailed review of social science and economics models see
Jackson [12].

Remaining in the economics literature, but more directly related to our work, Corominas-Bosch [7] re-
cently considered bipartite exchange economies, but focused on an iterated bargaining pricing mechanism (the
Rubinstein mechanism), and analyzed the sub-game perfect equilibria of the game; network formation issues
were not addressed. In other recent work, Kranton and Minehart [16] also considered bipartite exchange
economies and network formation. In their models, buyer valuations are drawn from a known distribution,
and the pricing mechanism used is that of a generalized English (ascending-bid) auction. Their main inter-
ests were the study of the efficiency of the formed networks and in showing that Nash equilibria networks
are efficient; they also characterize Nash equilibrium structure for certain values of the edge cost. In contrast
to these works, here we examine exchange equilibrium and provide a complete characterization of all Nash
equilibrium networks.

Within computer science, most works have concentrated on network formation routing games, and the
main interest has been the quality of the resulting equilibrium, as measured by the price of anarchy and the
price of stability. We now survey most of these results.

Anshelevich et al. [3, 2] considered a network formation game in which each player or node is given a set
of nodes to which she wishes to connect. Players are allowed to share the cost of an edge and thus may pay for
remote edges. In the first work [3], any cost-sharing mechanism was considered and it was proven that there
is a pure approximate 3-Nash equilibrium whose cost is that of the social optimum. An efficient algorithm
to calculate an efficient 4.65-Nash was also provided. In the second paper [2] only a fair sharing mechanism
that uses the Shapely value was considered. The price of anarchy in this setting is trivially O(n), but they
discovered that the price of stability was O(log n), and a matching lower bound was provided.

Fabrikant et al. [9], followed by Albres et al. [1], studied a game in which the goal of each player or node
is to minimize the sum of distances to the other nodes and his edge costs, where the cost of each edge is α.
The main results of these papers prove constant price of anarchy for almost every edge price α. A different
variant of this model was studied by Corbo and Parkes [5] where the cost of an edge was shared equally by its
endpoints; once again the main interest was in the price of anarchy, not in network structure.

Recently, Moscibroda et al. [17] studied a similar model with applications to peer-to-peer topologies. The
goal of each player is to minimize the sum of stretches to other nodes and the edge costs. (The stretch is
defined as the distance in the formed graph divided by an initial distance, which is decided according to the
input metric). They also study the price of anarchy and the existence of pure Nash equilibrium.

Finally, Johari et al. [13] also considered a routing-based formation game. They considered a directed
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network, where each node wishes to send a given amount of traffic to other nodes. The cost function for a
node/player v is composed from three components: the first is negative and is due to the edges purchased by v;
the second is positive and is due to the nodes reachable from v; and the third is negative and is due to the amount
of traffic that goes through v. The edges are bought by bilateral negotiation between the endpoints. The main
results of [13] provide an equilibrium existence proof and a study of the equilibrium structure conditioned on
the payoff function.

2 The Network Formation Game
We begin by reviewing the bipartite exchange economy model studied in [14, 15], and then extend this model
to our network formation game.

2.1 Bipartite Exchange Economies

A bipartite exchange economy consists of a bipartite graph G = (B, S, E), where nodes on one side of the
bipartition represent buyers (B), and nodes on the other side of the bipartition represent sellers (S), and all
edges in E are between B and S. There are two abstract commodities that, without loss of generality, we shall
call cash and wheat. Buyer i has an infinitely divisible endowment of 1 unit of cash to trade for wheat; seller
j has an infinitely divisible endowment of 1 unit of wheat to trade for cash. Buyers have utility x for x units
of wheat and 0 utility for cash; similarly, sellers have utility x for x units of cash and 0 utility for wheat1. The
semantics of the graph are as follows: buyer i can trade with seller j if and only if there is an edge between i
and j.

Before describing the standard notion of equilibrium for this model, we note that it is a significant and
deliberate specialization of the model first considered in [14], which among other features permitted varying
initial endowments and utility functions, as well as an arbitrary number of commodities. As in [15], where
the same specialization was adopted, our interests here are in the structures that arise purely from “network
effects”, as opposed to those arising from imbalances in supply and demand, variations in consumer utilities,
and so on. We view the model adopted here — in which there is complete (initial) symmetry across all players
— as the simplest model ensuring that any resulting network structure arises purely from the strategic aspects
of the formation game, and we leave elaborations for future work.

We now describe our notion of exchange equilibrium for a bipartite exchange economy. Let ωs
j denote the

exchange rate (or price), in terms of cash per unit wheat, that seller j is offering. Similarly, let ωb
i denote the

exchange rate, in terms of wheat per unit cash, that buyer i is offering. Let xij denote the amount of seller
j’s wheat that buyer i consumes. A set of exchange rates, {ωb

i} and {ωs
j}, and consumption plans, {xij},

constitutes an exchange equilibrium for G if the following two conditions hold [15]:

1. The market clears, i.e. supply equals demand. More formally, for each seller j,
∑

i∈N(sj) xij = 1.2

(The value of 1 on the right hand side represents j’s endowment.)

2. For each buyer i, their consumption plan {xij}j is optimal. By this we mean that according to the
consumption plan, buyers only buy from the sellers in their neighborhood offering the best exchange
rate. That is, xij > 0 if and only if ws

j = minsk∈N(bi) ws
k.

We note that the role of buyers and sellers in a bipartite exchange economy is completely symmetric. Given
buyer i’s exchange rate, wb

i , one can determine how much of buyer i’s cash seller j consumes. Thus, one could
equivalently define Item 1 above from the point of view of the buyers and Item 2 above from the point of view
of the sellers. In this model, it turns out that an exchange equilibrium for G always exists if each seller has

1The exact form of these functions is irrelevant as each party has non-zero and increasing utility only for the “other” good.
2If i is a node in a graph G = (V, E), then N(i) = {j|(i, j) ∈ E}.
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at least one neighboring buyer (see [10, 14]). Furthermore, the equilibrium exchange rates are unique, and at
equilibrium, if xij > 0 then ωs

j = 1/ωb
i .

Since each seller starts off with 1 unit of wheat and his exchange rate is in terms of cash per unit wheat,
at exchange equilibrium each seller will earn exactly his exchange rate in dollars. Thus we will also call
each sellers exchange rate ws

j her wealth. Similarly, at exchange equilibrium each buyer will earn exactly his
exchange rate in wheat, so we call the buyers exchange rate wb

i her wealth as well. We say there is no wealth
variation at exchange equilibrium of a bipartite exchange economy when the wealth of all of the sellers are
equal and the wealth of all of the buyers are equal. We say there is wealth variation, at exchange equilibrium,
when some buyers earn a different amount of wealth than other buyers and/or some sellers earn a different
amount of wealth than other sellers. In a bipartite exchange economy where the number of buyers and sellers
are equal, at exchange equilibrium the average wealth will be 1, so some player has wealth less than 1 if and
only if some other player has wealth greater than 1.

Next we consider the graphical aspects of exchange equilibria. First, observe that in a bipartite exchange
economy an exchange equilibrium not only determines the wealth of each player, but the consumption plan
also determines on which edges trading takes place. We call the subgraph that consists of edges where trading
occurred an exchange subgraph.

Definition 2.1 Let G = (B, S, E) be a bipartite exchange economy. Let {ωb
i}, {ωs

j}, and {xij} be an ex-
change equilibrium, then the exchange subgraph of G is G′ = (B, S, E′), where E′ = {(i, j)|xij > 0}.

In contrast to the exchange equilibrium wealth, the exchange subgraph need not be unique. We say that
exchange subgraph G′ is minimal if the removal of any edge from G′ changes the exchange equilibrium
wealths. Note that even when G is connected its exchange subgraph may be disconnected. We thus call the
connected components of the exchange subgraph trading components. We say that a trading component is
(m, k) if there are m buyers and k sellers, which will result in the wealth of each buyer in such component
being k/m, and the wealth of each seller being m/k. Thus, wherever there is a wealth variation in G there are
at least two trading components that have a different ratio between buyers and sellers in them.

In the bipartite exchange economy model described so far, the graph over which the buyers and sellers
trade is exogenously defined. That is, the graph is fixed a priori, and then the players trade according to it. The
main contribution of the work of [15] is to describe how the topology of the graph affects variation in price of
the goods. The main contribution of this work is to make the formation of the graph endogenous to the game.
That is, players are allowed to buy edges to other players, as opposed to having a topology imposed on them.
We now give the formal definition of this new model.

2.2 The Network Formation Game

In this section we give a formal definition of the network formation game. This game consists of two sets of
players, B and S, where |B| = |S| = n. The set B is defined as the buyer set, and the set S is defined as
the seller set. As in the bipartite exchange economy we assume that each buyer starts off with an infinitely
divisible endowment of 1 unit of an abstract good, which we call cash. Each seller starts off with an infinitely
divisible endowment of 1 unit of another abstract good, which we call wheat.

The action of a buyer bi is denoted ab
i ∈ {0, 1}n and the action of seller j is denoted as

j ∈ {0, 1}n. These
actions encode which edges, if any, a player buys. An edge (bi, sj) is bought by player bi only if ab

i(j) = 1
and it is bought by sj only if as

j(i) = 1. (At equilibrium, an edge (bi, sj) will be bought by bi or sj or neither,
but not both.) A strategy is said to be pure if no player is randomizing over her actions; in this paper we study
only pure strategies. Next, let a = ab

1 × . . . × ab
n × as

1 × . . . × as
n be the joint action of all the players. Let

the set of edges that bi buys be denoted Eb
i (a) = {(bi, sj)|ab

i(j) = 1}, and let the set of edges that sj buys be
Es

j (a) = {(bi, sj)|as
j(i) = 1}. The joint action of all the players defines a bipartite graph, G(a) = (B, S, E)
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as follows. The nodes on one side of the graph represent the buyers and on the other side represent the sellers.
The set of edges E are the edges that the players bought, or more formally: E =

⋃
i∈[n],t∈{b,s} Et

i (a). Observe
that every graph G defines a bipartite exchange economy. We call the price vector and consumption plan
that form an equilibrium of the bipartite exchange economy an exchange equilibrium. This equilibrium will
determine the wealth each player earns; the wealth that buyer bi earns is denoted ωb

i = ωb
i (G), and the wealth

that seller sj earns is denoted ωs
j = ωs

i (G). The wealth each player earns will form the positive component
of that players utility function. The negative component will be determined by how many edges each player
buys. More formally, we define the utility functions of the players of type t ∈ {b, s} in the network formation
game as follows:

ut
i(a) = ut

i(a
t
i, a

t
−i) = ωt

i − α|Et
i |.

A joint action a = ab
1× . . .× ab

n× as
1× . . .× as

n is said to be a Nash equilibrium if for every player i we have
ut

i(a
t
i, a

t−i) ≥ ut
i(â

t
i, a

t−i) for every action ât
i. Since we only consider pure strategies for the players actions,

we also only consider pure Nash equilibrium. Thus, each Nash equilibrium strategy a induces a graph, G,
which we call an equilibrium graph.

Some important comments on this model are in order here. First, the utility functions ut
i above specify the

utilities or payoffs to the players of a standard one-shot, simultaneous move game: all players simultaneously
choose the set of edges they wish to purchase, which in turn determines G and therefore the utility components
ωt

i . Second, it is important to note that there are two distinct equilibrium concepts we shall need to reason
about. Our primary interest is in the (pure) Nash equilibrium of the game defined by the ut

i, which is the
network formation game. However, the definition of ut

i itself involves another equilibrium quantity — namely,
the wealth ωt

i that i receives at exchange equilibrium in the fixed network G. For clarity we shall always refer
to equilibria of the formation game given by the ui simply as Nash equilibria, and to the latter notion as the
exchange equilibria for a fixed G. Third, note that the ut

i treat the initial purchase of edges and the exchange
equilibrium wealths as taking place in the same “currency”, which differs depending on the type of agent:
buyers end with wealth measured in wheat, while sellers end with dollars. We can view this as modeling a
central “edge banker” who is willing to extend credit in either currency to the players in order to allow the
trade network to be built3.

3 Summary of Main Results
In this section, we state and discuss our main results; proofs of the theorems are given in Section 4. Our first
result relates the edge cost α to the minimum exchange equilibrium wealth in any Nash equilibrium graph.

Theorem 3.1 Let G be a Nash equilibrium graph of the network formation game, and let ωmin be the minimum
exchange equilibrium wealth in G of any player. Then α ≥ 1− ωmin, or equivalently, ωmin ≥ 1− α.

Recalling that the average exchange equilibrium wealth is always 1 (since all endowments are equal),
Theorem 3.1 states a natural limit on how much exchange equilibrium wealth variation can result from the
formation game — the smaller the edge costs α, the more equitable these wealths must be. Great variation in
wealths can only arise in the presence of high edge costs. The intuition behind this result is that a player of
sufficiently low exchange wealth should be able to find another such player to trade with, with the resulting
wealth gain more than covering the edge cost. The proof behind this intuition is somewhat subtle owing to the
fragility of exchange equilibria — a small change to the underlying graph may cause large and distant changes
to the exchange equilibrium.

3If desired, the notion of the edge banker can be made formal and endogenous to the game as a third player type with edges as
initial endowments and equal utility for dollars and wheat.
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Figure 1: Top row: An example of an exploitation graph with k = 2, � = 4 and n = 17. Seller exchange
equilibrium wealth values are 1/2, 1/3, 4 and 5. Bottom row: An example of a balanced graph with n = 14.
Seller exchange equilibrium wealth values are 2/3, 3/2, 3/4 and 4/3.

Theorem 3.2 Let G be any bipartite graph, and let C be a trading component of G with buyer set B′ and
seller set S′ such that |B′| = m and |S′| = k, m > k. Then there exists a node s in S′ and an edge e incident
on s such that the removal of e from G decreases the exchange equilibrium wealth of s by at most most 1/k.
Furthermore, if G is a Nash equilibrium graph of the network formation game, then α ≤ 1/k.

The second claim in Theorem 3.2 follows from the first by virtue of the fact that at Nash equilibrium, all
of the edges in the trading component C must have been purchased by S′ — since m > k, the buyers in B′

are being “exploited” by the smaller number of sellers in S′, and thus have better choices of edge purchases.
Now together Theorems 3.1 and 3.2 provide upper and lower bounds on the edge cost α in terms of the

minimum exchange wealth and the possible trading component structure. It can be shown that together these
bounds strongly constrain the possible Nash equilibrium graphs of the formation game, and that in turn the
remaining possibilities can all in fact be realized, leading to a precise characterization of all Nash equilibrium
graphs. Before stating our main theorem precisely, we define the following types of graphs.

• Perfect Matchings. The class of all perfect matchings between the buyers and sellers. In this class all
exchange rates or wealths are equal to 1.

• Exploitation Graphs. These are graphs in which every trading component has a single party of one type
(say, sellers) “exploiting” a (possibly much) larger set of parties of the other type, or vice-versa (a single
buyer exploiting many sellers). The collection of such components must meet the constraint that there
must be an equal number of buyers and sellers, but also a much stronger constraint on the number of
possible different components that can be present simultaneously. More precisely, for any k, � > 1, let
G be a graph consisting of the union of n1 (1, k)-trading components, n2 (1, k+1)-trading components,
n3 (�, 1)-trading components, and n4 (�+1, 1)-trading components, where n1 +n2 +n3�+n4(�+1) =
n1k +n2(k +1)+n3 +n4 (equal number of buyers and sellers). Note that in any such graph there may
be at most 4 different (say) seller wealth values: 1/k, 1/(k + 1), � and � + 1. Thus for large values of k
or � there is great wealth variation. The class of Exploitation Graphs consists of all such graphs G. See
Figure 1 for an example.

• Balanced Graphs. While still permitting some inequality, these graphs are closer to the Perfect Match-
ings than to the Exploitation Graphs, in that wealth variation is strongly limited. More precisely, for any
k > 2, let G be a graph consisting of the union of n1 trading components that are either (k − 1, k) or
(k, k + 1) and n1 trading components that are either (k, k− 1) or (k + 1, k), k > 2. (Note that since the
number of buyers is 1 less than the number of sellers in a (k−1, k)-trading component and a (k, k +1)-
trading component, any mixture of n1 such components is balanced by any mixture of n1 (k, k− 1) and

6



(k + 1, k)-trading components.) In such a graph there are again at most 4 different seller wealth values:
k/(k − 1), (k + 1)/k, (k − 1)/k, and k/(k + 1), but unlike in Exploitation Graphs, unbounded wealth
variation is not possible, and for large k all wealths are nearly equal. See Figure 1 for an example.

Armed with these definitions, we can now state our main theorem, which provides a complete characteri-
zation of every Nash equilibria of our network formation game.

Theorem 3.3 Let NE(n, α) be the set of all Nash equilibria graphs of the network formation game for a fixed
population size n and edge cost α, and let NE be the union of NE(n, α) over all n and α. Then the set NE
equals the union of classes Perfect Matchings, Exploitation Graphs, and Balanced Graphs defined above.

As has been suggested, the proof that NE is contained in the stated union will follow from Theorems 3.1
and 3.2 above, while the proof that it contains the union will be shown by explicit construction which is de-
ferred to Appendix A. We emphasize that Theorem 3.3 places very strong constraints on the Nash equilibrium
graphs, and accordingly, on the nature of wealth variation. For instance, the characterization rules out certain
exchange rates or wealths — 2/5 is one example of an unattainable value. Wealth variation can essentially
occur only in monopolistic form (the exploitation graphs).

Our results rely on one final structural characterization that is of independent interest, and concerns the
“compactness” of Nash equilibrium graphs. More precisely, we show that a Nash equilibrium graph G cannot
contain redundant edges — that is, the removal of any edge in G will change the exchange subgraph and the
exchange rates or wealths. The intuition behind this theorem is that if redundant edges existed, the nodes
that purchased them can remove them from the graph without effecting their wealth, and thus it is not a
Nash equilibrium. Again there is some subtlety in the proof due to the aforementioned fragility of exchange
equilibria. It is interesting to note that in other formation games, such as that in [1], cycles can exist at
equilibrium, which can be seen as an analog of redundant edges in our formation game.

Theorem 3.4 Let G be a Nash equilibrium graph of the network formation game. Then G is equal to it
minimal exchange subgraph.

4 The Analysis

4.1 Relating Topology to Equilibria in Bipartite Exchange Economies

In [15] the authors prove a few theorems that characterize the topology of graphs that give rise to wealth
variation in a bipartite exchange economy. First we will state a theorem from [15] that provides sufficient and
necessary conditions to wealth variation in bipartite exchange economy, where the number of buyers equals
the number of sellers. Then we will extend it to economies where the number of buyers and sellers may
not be equal. This will later help us compute the wealth of the sellers in each trading component, since in a
given trading component, the number of buyers need not equal the number of sellers. For a bipartite graph
G = (B, S, E) if W is a set of nodes from one side of the bipartition, then N(W ) denotes the set of nodes
connected by an edge to some node in W .

Theorem 4.1 A necessary and sufficient condition for a bipartite exchange economy, G = (B, S, E), to have
no wealth variation among sellers, is that for all subsets S′ ⊆ S, |N(S′)| ≥ |S′|.

A symmetric argument can be made to show that there will be no wealth variation among the buyers, if
for all subsets of buyers B′ ⊆ B, |N(B′)| ≥ |B′|. By a trivial application of Hall’s Theorem [6], we get the
following result.
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Input : G1 = (B1, S1, E) a bipartite exchange economy
Output : the trading components of G1

i = 1;
repeat

Let Ui = argmaxU⊆Bi

|U |
|N(U)| ;

Ci = {Ui, N(Ui)};
Bi+1 = Bi \ Ui, Si+1 = Si \N(Ui);
Ei+1 = Ei \ {(u, v)|u ∈ Ui or v ∈ N(Ui)};
i = i + 1;
Gi = (Bi, Si, Ei);

until Bi = ∅;
Algorithm 1: This algorithm takes as input a bipartite exchange economy, G1, and outputs the trading
components, C1, ..., Cr of G1.

Theorem 4.2 There is no wealth variation in a bipartite exchange economy if and only if there is a perfect
matching in the underlying graph.

The extension the above theorem for unbalanced graphs can be found in Appendix B.

4.2 The Structure of Nash Equilibria of the Formation Game

The proofs of our main results use an algorithm for determining the trading components of a bipartite exchange
economy. Algorithm 1 (see Figure) works by iteratively choosing the subset of buyers, U ⊆ B that maximizes
|U |/|N(U)|, outputs U and N(U), removes them from the graph, and repeats. Intuitively the set of buyers,
U , that maximizes this ratio will be getting fairly low wealth since there are many buyers connected to only
a few sellers in N(U). Furthermore, buyers not in U that are attached to the sellers in N(U) will likely buy
from other sellers since the price in N(U) will be relatively high. We note that while there are more general
and more efficient algorithms [8] for the equilibrium computation performed by Algorithm 1, its simplicity
and properties (as we shall demonstrate) make it ideal for our structural analysis of the formation game Nash
equilibria.

The proof of the following theorem and the analysis of the Algorithm can be found in Appendix C.

Theorem 4.3 If Algorithm 1 is given any bipartite exchange economy G, then it will output all of the trading
components of G (which comprises the exchange subgraph of G), along with the wealth of each buyer and
seller in G. Furthermore, the connected components output by the algorithm are sorted according to the
buyers’ wealth in non-decreasing order, i.e., |Ui|

|N(Ui)| ≥
|Ui+k|

|N(Ui+k)| , for k > 0.

A key implication of the above theorem is an analog for Theorem 4.1.

Corollary 4.1 Let C = (B̃, S̃). Then C is a trading component if and only if for every subset B′ ⊆ B̃, we

have |B′|
|N(B′)| ≤ |B̃|

|N(B̃)| .

A symmetric claim holds for the sellers.
After showing that the algorithm indeed computes both the exchange equilibrium prices and the exchange

subgraph in which they occur, we would like to prove the theorems stated in Section 3 using the algorithm’s
properties. Note that although the proofs rely on Algorithm 1, the statements are independent of the algorithms
used to compute the exchange equilibria. The proof of Theorem 3.4, which states that the equilibrium graph
equals its minimal exchange subgraph, is deferred to Appendix D.
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Next we prove the theorem stating that α is lower bounded by 1 minus the minimum wealth.
Proof:[Proof of Theorem 3.1] Let C1, ..., Cr denote the connected components output by Algorithm 1 when
its input is G (since G is an equilibrium graph of the network formation game, by Theorem 3.4 the connected
components are G itself). Without loss of generality we assume that a buyer achieves the minimum wealth.
Let |U1| = m and |N(U1)| = � and assume that m > � so that m = � + k, k > 0, otherwise there is no
wealth variation, and the bound is trivially satisfied. Also note that in Cr we have that Ur = m′ and Vr = �′,
where �′ > m′. This is because in G the number of sellers equals the number of buyers and by Theorem 4.3
the ratio in Cr is the minimum ratio. Now assume u ∈ U1 connects to v ∈ Vr, and call the resulting graph
G′. We now consider the set U−

1 = U1 \ {u}. By definition we have that |U−
1 | = m − 1, and Theorem 4.3

implies that U1 achieves the maximum ratio in G, so we must have that |N(U−
1 )| = |N(U1)|. Thus we have

|U−
1 | = |N(U−

1 )| + k − 1. More generally, by the maximality of U1 in G we have that for every W ⊂ U1,
|W | ≤ |N(W )| + k − 1. Our next step is to run Algorithm 1 on G′. Consider the iteration in which the last
part of U−

1 is removed. Let W ′ be the part of U−
1 removed in all of the previous iterations, by the maximality

of U1 in G we have that |W ′| ≤ |N(W ′)| + k − 1, then |U−
1 \W ′| ≥ |N(U−

1 \W ′)| and by Corollary 4.1
the last part of U−

1 will be removed with buyers’ wealth at most 1. Thus, by Theorem 4.3, the buyers’ wealth
up to this point is at most 1. Buyer u could not be removed as a part of any previous set with wealth strictly
smaller than 1 as u would have added one node to the set itself, and also would have added one node v to the
neighbor set, and hence decrease the ratio. Therefore, we can assume that either u has not been removed up
to this iteration, or it has been removed with wealth exactly 1. We next show that if it was not removed yet, it
would also be removed with wealth 1. For any set W that does not contain u and that {v} ⊆ N(W ), we have
|W |/|N(W )| < 1 (otherwise v would have had a higher wealth at G). Since after the removal of U−

1 , we have
|{u}|/|N({u})| = 1 and this is u’s only edge remaining, u and v will be removed together and the wealth of
each will be 1. Therefore, the wealth of u would increase by 1− wmin by buying the edge, and since G is an
equilibrium graph it implies that α ≥ 1− wmin. �

Note that although the proof is referring to an equilibrium graph, we can deduce from the proof the fact
that every node with wealth less than 1 can achieve price 1 by buying an additional edge. We also note that
the following proposition regarding the identities of the players buying the edges follows from the same line
of argument.

Theorem 4.4 Let G be a Nash equilibrium graph of the network formation game. Then the exchange equilib-
rium wealth of each node which buys an edge is at least 1.

We now go on and provide the upper bound theorem, which states that if an (m, k) trading component
(k < m) is part of an equilibrium graph, then α is at most 1/k.
Proof:[Proof of Theorem 3.2] Let C = (B̃, S̃) be an (m, k)-trading component. We first find the strict subset
of buyers inside the component with the maximum ratio and also its corresponding set of sellers.

Γ = argmax
Γ:Γ⊂B̃ and (|Γ|�=m) and W=N(Γ)

|Γ|
|W |

Lemma 4.1 Let β = |Γ|
|W | , then β ≥ m−1

k

Proof: Let us fix a set Γ′ of size m − 1 then its neighbor set is W ′ = N(Γ′). Observe that the cardinality of
W ′ is k, otherwise Γ′’s ratio would be m−1

k−� ≥ m−1
k−1 > m

k , which by Corollary 4.1 contradicts the fact that
(m, k) is a trading component. Applying Corollary 4.1 again implies either the component (Γ′, W ′) has no
wealth variation, or it has a subset with higher ratio (which has no wealth variation). �

We proceed and show the existence of a node in W that can remove one of its edges and decrease its wealth by
at most 1/k as desired. Let us examine the nodes of W ; we know that there exists at least one node v ∈W such
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that it has a neighbor, u /∈ Γ, otherwise the component (m, k) is not connected. Now we consider the value of
(v, u) to v. Let G′ be the graph after the removal of (v, u). Now let M1 = (U1, V1), ..., MK = (Uk, Vk) be the
sets removed by the algorithm before v is removed (i.e v ∈ Vk+1). It remains to show that after the removal of
these sets v’s wealth is at least β, i.e. |Uk+1|

|Vk+1| is at least m−1
k . In the next steps we use the following notation:

Wi = W
⋂

Vi, Γi = Γ
⋂

Ui, W̄k =
⋃k

i=1 Wi and Γ̄k =
⋃k

i=1 Γi.

Lemma 4.2 For every k > 1, Γ̄k

W̄k
≤ β

Proof: For every i, for every node x ∈ Γi we have that in G, N({x}) ⊆ W , therefore the only difference
between N({x}) with respect to Gi and N({x}) with respect to G1 are the nodes in Wj , j < i (note that the
edge (u, v) has no influence here). Thus, N(Γ̄k) ⊆ W̄k in G, and by definition (W̄k, Γ̄k) cannot attain a ratio
larger than β. �

We now complete the proof of Theorem 3.2. Note that |Ui|/|Vi| might be larger than β. Next we observe
that if we partition Γ to two sets, Γ \ Γ̄k and Γ̄k such that |Γ|/|N(Γ)| ≥ |Γ̄k|/|N(Γ̄k)|, then we must have
|Γ \ Γ̄k|/|N(Γ \ Γ̄k)| ≥ |Γ|/|N(Γ)| = β. Therefore, when v is removed, it is part of a set with ratio at least
β which implies (as Algorithm 1 chooses the set that maximizes the ratio) that the set in which it is actually
removed with has a ratio at least β as well (note that it is not necessarily S \ S̄k), and thus its wealth is at least
β. Now the decrease in the wealth of v is at most m/k − β ≤ 1/k, which concludes the first part of theorem.
Furthermore, if the trading component is part of an equilibrium graph of the network formation game, then by
Theorem 4.4, v buys all of the edges incident on it and thus α ≤ 1/k. �

We are finally ready to prove the first part of Theorem 3.3 which states that every Nash equilibrium is one
of three stated types of graphs; in Appendix A we show that such equilibrium graphs do exist.
Proof:[Proof of Theorem 3.3, NE contained in three graph types.] Let C be an (m, k) trading component of
the graph. We next show that only a few values of (m, k) can occur. By Theorem 3.1 we have that α ≥ 1− k

m .
By Theorem 3.2 we have that α ≤ 1/k, combining these two inequalities we have that

1/k ≥ 1− k/m⇒ m ≥ k(m− k)

which holds only for k = 1 and k = m− 1, and for k = 2 and m = 4. However, the (4, 2)-trading component
can only occur as a disjoint union of two (2, 1) trading components. Therefore, the only possible families of
trading components are (1, k) and (k, k + 1). First we show that (1, k) trading component cannot coexist with
(�, � + 1) trading components (unless k = � = 2). The first trading component implies that α ≥ 1− 1/k, and
the second implies that α ≤ 1/�, and both can only simultaneously hold for � = k = 2 (and in such case the
(1, 2) trading component can be considered as either an exploitation graph or a balanced graph).

Now consider the case where (1, k) trading component exists along with (1, k + �) for � ≥ 2, and let u be
the sole buyer in the (1, k) trading component. Now u can buy an edge to a node v in the (1, k+�) component;
it is easy to see that now v will trade with u, and v will earn wealth 1/(k + 1), rather than trading inside the
k + � component and earning wealth 1/(k + �). Therefore, it cannot be an equilibrium graph of the network
formation game. It sill remains to show that (k, k + 1) cannot coexist with (�, � + 1). Let us see what are the
restrictions imposed by such component. By Theorem 3.2 and Theorem 3.1, we have that

1
k + 1

≤ α ≤ 1
k

This immediately implies that only consecutive trading components, i.e, (k− 1, k) and (k, k +1), can coexist.
�
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A Construction of Equilibrium Graphs

A.1 Exploitation(k, l) Graphs

In this section we show that there are Exploitation(k, �) which are Nash equilibria of the network formation
game. We start by providing a technical lemma.

Lemma A.1 If α > 1−1/� then at Nash equilibrium of the network formation game, no seller in a Exploitation(k, �)
graph would buy an edge to a buyer of degree � or � + 1.

Proof: Let s be a seller, and let b be a buyer of degree � or �+1. At Nash equilibrium of the network formation
game, b’s wealth is at most 1/�. Since the players are rational, the only way for trade to occur over a (b, s)
edge is if s offered a price lower than 1/�. Since α > 1− 1/�, s would only decrease her utility by buying an
edge to b. �

Now we are ready to show that Exploitation(k, �) graphs can be equilibria graphs of the network formation
game.

Lemma A.2 If α > 1− 2/(max(k + 1, � + 1))2, then any Exploitation(k, �) graph where nodes with degree
k or k + 1 and � or � + 1 buy all the edges incident on them, is a Nash equilibrium of the network formation
game.

Proof: Let s be a seller with degree k or k + 1. By Lemma A.1 we know that at Nash equilibrium of the
network formation game s will not buy any edges to buyers of degree � or � + 1. Next, let w1, . . . , wk′ be the
buyers attached to s in a Exploitation(k, �) graph. Now say s bought a set of edges that did not contain all of
the wi. Then, since α < 1 and no other players are connected to the wi, s could increase its utility by buying
edges to the those unconnected wi. Thus we can assume, at Nash equilibrium of the network formation, s buys
all the edges to the wi. Next, we show at formation equilibrium s does not buy edges to other degree 1 nodes.

By the market clearing condition, the wealth of each of the wi is either 1/k or 1/(k + 1), and s wealth is
either k or k + 1. If s has wealth k + 1 and it buys edges to buyers that have wealth k, these buyers have no
incentive to switch to s so it would not be rational for s to buy an edge to such a buyer. Next, if s wealth is k
and it buys an edges to a buyer b that is also getting price k, b would not buy from s for the following reason.
Assume that if (b, s) is not an edge in the graph b buys from s′, but when (b, s) is an edge in the graph b buys
from s. Then at market clearing s would offer price k + 1 and then s′ would offer price k − 1. Thus it would
not be rational for b to switch sellers. Finally, if s wealth is k+1 and a buyer b is getting price k from s′, s will
not buy the edge to b. If s did, then b will split its good evenly between s and s′. Since the cost of an edge is
α > 1− 1/(max(k + 1, � + 1))2, where k, � > 1 and this edge only increased the utility of s by 1/2, s would
not buy this edge.

Next, let s be a seller of degree 1. Again, by Lemma A.1 we know that at equilibrium s will not buy
any edges to buyers of degree � or � + 1. So, all we have to show is that at equilibrium s will not buy any
edges to buyers of degree 1. Consider the result of s buying a edges to a set of buyers B, where |B| = m. If
m > 	(� + 1)/2
, s wealth would only be 	(� + 1)/2
. So m ≤ 	(� + 1)/2
, in which case s wealth would
be m and pay mα for the edges to B. Observe that m(1−α) ≤ (� + 1)(1−α)/2 < 1/(k + 1). Thus, buying
these m edges would only decrease the utility of s.

Thus, we have shown that at Nash equilibrium of the network formation game sellers would buy only those
edges designated by the Exploitation(k, l) graph. The case for buyers is entirely symmetric. �

A.2 Balanced Graphs

In this subsection we show that balanced graph are equilibria graphs of the network formation game for ap-
propriate values of α. We start by showing that any (k, k + 1) minimal trading component can be part of a
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balanced graph. Note that in comparison to the previous trading components a (k, k + 1) components can
differ from each other. We start by characterizing every minimal (k, k + 1) trading component.

Lemma A.3 Let C = (B̃, S̃) be a (k, k + 1) minimal trading component then the degree of each b ∈ B̃ is
exactly 2.

Proof: Suppose for the sake of a contradiction that there exists a node, b ∈ B̃ with degree 3 in C. Let
s1, s2, s3 be its neighbors in S̃. By the minimality of the trading component we have that there exists three
subsets S1, S2, S3, such that si ∈ Si and that |Si|−1 = |N(Si)\{b}| and that for every S′ ⊂ Si it does not hold
(if such do not exist then we can remove the edge and the trading component will not be effected, which is a
contradiction to its minimality). Let S̄ be the union of S1, S2 and S3 excluding {s1, s2, s3}. Since C is trading
component, then by Corollary 4.1 for every subset S′ of S̄, we have |S′| ≤ |N(S′)|, and thus there exists a
perfect matching between S̄ and N(S̄), and their cardinality is identical, denote it by �. Now consider the set S̄
with {s1, s2, s3}, its cardinality is �+3 however, the cardinality of |N(S̄

⋃{s1, s2, s3})| is �+1. This is due to
fact that if s1 for instance will add two nodes to N(S̄), then we will have |S1\{s1}| = |N(S1\{s1})|+2; this
yields an higher ratio than C’s ratio, which contradicts the fact that C is a trading component by Corollary 4.1.
Thus the degree of b at most 2. Note that the degree of b cannot be 1 as its wealth is strictly larger than 1. �

Using this characterization for every (k, k + 1) minimal trading component, we can show that balanced
graphs are Nash equilibria of the network formation game for specific values of α.

Lemma A.4 If 1/(k+1) ≤ α ≤ 1/(k) then any balanced graph consisting n1-(k, k+1) trading components
and n1-(k + 1, k) trading components is an equilibrium graph of the network formation game.

If α = 1/(k + 1), then balanced graph consisting n1 (k − 1, k) or (k, k + 1) trading components and n1

(k, k − 1) or (k + 1, k) trading components is an equilibrium graph of the network formation game.

Proof:(sketch) We sketch the proof for the first case and omit the similar second case. Let us consider the
strategy of players in a (k, k + 1) connected component, C, where B̃ is the buyer set and its cardinality is k
and S̃ is the seller set with cardinality k + 1. Before going over all possible cases, we provide the following
fact:
(A) For a graph G, if the lowest wealth obtained by buyers (sellers) is β, then for a graph G′, such that G ⊆ G′,
the wealth of any seller(buyer) is at most 1/β.

We first consider every possible deviation of b ∈ B̃, whose current utility is k+1
k − 2α by Lemma A.3:

1. Removing one edge: By the minimality of the trading component, if b removes an edge to s then there
exists a subset S′ ⊂ S̃, which now satisfies |S′| = |N(S′)| − 1. If Alg. 1 input is G \ {(b, s)} then S′ is
removed first, and since for every other subset W of S̃ that |W | ≤ |N(W )|, and thus there is no wealth
variation and b’s new wealth will be 1. Therefore b gains α from removing the edge but her wealth
decreases by 1/k and will have no incentive to deviate.

2. Removing two edges: By Lemma A.3 b has exactly two edges, and the removal of both will make her
utility 0, which is clearly less than its previous utility k+1

k − 2α.

3. Buying additional edges: By fact(A) we have that b cannot have wealth larger k+1
k by adding edges to

G.

4. Removing one edge and buying additional edges: By the previous case we have that after removing
one edge the wealth of b is 1. Thus the trading component (without the additional edges) are (�, � + 1)
for � < k, and a perfect matching component of size (k − �) (both due to the decomposition of C),
and the rest are the (k, k + 1) and (k + 1, k) trading components. Adding edges to any of (k, k + 1)
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or (k + 1, k) cannot yield a wealth higher than k+1
k as k

k+1 is the lowest wealth before, and thus the
b has no incentive to buy one. Now it is easy to see that buying edge into the (�, � + 1) will form the
(k, k + 1) trading component again, and buying additional edges (to either the (�, � + 1) component or
to the perfect matching component will have no influence on the prices). Therefore, the node price will
be at most k+1

k and it will by at least two edges, and thus will have no incentive to deviate.

5. Removing two edges and buying additional edges: By Lemma A.3 and the minimality, it is not hard
to see that after removing two edges,C is decomposed to b (isolated), (�1, �1 +1) and (�2, �2 +1) trading
components (note that �2 can be 0 and that �1 + �2 = k − 1). The other trading components are the
former (k, k+1), (k+1, k) trading components. Once again buying edges into the (k, k+1), (k+1, k)
trading components cannot help as the maximal price that can that be obtained is k+1

k and at least two
edges should be bought to achieve it. Now buying one or two edges to the the smaller components (that
are created from the disconnection) is identical to the previous cases.

Now let us consider a node s ∈ S̃ possible deviation. Note that s current strategy is not buying any edge
and thus her utility is k

k+1 . We first note that forming edges to nodes b with current wealth larger than 1 is
never beneficial as b will prefer not to trade with s, and they will not effect the trading components.

1. Buying a single edge: The edge must be to a node with price k
k+1 , and by similar arguments to Theo-

rem 3.1, s wealth will be 1, and thus its new utility is 1 − α ≤ 1 − 1
k+1 = k

k+1 , which is less than her
current utility.

2. Buying 2 edges: In such case one can see that s will be now part of a (k + 2, k + 1) trading component
(as a node with wealth higher than 1), however its utility will be k+2

k+1 − 2α which is smaller than k
k+1

for α ≥ 1/(k + 1).

3. Buying at least three edges: By fact(A) the wealth is bounded by k+1
k and thus the increase in the

wealth is k+1
k − k

k+1 which is at most 2/k. The edges’ cost on the other hand is �α, which is at least
3/(k + 1), which is always larger than 2/k.

�

A.3 Completing the Proof of Theorem 3.3

We are now finally ready to complete the proof of Theorem 3.3, by showing that the set Nash equilibria
graphs of the network formation game contain graphs which are (1)Prefect matching, (2)Exploitation (k, �)
and (3)Balanced graphs.
Proof:[Proof of Theorem 3.3 part(B)] Consider a perfect matching graph. Any node that does not buy an edge
cannot change her wealth by buying an edge, as it will still be a perfect matching. If a node that buys an
edge, will deviate to a strategy in which it removes her edge and buy � edges, it will have a wealth of �

�+1 and
thus will have no incentive to do so. If a node, which buys an edge, buys additional � edges, it will have no
influence on the prices. By Lemma A.2, (k, �)Exploitation are Nash equilibrium for the appropriate α’s, and
by Lemma A.4 balanced graphs are Nash equilibrium of the game for appropriate α’s. �

B Extension of Theorem 4.2 into unbalanced graphs
Theorem 4.2 provides a necessary and sufficient condition to have no wealth variation in a graph where the
number of sellers equals the number of buyers. Next, we will extend that theorem to graphs where the number
of buyers does not equal the number of sellers. First we will provide a construction that will transform a graph
with an unequal number of buyers and sellers to a graph with an equal number of buyers and sellers. Then,
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we show that the transformed graph has a perfect matching if and only if the original graph has no wealth
variation.

Definition B.1 Let G = (B, S, E) be a bipartite graph such that |B| = n and |S| = m. Its τ -balanced graph
G′ = (B′, S′, E′) is constructed as follows. For each bi ∈ B make m/τ copies in B′, call them bi

1, . . . b
i
m/τ ,

and for each sj ∈ S make n/τ copies of it in S′, call them sj
1, . . . s

j
n/τ . Finally, for each edge (bi, sj) ∈ E,

add edges to E′ to form the complete bipartite graph between bi
1, . . . b

i
m/τ and sj

1, . . . s
j
n/τ .

Lemma B.1 Let G = (B, S, E) be a bipartite graph such that |B| = n and |S| = m. Let τ > 0 be
the maximum number such that each element of an exchange equilibrium consumption plan {xij} can be
represented as kτ for an integer k. 4 Let G′ = (B′, S′, E′) be the τ -balanced graph of G. Then there exists
an exchange equilibrium consumption plan for G, where the buyers all earn wealth m/n and the sellers all
earn wealth n/m, if and only if G′ has a perfect matching.

Proof: (← direction) If G′ contains a perfect matching, then an exchange equilibrium consumption plan for G
can be defined as follows. For every edge of (bi

k, s
j
l ) of the perfect matching, bi

k ∈ B′, sj
l ∈ S′ add τ/m units

of cash going from bi to sj , and τ/n units of wheat going from sj to bi. By construction, every buyer bi ∈ B
has m/τ copies in G′, and since there is a perfect matching in G′, the amount of wheat earned by bi is m/n
as desired. Similarly, every seller sj ∈ S has n/τ copies in G′ and since there is a perfect matching in G′, the
amount of cash earned by sj is n/m as desired.

(→ direction) If there is an exchange equilibrium consumption plan where all buyers earn wealth m/n for
G, then each edge (bi, sj), bi ∈ B, sj ∈ S with kτ units of cash going from bi to sj , can be partitioned into

km distinct edges between the sets of nodes {bi
k}m/τ

k=1 ⊆ B′ and {sj
l }n/τ

l=1 ⊆ S′. These edges in G′ can be
viewed as carrying τ/m units of cash from a bi

k to a sj
l and they will form the perfect matching edges. Now let

us count how many edges each node bi ∈ B induces. By the market clearing condition, the total expenditure
of bi is 1 unit of cash. Thus bi induces m/τ edges which equals the number of corresponding bi

k ∈ B′.
For sj ∈ S we have that its incoming flow is n/m units of cash. Furthermore, every edge incident on

sj was split into km copies each carrying τ/m units of cash from bi
k to sj

l . Thus there must be n/τ edges

incident on the {sj
l }n/τ

l=1 . Therefore, each edge can be matched with a unique pair of nodes in G′ and form a
perfect matching. �

C Algorithm Correctness Proof
In the next lemma we show if the players in a bipartite exchange economy trade within the trading components
output by Algorithm 1, then there will be no wealth variation within each trading component.

Lemma C.1 If Algorithm 1 is run on a bipartite exchange economy G = (B, S, E), and the players trade
within the trading components output, C1 = {U1, N(U1)}, . . . , Cr = {Ur, N(Ur)}, then at every Ci will
have no wealth variation, furthermore, the wealth of each seller will be |Ui|/|N(Ui)|, and the wealth of each
buyer will be |N(Ui)|/|Ui|.

Proof: Let τ > 0 be the maximum number such that each element of an exchange equilibrium consumption
plan {xij} can be represented as kτ for an integer k. Let H = (Ui, N(Ui), Ei), where Ei = {(u, v)|u ∈
Ui, v ∈ N(Ui), and (u, v) ∈ E}. Let H ′ = {U ′

i , V
′
i , E′

i} be the τ -balanced graph of H . Assume for the
sake of contradiction that there is wealth variation in H . Then, by Lemma B.1 there is no perfect matching

4Since the utilities and endowments of the players are rational, the values of the consumption plan are also rational [8]. Thus, such
a τ must exist.
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in H ′. Next, by Theorem 4.2 if there is no perfect matching in H ′, then there is a set W ⊂ U ′
i , such that

|N(W )| < |W |. By the construction of H ′ we can assume, without loss of generality, that if one of the nodes
corresponding to bi in H ′ is in W , then all of the nodes corresponding to bi in H ′ are in W . More formally, if
bi
k ∈W then {bi

k}m/τ
k=1 ⊆W . Now let R(W ) = {bi|bi

k ∈W for some k}, then we get the following. (The left
most equality comes from the construction of H ′.)

|R(W )|
|N(R(W ))| =

τ |W |/|N(Ui)|
τ |N(W )|/|Ui| =

|W |
|N(W )|

|Ui|
|N(Ui)|

>
|Ui|
|N(Ui)|

This contradicts the fact that |Ui|/|N(Ui)| has the maximum ratio at Gi−1. Thus there is no wealth variation
in H . Since there is no wealth variation in H at exchange equilibrium, and because of the market clearing
condition, the wealth of each seller must be |Ui|/|N(Ui)|, and the wealth of each buyer must be |N(Ui)|/|Ui|
�

This next lemma establishes the fact that as Algorithm 1 runs, the ratio of the size of the subsets of buyers
to the size of their neighbor sets, |Ui|/|N(Ui)|, is non-increasing. This is essential to the proof of correctness
of our algorithm, because the algorithm assumes that Ui and N(Ui) will form a trading component, and this
result shows that neither set will have better trading opportunities.

Lemma C.2 For any run of Algorithm 1, |Ui|/|N(Ui)| ≥ |Ui+k|/|N(Ui+k)| for k > 0.

Proof: Assume for the sake of contradiction that the lemma does not hold, then there exists two consecutive
sets such that |Ui|/|N(Ui)| < |Ui+1|/|N(Ui+1)|. Consider the set Ui

⋃
Ui+1 during a run of Algorithm 1 just

before Ui and N(Ui) were removed from the graph.

|Ui
⋃

Ui+1|
|N(Ui

⋃
Ui+1)| ≥

|Ui|+ |Ui+1|
|N(Ui)|+ |N(Ui+1)| >

|Ui|
|N(Ui)| ,

which contradicts the maximality of Ui. �

As consequence of lemmas C.1 and C.2, the proof of Theorem 4.3 follows.

D Proof of Theorem 3.4
Proof:[Proof of Theorem 3.4]

Let G′ be the exchange subgraph of G. Assume for the sake of contradiction that G′ is a strict subgraph
of G. There are two types of edges which can be in G and not in G′. The first is edges inside a connected
component, and the second is edges connecting two connected components. Let Ci be the first connected
component outputted by Alg. 1 that has redundant edges and assume wlog that i = 1.

We first deal with the redundant edges inside C1. Now as long as U1 edges N(U1) remain unchanged
and there is no proper subset, W of U1 with larger ratio (i.e. |W |/|N(W )| ≤ |U1|/|N(U1)|), then Alg. 1
will still output U1 as the first connected component; thus any edge that does not violate these requirements
can be removed without effecting the exchange subgraph, and since an edge price is positive G cannot be an
equilibrium graph of the network formation game.

After dealing with edges of the first type, we proceed to the second type. By definition there are no edges
going out of U1 outside the set N(U1), and we remain to deal with edges inside/outside N(U1). By Lemma
C.2 we have that for every set in G2, we have |S|/|N(S)| ≤ |U1|/|N(U1)|. Adding the edges that removed
while moving to G2, imply that in G1 for every set we have that |S|/|N(S)| is only smaller (as N(S) might
be larger), and thus U1 remains the maximum in G1 and the edges are redundant in G1 and since they do not
appear in Gi i ≥ 2 they are redundant and can be removed without effecting the exchange subgraph. �
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