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Abstract

Assignment methods are at the heart of many
algorithms for unsupervised learning and clus-
tering | in particular, the well-known K-means

and Expectation-Maximization (EM) algorithms.
In this work, we study several di�erent methods
of assignment, including the \hard" assignments
used by K-means and the \soft" assignments
used by EM. While it is known that K-means
minimizes the distortion on the data and EM
maximizes the likelihood, little is known about
the systematic di�erences of behavior between
the two algorithms. Here we shed light on these
di�erences via an information-theoretic analysis.
The cornerstone of our results is a simple decom-
position of the expected distortion, showing that
K-means (and its extension for inferring gen-
eral parametric densities from unlabeled sample
data) must implicitly manage a trade-o� between
how similar the data assigned to each cluster are,
and how the data are balanced among the clus-
ters. How well the data are balanced is mea-
sured by the entropy of the partition de�ned by
the hard assignments. In addition to letting us
predict and verify systematic di�erences between
K-means and EM on speci�c examples, the de-
composition allows us to give a rather general ar-
gument showing that K-means will consistently
�nd densities with less \overlap" than EM. We
also study a third natural assignment method
that we call posterior assignment, that is close
in spirit to the soft assignments of EM, but leads
to a surprisingly di�erent algorithm.

1 Introduction

Algorithms for density estimation, clustering and un-
supervised learning are an important tool in machine
learning. Two classical algorithms are the K-means
algorithm [7, 1, 3] and the Expectation-Maximization
(EM) algorithm [2]. These algorithms have been ap-
plied in a wide variety of settings, including parameter
estimation in hidden Markov models for speech recog-
nition [8], estimation of conditional probability tables
in belief networks for probabilistic inference [6], and

various clustering problems [3].

At a high level, K-means and EM appear rather sim-
ilar: both perform a two-step iterative optimization,
performed repeatedly until convergence. The �rst step
is an assignment of data points to \clusters" or den-
sity models, and the second step is a reestimation of
the clusters or density models based on the current
assignments. The K-means and EM algorithms di�er
only in the manner in which they assign data points
(the �rst step). Loosely speaking, in the case of two
clusters 1, if P0 and P1 are density models for the two
clusters, then K-means assigns x to P0 if and only if
P0(x) � P1(x); otherwise x is assigned to P1. We call
this hard or Winner-Take-All (WTA) assignment. In
contrast, EM assigns x fractionally, assigning x to P0
with weight P0(x)=(P0(x) + P1(x)), and assigning the
\rest" of x to P1. We call this soft or fractional assign-
ment. A third natural alternative would be to again
assign x to only one of P0 and P1 (as in K-means),
but to randomly assign it, assigning to P0 with prob-
ability P0(x)=(P0(x) + P1(x)). We call this posterior
assignment.

Each of these three assignment methods can be in-
terpreted as classifying points as belonging to one (or
more) of two distinct populations, solely on the basis
of probabilistic models (densities) for these two popu-
lations. An alternative interpretation is that we have
three di�erent ways of inferring the value of a \hid-
den" (unobserved) variable, whose value would indi-
cate which of two sources had generated an observed
data point. How these assignment methods di�er in
the context of unsupervised learning is the subject of
this paper.

In the context of unsupervised learning, EM is typi-
cally viewed as an algorithm for mixture density esti-
mation. In classical density estimation, a �nite train-
ing set of unlabeled data is used to derive a hypoth-
esis density. The goal is for the hypothesis density

1Throughout the paper, we concentrate on the case of
just two clusters or densities for simplicity of development.
All of our results hold for the general case of K clusters or
densities.



to model the \true" sampling density as accurately
as possible, typically as measured by the Kullback-
Leibler (KL) divergence. The EM algorithm can be
used to �nd a mixture density model of the form
�0P0+(1��0)P1. It is known that the mixture model
found by EM will be a local minimumof the log-loss [2]
(which is equivalent to a local maximum of the likeli-
hood), the empirical analogue of the KL divergence.

The K-means algorithm is often viewed as a vector
quantization algorithm (and is sometimes referred to
as the Lloyd-Max algorithm in the vector quantization
literature). It is known that K-means will �nd a local
minimum of the distortion or quantization error on
the data [7], which we will discuss at some length.

Thus, for both the fractional and WTA assignment
methods, there is a natural and widely used itera-
tive optimization heuristic (EM and K-means, respec-
tively), and it is known what loss function is (locally)
minimized by each algorithm (log-loss and distortion,
respectively). However, relatively little seems to be
known about the precise relationship between the two
loss functions and their attendant heuristics. The
structural similarity of EM andK-means often leads to
their being considered closely related or even roughly
equivalent. Indeed, Duda and Hart [3] go as far as
saying that K-means can be viewed as \an approxi-
mate way to obtain maximum likelihood estimates for
the means", which is the goal of density estimation in
general and EM in particular. Furthermore, K-means
is formally equivalent to EM using a mixture of Gaus-
sians with covariance matrices �I (where I is the iden-
tity matrix) in the limit � ! 0. In practice, there is
often some conation of the two algorithms: K-means
is sometimes used in density estimation applications
due to its more rapid convergence, or at least used
to obtain \good" initial parameter values for a subse-
quent execution of EM.

But there are also simple examples in which K-means
and EM converge to rather di�erent solutions, so the
preceding remarks cannot tell the entire story. What
quantitative statements can be made about the sys-
tematic di�erences between these algorithms and loss
functions?

In this work, we answer this question by giving a
new interpretation of the classical distortion that is lo-
cally minimized by the K-means algorithm. We give a
simple information-theoretic decomposition of the ex-
pected distortion that shows that K-means (and any
other algorithm seeking to minimize the distortion)
must manage a trade-o� between how well the data are
balanced or distributed among the clusters by the hard
assignments, and the accuracy of the density models
found for the two sides of this assignment. The degree
to which the data are balanced among the clusters
is measured by the entropy of the partition de�ned
by the assignments. We refer to this trade-o� as the
information-modeling trade-o�.

The information-modeling trade-o� identi�es two sig-
ni�cant ways in which K-means and EM di�er. First,
where EM seeks to model the entire sampling density
Q with a mixture model �0P0 + (1� �0)P1, K-means
is concerned with explicitly identifying distinct sub-
populations Q0 and Q1 of the sampling density, and
�nding good models P0 and P1 for each separately .
Second, the choice of subpopulations identi�ed by K-
means may be strongly inuenced by the entropy of
the partition they de�ne; in EM this inuence is en-
tirely absent. The �rst of these di�erences is the in-
tuitive result of the di�ering assignment methods, and
we formalize it here; the second is less obvious, but
actually can determine the behavior of K-means even
in simple examples, as we shall see.

In addition to letting us predict and explain the be-
havior of K-means on speci�c examples, the new de-
composition allows us to derive a general prediction
about how K-means and EM di�er: namely, that K-
means will tend to �nd density models P0 and P1 that
have less \overlap" with each other compared to those
found by EM. In certain simple examples, this bias of
K-means is apparent; here we argue that it is a rather
general bias that depends little on the sampling den-
sity or the form of the density models P0 and P1 used
by the algorithms.

The mathematical framework we use also allows us
to analyze the variant of K-means that maintains un-
equal weightings of the density models P0 and P1; we
show that the use of this weighting has an interesting
e�ect on the loss function, essentially \erasing" the in-
centive for �nding a partition with high entropy. We
also study the posterior assignment method mentioned
above, and show that despite the resulting loss func-
tion's algebraic similarity to the iterative optimization
performed by EM, it di�ers rather dramatically.

Our results should be of some interest to anyone ap-
plying EM, K-means and their variants to problems
of unsupervised learning.

2 A Loss Decomposition for Hard
Assignments

Suppose that we have densities P0 and P1 over X, and
a (possibly randomized) mapping F that maps x 2 X
to either 0 or 1; we will refer to F as a partition of
X. We think of F as \assigning" points to exactly
one of P0 and P1, and we think of Pb (b 2 f0; 1g) as
a density model for the points assigned to it. F may
ip coins to determine the assignment of x, but must
always output a value in f0; 1g; in other words, F must
make \hard" assignments. We will call such a triple
(F; fP0; P1g) a partitioned density . In this section, we
propose a measure of goodness for partitioned densities
and explore its interpretation and consequences.

In all of the settings we consider in this paper, the



partition F will actually be determined by P0 and P1
(and perhaps some additional parameters), but we will
suppress the dependency of F on these quantities for
notational brevity. As simple examples of such hard
assignment methods, we have the two methods dis-
cussed in the introduction: WTA assignment (used by
K-means), in which x is assigned to P0 if and only
if P0(x) � P1(x), and what we call posterior assign-
ment, in which x is assigned to Pb with probability
Pb(x)=(P0(x) + P1(x)). The soft or fractional assign-
ment method used by EM does not fall into this frame-
work, since x is fractionally assigned to both P0 and
P1.

Throughout the development, we will assume that un-
classi�ed data is drawn according to some �xed, un-
known density or distribution Q over X that we will
call the sampling density. Now given a partitioned
density (F; fP0; P1g), what is a reasonable way to mea-
sure how well the partitioned density \models" the
sampling density Q? As far as the Pb are concerned,
as we have mentioned, we might ask that the density
Pb be a good model of the sampling density Q con-
ditioned on the event F (x) = b. In other words, we
imagine that F partitions Q into two distinct subpop-
ulations, and demand that P0 and P1 separately model
these subpopulations. It is not immediately clear what
criteria (if any) we should ask F to meet; let us defer
this question for a moment.

Fix any partitioned density (F; fP0; P1g), and de�ne
for any x 2 X the partition loss

�(x) = E
�� log(PF (x)(x))

�
(1)

where the expectation is only over the (possible) ran-
domization in F . We have suppressed the dependence
of � on the partitioned density under consideration for
notational brevity, and the logarithm is base 2. If we
ask that the partition loss be minimized, we capture
the informal measure of goodness proposed above: we
�rst use the assignment method F to assign x to ei-
ther P0 or P1; and we then \penalize" only the assigned
density Pb by the log loss � log(Pb(x)). We can de�ne
the training partition loss on a �nite set of points S,
and the expected partition loss with respect to Q, in
the natural ways.

Let us digress briey here to show that in the spe-
cial case that P0 and P1 are multivariate Gaussian
(normal) densities with means �0 and �1, and identity
covariance matrices, and the partition F is the WTA
assignment method, then the partition loss on a set
of points is equivalent to the well-known distortion or
quantization error of �0 and �1 on that set of points
(modulo some additive and multiplicative constants).
The distortion of x with respect to �0 and �1 is simply
(1=2)min(jjx� �0jj2; jjx� �1jj2) = (1=2)jjx��F (x)jj2,
where F (x) assigns x to the nearer of �0 and �1
according to Euclidean distance (WTA assignment).
Now for any x, if Pb is the d-dimensional Gaussian

(1=(2�)(d=2))e�(1=2)jjx��bjj
2

and F is WTA assignment

with respect to the Pb, then the partition loss on x is

� log(PF (x)(x)) = log
�
(2�)d=2e(1=2)jjx��F(x)jj

2
�
(2)

= (1=2)jjx� �F (x)jj2 log(e)
+(d=2) log2�: (3)

The �rst term in Equation (3) is the distortion times
a constant, and the second term is an additive con-
stant that does not depend on x, P0 or P1. Thus,
minimization of the partition loss is equivalent to min-
imization of the distortion. More generally, if x and �
are equal dimensioned real vectors, and if we measure
distortion using any distance metric d(x; �) that can
be expressed as a function of x��, (that is, the distor-
tion on x is the smaller of the two distances d(x; �0)
and d(x; �1),) then again this distortion is the spe-
cial case of the partition loss in which the density Pb
is Pb(x) = (1=Z)e�d(x;�b), and F is WTA assignment.
The property that d(x; �) is a function of x�� is a suf-
�cient condition to ensure that the normalization fac-
tor Z is independent of �; if Z depends on �, then the
partition loss will include an additional �-dependent
term besides the distortion, and we cannot guarantee
in general that the two minimizations are equivalent.

Returning to the development, it turns out that the
expectation of the partition loss with respect to the
sampling density Q has an interesting decomposition
and interpretation. For this step we shall require
some basic but important de�nitions. For any �xed
mapping F and any value b 2 f0; 1g, let us de�ne
wb = Prx2Q[F (x) = b], so w0 + w1 = 1. Then we
de�ne Qb by

Qb(x) = Q(x) �Pr[F (x) = b]=wb (4)

where here the probability is taken only over any ran-
domization of the mapping F . Thus, Qb is simply
the distribution Q conditioned on the event F (x) = b,
so F \splits" Q into Q0 and Q1: that is, Q(x) =
w0Q0(x) + w1Q1(x) for all x. Note that the de�ni-
tions of wb and Qb depend on the partition F (and
therefore on the Pb, when F is determined by the Pb).

Now we can write the expectation of the partition loss
with respect to Q:

Ex2Q[�(x)]

= w0Ex02Q0 [� log(P0(x0))]

+w1Ex12Q1 [� log(P1(x1))] (5)

= w0Ex02Q0

�
log

Q0(x0)

P0(x0)
� log(Q0(x0))

�

+w1Ex12Q1

�
log

Q1(x1)

P1(x1)
� log(Q1(x1))

�
(6)

= w0KL(Q0jjP0) + w1KL(Q1jjP1)
+w0H(Q0) + w1H(Q1) (7)

= w0KL(Q0jjP0) + w1KL(Q1jjP1)
+H(QjF ): (8)

Here KL(QbjjPb) denotes the Kullback-Leibler diver-
gence from Qb to Pb, and H(QjF ) denotes H(xjF (x)),



the entropy of the random variable x, distributed ac-
cording to Q, when we are given its (possibly random-
ized) assignment F (x).

This decomposition will form the cornerstone of all of
our subsequent arguments, so let us take a moment to
examine and interpret it in some detail. First, let us re-
member that every term in Equation (8) depends on all
of F , P0 and P1, since F and the Pb are themselves cou-
pled in a way that depends on the assignment method.
With that caveat, note that the quantity KL(QbjjPb)
is the natural measure of how well Pb models its re-
spective side of the partition de�ned by F , as discussed
informally above. Furthermore, the weighting of these
terms in Equation (8) is the natural one. For instance,
as w0 approaches 0 (and thus, w1 approaches 1), it
becomes less important to make KL(Q0jjP0) small: if
the partition F assigns only a negligible fraction of
the population to category 0, it is not important to
model that category especially well, but very impor-
tant to accurately model the dominant category 1. In
isolation, the terms w0KL(Q0jjP0)+w1KL(Q1jjP1) en-
courage us to choose Pb such that the two sides of the
split of Q de�ned by P0 and P1 (that is, by F ) are in
fact modeled well by P0 and P1. But these terms are
not in isolation.

The term H(QjF ) in Equation (8) measures the infor-
mativeness of the partition F de�ned by P0 and P1,
that is, how much it reduces the entropy of Q. More
precisely, by appealing to the symmetry of the mu-
tual information I(x; F (x)), we may write (where x is
distributed according to Q):

H(QjF ) = H(xjF (x)) (9)

= H(x) � I(x; F (x)) (10)

= H(x) � (H(F (x)) �H(F (x)jx))(11)
= H(x) � (H2(w0) �H(F (x)jx)) (12)

where H2(p) = �p log(p) � (1 � p) log(1 � p) is the
binary entropy function. The term H(x) = H(Q) is
independent of the partition F . Thus, we see from
Equation (12) that F reduces the uncertainty about x
by the amount H2(w0) � H(F (x)jx). Note that if F
is a deterministic mapping (as in WTA assignment),
then H(F (x)jx) = 0, and a good F is simply one that
maximizes H(w0). In particular, any deterministic F
such that w0 = 1=2 is optimal in this respect, regard-
less of the resulting Q0 and Q1. In the general case,
H(F (x)jx) is a measure of the randomness in F , and a
good F must trade o� between the competing quanti-
ties H2(w0) (which, for example, is maximized by the
F that ips a coin on every x) and �H(F (x)jx) (which
is always minimized by this same F ).

Perhaps most important, we expect that there
may be competition between the modeling terms
w0KL(Q0jjP0) + w1KL(Q1jjP1) and the partition in-
formation term H(QjF ). If P0 and P1 are chosen
from some parametric class P of densities of limited
complexity (for instance, multivariate Gaussian dis-
tributions), then the demand that the KL(QbjjPb) be

small can be interpreted as a demand that the parti-
tion F yield Qb that are \simple"(by virtue of their be-
ing well-approximated, in the KL divergence sense, by
densities lying in P). This demand may be in tension
with the demand that F be informative, and Equation
(8) is a prescription for how to manage this competi-
tion, which we refer to in the sequel as the information-
modeling trade-o�.

Thus, if we view P0 and P1 as implicitly de�ning a
hard partition (as in the case of WTA assignment),
then the partition loss provides us with one particu-
lar way of evaluating the goodness of P0 and P1 as
models of the sampling density Q. Of course, there
are other ways of evaluating the Pb, one of them being
to evaluate the mixture (1=2)P0+ (1=2)P1 via the KL
divergence KL(Qjj(1=2)P0+ (1=2)P1) (we will discuss
the more general case of nonequal mixture coe�cients
shortly). This is the expression that is (locally) mini-
mized by standard density estimation approaches such
as EM, and we would particularly like to call attention
to the ways in which Equation (8) di�ers from this ex-
pression. Not only does Equation (8) di�er by incor-
porating the penalty H(QjF ) for the partition F , but
instead of asking that the mixture (1=2)P0 + (1=2)P1
model the entire populationQ, each Pb is only asked to
| and only given credit for | modeling its respective
Qb. We will return to these di�erences in considerably
more detail in Section 4.

We close this section by observing that if P0 and P1 are
chosen from a class P of densities, and we constrain F
to be the WTA assignment method for the Pb, there
is a simple and perhaps familiar iterative optimization
algorithm for locally minimizing the partition loss on
a set of points S over all choices of the Pb from P |
we simply repeat the following two steps until conver-
gence:

� (WTA Assignment) Set S0 to be the set of points
x 2 S such that P0(x) � P1(x), and set S1 to be
S � S0.

� (Reestimation) Replace each Pb with
argminP2Pf�

P
x2Sb

log(P (x))g.

As we have already noted, in the case that the Pb are
restricted to be Gaussian densities with identity covari-
ance matrices (and thus, only the means are parame-
ters), this algorithm reduces to the classical K-means
algorithm. Here we have given a natural extension for
estimating P0 and P1 from a general parametric class,
so we may have more parameters than just the means.
With some abuse of terminology, we will simply refer
to our generalized version as K-means. The reader fa-
miliar with the EM algorithm for choosing P0 and P1
from P will also recognize this algorithm as simply a
\hard" or WTA assignment variant of unweighted EM
(that is, where the mixture coe�cients must be equal).

It is easy to verify that K-means will result in a local
minimum of the partition loss over Pb chosen from P



using the WTA assignment method. Let us rename
this special case of the partition loss the K-means loss
for convenience.

The fact that K-means locally minimizes the K-
means loss, combined with Equation (8), implies that
K-means must implicitly manage the information-
modeling trade-o�. Note that although K-means will
not increase the K-means loss at any iteration, this
does not mean that each of the terms in Equation (8)
will not increase; indeed, we will see examples where
this is not the case. It has been often observed in the
vector quantization literature [4] that at each itera-
tion, the means estimated by K-means must in fact
be the true means of the points assigned to them |
but this does not imply, for instance, that the terms
KL(QbjjPb) are nonincreasing (because, for example,
Qb can also change with each iteration).

Finally, note that we can easily generalize Equation
(8) to the K-cluster case:

EQ[�(x)] =
KX
i=1

wiKL(QijjPi) +H(QjF ): (13)

Note that, as in Equation (11), H(QjF ) = H(x) �
(H(F (x))�H(F (x)jx)), where x is distributed accord-
ing to Q, and that for general K, H(F (x)) is now an
O(log(K)) quantity.

3 Weighted K-Means

As we have noted, K-means is a hard-assignment vari-
ant of the unweighted EM algorithm (that is, where
the mixture coe�cients are forced to be 1=2, or 1=K
in the general case of K densities). There is also a nat-
ural generalization of K-means that can be thought of
as a hard-assignment variant of weighted EM. For any
class P of densities over a space X, weighted K-means
over P takes as input a set S of data points and out-
puts a pair of densities P0; P1 2 P, as well as a weight
�0 2 [0; 1]. (Again, the generalization to the case of K
densities and K weights is straightforward.) The algo-
rithm begins with random choices for the Pb 2 P and
�0, and then repeatedly executes the following three
steps:

� (WTA Assignment) Set S0 to be the set of points
x 2 S such that �0P0(x) � (1��0)P1(x), and set
S1 to be S � S0.

� (Reestimation) Replace each Pb with
argminP2Pf�

P
x2Sb

log(P (x))g.
� (Reweighting) Replace �0 with jS0j=jSj.

Now we can again ask the question: what loss function
is this algorithm (locally) minimizing? Let us �x F to
be the weighted WTA partition, given by F (x) = 0 if
and only if �0P0(x) � (1 � �0)P1(x). Note that F
is deterministic, and also that in general, �0 (which

is an adjustable parameter of the weighted K-means
algorithm) is not necessarily the same as w0 (which is
de�ned by the current weighted WTA partition, and
depends on Q).

It turns out that weighted K-means will not �nd P0
and P1 that give a local minimum of the unweighted
K-means loss, but of a slightly di�erent loss function
whose expectation di�ers from that of the unweighted
K-means loss in an interesting way. Let us de�ne the
weighted K-means loss of P0 and P1 on x by

� log
�
�
1�F (x)
0 (1� �0)

F (x)PF (x)(x)
�

(14)

where again, F is the weighted WTA partition deter-
mined by P0, P1 and �0. For any data set S, de�ne
Sb = fx 2 S : F (x) = bg. We now show that weighted
K-means will in fact not increase the weighted K-
means loss on S with each iteration. Thus2

�
X
x2S

log
�
�
1�F (x)
0 (1� �0)

F (x)PF (x)(x)
�

= �
X
x2S0

log(�0P0(x))

�
X
x2S1

log((1� �0)P1(x)) (15)

= �
X
x2S0

log(P0(x)) �
X
x2S1

log(P1(x))

�jS0j log(�0)� jS1j log(1� �0): (16)

Now

�jS0j log(�0)� jS1j log(1 � �0)

= �jSj
� jS0j
jSj log(�0) +

jS1j
jSj log(1� �0)

�
(17)

which is an entropic expression minimized by the
choice �0 = jS0j=jSj. But this is exactly the new value
of �0 computed by weightedK-means from the current
assignments S0; S1. Furthermore, the two summations
in Equation (16) are clearly reduced by reestimating
P0 from S0 and P1 from S1 to obtain the densities
P 0
0 and P 0

1 that minimize the log-loss over S0 and S1
respectively, and these are again exactly the new densi-
ties computed by weighted K-means. Thus, weighted
K-means decreases the weighted K-means loss (given
by Equation (14) of (F; fP0; P1g) on S at each itera-
tion, justifying our naming of this loss.

Now for a �xed P0 and P1, what is the expected
weighted K-means loss with respect to the sampling
density Q? We have

Ex2Q

h
� log

�
�
1�F (x)
0 (1� �0)

F (x)PF (x)(x)
�i

= Ex2Q
�� log(PF (x)(x))

�
�w0 log(�0)� w1 log(1� �0) (18)

2We are grateful to Nir Friedman for pointing out this
derivation to us.



where wb = Prx2X [F (x) = b] as before. The �rst term
on the right-hand side is just the expected partition
loss of (F; fP0; P1g). The last two terms give the cross-
entropy between the binary distributions (w0; w1) =
(w0; 1�w0) and (�0; 1��0). For a �xed (F; fP0; P1g),
there is not much we can say about this cross-entropy;
but for weighted K-means, we know that at conver-
gence we must have �0 = jS0j=jSj (for this is how
weighted K-means reassigns �0 at each iteration), and
jS0j=jSj = ŵ0 is simply the empirical estimate of w0.
Thus, in the limit of large samples we expect ŵ0 ! w0,
and thus

� w0 log(ŵ0) � w1 log(ŵ1)!H2(w0): (19)

Combining Equation (19) with Equation (18) and our
general decomposition for partition loss in Equation
(8) gives that for the P0, P1 and �0 found by weighted
K-means,

Ex2Q

h
� log

�
�
1�F (x)
0 (1 � �0)

F (x)PF (x)(x)
�i

= w0KL(Q0jjP0) + w1KL(Q1jjP1) +H(QjF )
�w0 log(ŵ0)� w1 log(ŵ1) (20)

= w0KL(Q0jjP0) + w1KL(Q1jjP1) +H(Q) �H2(w0)

�w0 log(ŵ0)� w1 log(ŵ1) (21)

� w0KL(Q0jjP0) + w1KL(Q1jjP1) +H(Q): (22)

Thus, since H(Q) does not depend on the Pb or �0,
we may think of the (generalization) goal of weighted
K-means as �nding (F; fP0; P1g) that minimizes the
sum w0KL(Q0jjP0)+w1KL(Q1jjP1). This di�ers from
the goal of unweighted K-means in two ways. First
of all, the introduction of the weight �0 has changed
our de�nition of the partition F , and thus has changed
the de�nition of Q0 and Q1, even for �xed P0; P1 (un-
weighted K-means corresponds to �xing �0 = 1=2).
But beyond this, the introduction of the weight �0 has
also removed the bias towards �nding an \informative"
partition F . Thus, there is no information-modeling
trade-o� for weighted K-means; the algorithm will
try to minimize the modeling terms w0KL(Q0jjP0) +
w1KL(Q1jjP1) only. Note, however, that this is still
quite di�erent from the mixture KL divergence mini-
mized by EM.

4 K-Means vs. EM: Examples

In this section, we consider several di�erent sampling
densities Q, and compare the solutions found by K-
means (both unweighted and weighted) and EM. In
each example, there will be signi�cant di�erences be-
tween the error surfaces de�ned over the parameter
space by the K-means losses and the KL divergence.
Our main tool for understanding these di�erences will
be the loss decompositions given for the unweighted
K-means loss by Equation (8) and for the weighted
K-means loss by Equation (22). It is important to
remember that the solutions found by one of the algo-
rithms should not be considered \better" than those

found by the other algorithms: we simply have dif-
ferent loss functions, each justi�able on its own terms,
and the choice of which loss function to minimize (that
is, which algorithm to use) determines which solution
we will �nd.

Throughout the following examples, the instance space
X is simply <. We compare the solutions found by
(unweighted and weighted) EM and (unweighted and
weighted) K-means when the output is a pair fP0; P1g
of Gaussians over < | thus P0 = N (�0; �0) and
P1 = N (�1; �1), where �0; �0; �1; �1 2 < are the
parameters to be adjusted by the algorithms. (The
weighted versions of both algorithms also output the
weight parameter �0 2 [0; 1].) In the case of EM, the
output is interpreted as representing a mixture distri-
bution, which is evaluated by its KL divergence from
the sampling density. In the case of (unweighted or
weighted) K-means, the output is interpreted as a par-
titioned density, which is evaluated by the expected
(unweighted or weighted) K-means loss with respect
to the sampling density. Note that the generalization
here over the classical vector quantization case is sim-
ply in allowing the Gaussians to have non-unit vari-
ance.

In each example, the various algorithms were run on
10 thousand examples from the sampling density; for
these 1-dimensional problems, this sample size is suf-
�cient to ensure that the observed behavior is close
to what it would be running directly on the sampling
density.

Example (A). Let the sampling density Q be the
symmetric Gaussian mixture

Q = 0:5N (�2; 1:5)+ 0:5N (2; 1:5): (23)

See Figure 1. Suppose we initialized the parameters for
the algorithms as �0 = �2, �1 = 2, and �0 = �1 = 1:5.
Thus, each algorithm begins its search from the \true"
parameter values of the sampling density. The behav-
ior of unweighted EM is clear: we are starting EM at
the global minimum of its expected loss function, the
KL divergence; by staying where it begins, EM can
enjoy a solution that perfectly models the sampling
density Q (that is, KL divergence 0). The same is also
true of weighted EM: the presence or absence of the
weighting parameter �0 is essentially irrelevant here,
since the optimal value for this parameter is �0 = 0:5
for this choice of Q.

What about unweighted K-means? Let us examine
each of the terms in the decomposition of the expected
partition loss given in Equation (8). The termH(QjF )
is already minimized by the initial choice of parame-
ters: the WTA partition F is simply F (x) = 0 if and
only if x � 0, which yields w0 = 1=2 and H2(w0) = 1.
The terms w0KL(Q0jjP0) and w1KL(Q1jjP1), however,
are a di�erent story. Notice that Q0 | which is Q
conditioned on the event F (x) = 0, or x � 0 | is
not N (�2; 1:5). Rather, it is N (�2; 1:5) \chopped
o�" above x = 0, but with the tail of N (2; 1:5) be-
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Figure 1: The sampling density for Example (A).
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Figure 2: The sampling density for Example (B).
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Figure 3: Evolution of the K-means loss (top plot)
and its decomposition for Example (B): KL di-
vergences w0KL(Q0jjP0)+w1KL(Q1jjP1) (bottom
plot) and partition information gainH2(w0) (mid-
dle plot), as a function of the iteration of un-
weighted K-means running on 10 thousand exam-
ples from Q = N (0; 1).
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Figure 4: Plot of the sampling mixture density
Q = 0:95N (0; 1)+ 0:05N (5; 0:1) for Example (C).

low x = 0 added on. Equivalently, it is N (�2; 1:5)
with its tail above x = 0 reected back below x = 0.
Clearly, the tail reection operation on N (�2; 1:5)
that results in Q0 moves the mean of Q0 left of �2
(since the tail reection moved mass left), and reduces
the variance below 1:5 (since the tail has moved to-
wards the �nal mean). Thus, with respect to only the
term w0KL(Q0jjP0), the best choice of �0 should be be
smaller than the initial value of�2, and the best choice
of �0 should be smaller than the initial value of 1:5.
Symmetric remarks apply to the term w1KL(Q1jjP1).
Furthermore, as long as the movements of �0 and �1,
and �0 and �1, are symmetric, then the WTA parti-
tion F will remain unchanged by these movements |
thus, it is possible to improve the terms wbKL(QbjjPb)
from the initial conditions without degrading the ini-
tially optimal value for the term H(QjF ). We make
essentially the same prediction for weighted K-means,
as the optimal performance is achieved for �0 = 0:5.

Performing the experiment on the �nite sample, we
�nd that after 8 iterations, K-means has converged to

the solution

�0 = �2:130; �0 = 1:338; �1 = 2:131; �1 = 1:301 (24)

which yields w0 = 0:500. As predicted, the means
have been pushed out from the origin, and the vari-
ances reduced. Naturally, the KL divergence from the
sampling density Q to the mixture model is inferior
to that of the starting parameters, while its expected
K-means loss is superior.

Let us remark that in this simple example, it would
have been easy to predict the behavior of K-means
directly. The point is that the decomposition of Equa-
tion (8) provides a justi�cation of this behavior that
cannot be provided by regarding K-means as a coarse
approximation to EM. We now move on to some ex-
amples where the behavior of the various algorithms
is more subtle.

Example (B).We now examine an example in which
the term H(QjF ) directly competes with the KL di-
vergences. Let the sampling density Q be the sin-
gle unit-variance Gaussian Q(x) = N (0; 1); see Fig-
ure 2. Consider the initial choice of parameters �0 = 0,



�0 = 1, and P1 at some very distant location, say
�0 = 100, �0 = 1. We �rst examine the behav-
ior of unweighted K-means. The WTA partition F
de�ned by these settings is F (x) = 0 if and only if
x < 50. Since Q has so little mass above x = 50, we
have w0 � 1, and thus H(QjF ) � H(Q): the par-
tition is not informative. The term w1KL(Q1jjP1)
in Equation (8) is negligible, since w1 � 0. Fur-
thermore, Q0 � N (0; 1) because even though the
tail reection described in Example (A) occurs again
here, the tail of N (0; 1) above x = 50 is a negligi-
ble part of the density. Thus w0KL(Q0jjP0) � 0, so
w0KL(Q0jjP0) + w1KL(Q1jjP1) � 0. In other words,
if all we cared about were the KL divergence terms,
these settings would be near-optimal.

But the information-modeling trade-o� is at work here:
by moving P1 closer to the origin, our KL divergences
may degrade, but we obtain a more informative parti-
tion. Indeed, after 32 iterations unweighted K-means
converges to

�0 = �0:768; �0 = 0:602; �1 = 0:821; �1 = 0:601 (25)

which yields w0 = 0:509.

The information-modeling tradeo� is illustrated nicely
by Figure 3, where we simultaneously plot the un-
weighted K-means loss and the terms w0KL(Q0jjP0)+
w1KL(Q1jjP1) andH2(w0) as a function of the number
of iterations during the run. The plot clearly shows the
increase in H2(w0) (meaning a decrease in H(QjF )),
and an increase inw0KL(Q0jjP0)+w1KL(Q1jjP1). The
fact that the gain in partition information is worth the
increase in KL divergences is shown by the resulting
decrease in the unweighted K-means loss. Note that
it would be especially di�cult to justify the solution
found by unweighted K-means from the viewpoint of
density estimation.

As might be predicted from Equation (22), the behav-
ior of weighted K-means is dramatically di�erent for
this Q, since this algorithm has no incentive to �nd an
informative partition, and is only concerned with the
KL divergence terms. We �nd that after 8 iterations
it has converged to

�0 = 0:011; �0 = 0:994; �1 = 3:273; �1 = 0:033 (26)

with �0 = w0 = 1:000. Thus, as expected, weighted
K-means has chosen a completely uninformative par-
tition, in exchange for makingwbKL(QbjjPb) � 0. The
values of �1 and �1 simply reect the fact that at con-
vergence, P1 is assigned only the few rightmost points
of the 10 thousand examples.

Note that the behavior of both K-means algorithms
is rather di�erent from that of EM, which will prefer
P0 = P1 = N (0; 1) resulting in the mixture (1=2)P0 +
(1=2)P1 = N (0; 1). However, the solution found by
weighted K-means is \closer" to that of EM, in the
sense that weightedK-means e�ectively eliminates one
of its densities and �ts the sampling density with a
single Gaussian.

Example (C). A slight modi�cation to the sampling
distribution of Example (B) results in some interesting
and subtle di�erence of behavior for our algorithms.
Let Q be given by

Q = 0:95N (0; 1) + 0:05N (5; 0:1): (27)

Thus, Q is essentially as in Example (B), but with
addition of a small distant \spike" of density; see Fig-
ure 4.

Starting unweighted K-means from the initial condi-
tions �0 = 0; �0 = 1; �1 = 0; �1 = 5 (which has
w0 = 0:886, H(w0) = 0:513 and w0KL(Q0jjP0) +
w1KL(Q1jjP1) = 2:601), we obtain convergence to the
solution

�0 = �0:219; �0 = 0:470; �1 = 0:906; �1 = 1:979 (28)

which is shown in Figure 5 (and has w0 = 0:564,
H(w0) = 0:988, and w0KL(Q0jjP0)+w1KL(Q1jjP1) =
2:850). Thus, as in Example (B), unweightedK-means
starts with a solution that is better for the KL diver-
gences, and worse for the partition information, and
elects to degrade the former in exchange for improve-
ment in the latter. However, it is interesting to note
that H(w0) = H(0:564) = 0:988 is still bounded sig-
ni�cantly away from 1; presumably this is because
any further improvement to the partition information
would not be worth the degradation of the KL diver-
gences. In other words, this solution found is a min-
imum of the K-means loss where there is truly a bal-
ance of the two terms: movement of the parameters
in one direction causes the loss to increase due to a
decrease in the partition information, while movement
of the parameters in another direction causes the loss
to increase due to an increase in the modeling error.

Unlike Example (B), there is also another (local) mini-
mumof the unweightedK-means loss for this sampling
density, at

�0 = 0:018; �0 = 0:997; �1 = 4:992; �1 = 0:097 (29)

with the suboptimal unweighted K-means loss of
1.872. This is clearly a local minimum where the KL
divergence terms are being minimized, at the expense
of an uninformative partition (w0 = 0:949). It is also
essentially the same as the solution chosen by weighted
K-means (regardless of the initial conditions), which
is easily predicted from Equation (22).

Not surprisingly, in this example weighted K-means
converges to a solution close to that of Equation (29).

Example (D). Let us examine a case in which the
sampling density is a mixture of three Gaussians:

Q = 0:25N (�10; 1)+0:5N (0; 1)+0:25N (10;1): (30)

See Figure 6. Thus, there are three rather distinct
subpopulations of the sampling density. If we run
unweighted K-means on 10 thousand examples from
Q from the initial conditions �0 = �5, �1 = 5,
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Figure 5: P0 and P1 found by unweighted K-
means for the sampling density of Example (C).
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Figure 6: The sampling density for Example (D).
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Figure 7: Variation distance V (P0; P1) as a func-
tion of the distance between the sampling means
for EM (bottom grey line), unweighted K-means
(lowest of top three grey lines), posterior loss gra-
dient descent (middle to top three grey lines), and
weighted K-means (top grey line). The dark line
plots V (Q0; Q1).
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Figure 8: Plot of Equation (52) (vertical axis) as
a function of R0 = R0(x) (horizontal axis). The
line y = 0 is also plotted as a reference.

�0 = �1 = 1, (which has w0 = 0:5) we obtain con-
vergence to

�0 = �3:262; �0 = 4:789; �1 = 10:006; �1 = 0:977
(31)

which has w0 = 0:751. Thus, unweighted K-means
sacri�ces the initial optimally informative partition in
exchange for better KL divergences. (Weighted K-
means converges to approximately the same solution,
as we might have predicted from the fact that even
the unweighted algorithm did not choose to maxi-
mize the partition information.) Furthermore, note
that it has modeled two of the subpopulations of Q
(N (�10; 1) and N (0; 1)) using P0 and modeled the
other (N (10; 1)) using P1. This is natural \cluster-
ing" behavior | the algorithm prefers to group the
middle subpopulation N (0; 1) with either the left or
right subpopulation, rather than \splitting" it. In con-
trast, unweighted EM from the same initial conditions
converges to the approximately symmetric solution

�0 = �4:599; �0 = 5:361; �1 = 4:689; �1 = 5:376:
(32)

Thus, unweighted EM chooses to split the middle pop-

ulation between P0 and P1. The di�erence between
K-means and unweighted EM in this example is a sim-
ple illustration of the di�erence between the quantities
w0KL(Q0jjP0)+w1KL(Q1jjP1) andKL(Qjj�0P0+(1�
�0)P1), and shows a natural case in which the behavior
of K-means is perhaps preferable from the clustering
point of view. Interestingly, in this example the solu-
tion found by weighted EM is again quite close to that
of K-means.

5 K-Means Forces Di�erent

Populations

The partition loss decomposition given by Equation
(8) has given us a better understanding of the loss
function being minimized by K-means, and allowed
us to explain some of the di�erences between K-means
and EM on speci�c, simple examples. Are there any
general di�erences we can identify? In this section we
give a derivation that strongly suggests a bias inherent
in the K-means algorithm: namely, a bias towards



�nding component densities that are as \di�erent" as
possible, in a sense to be made precise.

Let V (P0; P1) denote the variation distance 3 between
the densities P0 and P1:

V (P0; P1) =

Z
x

jP0(x)� P1(x)jdx: (33)

Note that V (P0; P1) � 2 always. Notice that due
to the triangle inequality, for any partitioned density
(F; fP0; P1g),
V (Q0; Q1) � V (Q0; P0) + V (P0; P1) +V (Q1; P1):

(34)
Let us assume without loss of generality that w0 =
Prx2Q[F (x) = 0] � 1=2. Now in the case of un-
weighted or weighted K-means (or indeed, any other
case where a deterministic partition F is chosen),
V (Q0; Q1) = 2, so from Equation (34) we may write

V (P0; P1)

� 2� V (Q0; P0)�V (Q1; P1) (35)

= 2� 2(w0V (Q0; P0) + w1V (Q1; P1)

+((1=2)� w0)V (Q0; P0)

+((1=2)� w1)V (Q1; P1)) (36)

� 2� 2(w0V (Q0; P0) + w1V (Q1; P1))

�2((1=2)� w0)V (Q0; P0) (37)

� 2� 2(w0V (Q0; P0) + w1V (Q1; P1))

�2(1� 2w0): (38)

Let us examine Equation (38) in some detail. First,
let us assume w0 = 1=2, in which case 2(1� 2w0) = 0.
Then Equation (38) lower bounds V (P0; P1) by a
quantity that approaches the maximum value of 2 as
V (Q0; P0)+V (Q1; P1) approaches 0. Thus, to the ex-
tent that P0 and P1 succeed in approximating Q0 and
Q1, P0 and P1 must di�er from each other. But the
partition loss decomposition of Equation (8) includes
the terms KL(QbjjPb), which are directly encouraging
P0 and P1 to approximate Q0 and Q1. It is true that
we are conating two di�erent technical senses of ap-
proximation (variation distance KL divergence). But

more rigorously, since V (P;Q) � p
KL(P jjQ) holds

for any P and Q, and for all x we have
p
x � x+ 1=4,

we may write

V (P0; P1)

� 2� 2(w0KL(Q0jjP0) + w1KL(Q1jjP1) + 1=4)

�2(1� 2w0) (39)

= 3=2� 2(w0KL(Q0jjP0) + w1KL(Q1jjP1))
�2(1� 2w0): (40)

Since the expression w0KL(Q0jjP0)+w1KL(Q1jjP1) di-
rectly appears in Equation (8), we see that K-means is
attempting to minimize a loss function that encourages
V (P0; P1) to be large, at least in the case that the al-
gorithm �nds roughly equal weight clusters (w0 � 1=2)

3The ensuing argument actually holds for any distance
metric on densities.

| which one might expect to be the case, at least for
unweighted K-means, since there is the entropic term
�H2(w0) in Equation (12). For weighted K-means,
this entropic term is eliminated.

In Figure 7, we show the results of a simple experiment
supporting the suggestion that K-means tends to �nd
densities with less overlap than EM does. In the ex-
periment, the sampling density Q was a mixture of two
one-dimensional, unit-variance Gaussians with varying
distance between the means (the horizontal axis). The
vertical axis shows the variation distance between the
two target Gaussians (dark line) as a reference, and the
variation distance between P0 and P1 for the solutions
found by EM (grey line near solid line), and for un-
weighted K-means (lowest of the top three grey lines),
posterior loss gradient descent, which is discussed in
the next section (middle of the top three grey lines),
and weighted K-means (top grey line).

6 A New Algorithm: The Posterior

Partition

The WTA assignment method is one way of mak-
ing hard assignments on the basis of P0 and P1.
But there is another natural hard assignment method
| perhaps even more natural. Suppose that we
randomly assign any �xed x to Pb with probability
Pb(x)=(P0(x) + P1(x)). Thus, we assign x to Pb with
the posterior probability that x was generated by Pb
under the prior assumption that the sampling density
is (1=2)P0 + (1=2)P1 (which, of course, may not be
true). We call this F the posterior partition.

One nice property of the posterior partition compared
to WTA assignment is that it avoids the potential
\truncation" resulting from WTA assignment men-
tioned in Example (A) | namely, that even when
P0 and P1 have the same form as the true sam-
pling mixture components, we cannot make the terms
KL(QbjjPb) zero. (Recall that this occurred when
the sampling density was a Gaussian mixture, the
Pb were Gaussian, but WTA assignment resulted in
Qb that were each Gaussian with one tail \reected
back.") But if F is the posterior partition, and

Q = (1=2) ~Q0 + (1=2) ~Q1, and P0 = ~Q0, P1 = ~Q1 then

Qb(x) = Q(x) �Pr[F (x) = b]=wb (41)

= ( ~Q0(x) + ~Q1(x))

 
~Qb(x)

~Q0(x) + ~Q1(x)

!
(42)

= ~Qb(x) (43)

= Pb(x): (44)

If we have Q = (1=2) ~Q0+(1=2) ~Q1, and P0 = ~Q0, P1 =
~Q1, then by the above derivation wbKL(QbjjPb) = 0.
Thus, the KL divergence terms in the expected parti-
tion loss given by Equation (8) encourage us to model
the sampling density under this de�nition of F . For
this reason, it is tempting to think that the use of



the posterior partition will lead us closer to density
estimation than will WTA assignments. However, the
situation is more subtle than this, again because of the
competing constraint for an informative partition. We
will see an example in a moment.

Note that under the posterior partition F , the parti-
tion loss of (F; fP0; P1g) on a �xed point x is

E[�(x)] = E
�� logPF (x)(x)

�
= � P0(x)

P0(x) + P1(x)
logP0(x)

� P1(x)

P0(x) + P1(x)
logP1(x) (45)

where here the expectation is taken over only the ran-
domization of F ; we will call this special case of the
partition loss the posterior loss. The posterior loss
on a sample S is then simply the summation of the
right-hand-side of Equation (45) over all x 2 S.

Example (A) Revisited. Recall that the sampling
density in Example (A) is

Q = 0:5N (�2; 1:5) + 0:5N (2; 1:5) (46)

and that if we start at P0 = ~Q0 = N (�2; 1:5), P1 =
~Q1 = N (2; 1:5), thenK-means (both weighted and un-
weighted) will move the means away from the origin
symmetrically, since a maximally informative partition
F is preserved by doing so, and the KL divergences are
improved. Under the posterior partition de�nition of
F , the KL divergences cannot be improved from these
initial conditions| but the informativeness of the par-
tition can! This is because our general expression for
H(xjF (x)) is H(x)� (H2(w0)�H(F (x)jx)) (here x is
distributed according to Q). In the K-means choice of
F , the term H(F (x)jx)) was 0, as F was determinis-
tic. Under the posterior partition, at the stated initial
conditions H2(w0) = H2(1=2) = 1 still holds, but now
H(F (x)jx)) 6= 0, because F is probabilistic. Thus, it
is at least possible that there is a better solution | for
instance, by reducing the variances of P0 and P1, or by
moving their means symmetrically away from the ori-
gin, we may be able to preserve H2(w0) = H2(1=2) = 1
while reducing H(F (x)jx)). This is indeed the case:
starting from the stated initial parameter values, 53
steps of gradient descent on the training posterior loss
(see below for a discussion of the algorithmic issues
arising in �nding a local minimumof the posterior loss)
results in the solution

�0 = �2:140; �0 = 1:256; �1 = 2:129; �1 = 1:233 (47)

at which point the gradients with respect to all four
parameters are smaller than 0:03 in absolute value.
This solution has an expected posterior loss of 2:55, as
opposed to 2:64 for the initial conditions. Of course,
the KL divergence of (1=2)P0+(1=2)P1 to the sampling
density has increased from the initial conditions.

What algorithm should one use in order to minimize
the expected posterior loss on a sample? Here it

seems worth commenting on the algebraic similarity
between Equation (45) and the iterative minimization
performed by EM. In (unweighted) EM, if we have a
current solution (1=2)P0 + (1=2)P1, and sample data
S, then our next solution is (1=2)P 0

0 + (1=2)P 0
1, where

P 0
0 and P 0

1 minimize

�
X
x2S

�
P0(x)

P0(x) + P1(x)
log(P 0

0(x))

+
P1(x)

P0(x) + P1(x)
log(P 0

1(x))

�
: (48)

While the summand in Equation (48) and the right-
hand-side of Equation (45) appear quite similar,
there is a crucial di�erence. In Equation (48)
there is a decoupling between the posterior prefactors
Pb(x)=(P0(x)+P1(x)) and the log-losses � log(P 0

b(x)):
our current guesses Pb �x the posterior prefactors for
each x, and then we minimize the resulting weighted
log-losses � log(P 0

b(x)) with respect to the P 0
b, giving

our next guess. In Equation (45), no such decoupling
is present: in order to evaluate a potential solution
P 0
b, we must use the log-losses and posteriors deter-

mined by the P 0
b. An informal way of explaining the

di�erence is that in EM, we can use our current guess
(P0; P1) to generate random labels for each x (using
the posteriors Pb(x)=(P0(x) + P1(x))), and then mini-
mize the log-losses of the x together with their labels to
get P 0

0; P
0
1. For the posterior loss, to evaluate (P 0

0; P
0
1)

we must generate the labels according to (P 0
0; P

0
1) as

well. Thus, there is no obvious iterative algorithm to
minimize the expected posterior loss. An alternative
is to let P be a smoothly parameterized class of densi-
ties, and resort to gradient descent on the parameters
of P0 and P1 to minimize the posterior loss.

An even more intriguing di�erence between the pos-
terior loss and the standard mixture log-loss can be
revealed by examining their derivatives. Let us �x
two densities P0 and P1 over X, and a point x 2
X. If we think of P0 and P1 as representing the
mixture (1=2)P0 + (1=2)P1, and we de�ne Llog =
� log((1=2)P0(x)+ (1=2)P1(x)) to be the mixture log-
loss on x, then

@Llog

@P0(x)
=

1

ln(2)

�1
P0(x) + P1(x)

: (49)

This derivative has the expected behavior. First, it
is always negative, meaning that the mixture log-loss
on x is always decreased by increasing P0(x), as this
will give more weight to x under the mixture as well.
Second, as P0(x) + P1(x) ! 0, the derivative goes to
�1.

In contrast, if we de�ne the posterior loss on x

Lpost = � P0(x)

P0(x) + P1(x)
logP0(x)

� P1(x)

P0(x) + P1(x)
logP1(x) (50)



then we obtain

@Lpost

@P0(x)

=
1

P0(x) + P1(x)

�
� logP0(x)

+
P0(x)

P0(x) + P1(x)
logP0(x)

+
P1(x)

P0(x) + P1(x)
logP1(x)� 1

ln(2)

�
: (51)

This derivative shows further curious di�erences be-
tween the mixture log-loss and the posterior loss. No-
tice that since 1=(P0(x) + P1(x)) � 0, the sign of the
derivative is determined by the bracketed expression in
Equation (51). If we de�ne R0(x) = P0(x)=(P0(x) +
P1(x)), then this bracketed expression can be rewrit-
ten as

(1�R0(x)) log
1� R0(x)

R0(x)
� 1

ln(2)
(52)

which is a function ofR0(x) only. Figure 8 shows a plot
of the expression in Equation (52), with the value of
R0(x) as the horizontal axis. From the plot we see that
@Lpost=@P0(x) can actually be positive | namely, the
point x can exhibit a repulsive force on P0. This occurs
when the ratio R0(x) = P0(x)=(P0(x) + P1(x)) falls
below a certain critical value (approximately 0:218).
The explanation for this phenomenon is straightfor-
ward once we have Equation (8): as long as P0 models
x somewhat poorly (that is, gives it small probabil-
ity), it is preferable that x be modeled as poorly as
possibly by P0, so as to make the assignment of x to
P1 as deterministic as possible. It is interesting to
note that clustering algorithms in which data points
have explicit repulsive e�ects on distant centroids have
been proposed in the literature on K-means and self-
organizing maps [5].

From the preceding discussion, it might be natural to
expect that, as for K-means, minimizing the posterior
loss over a density class P would be more likely to lead
to P0 and P1 that are \di�erent" from one another
than, say, classical density estimation over P. This
intuition derives from the fact that P0 and P1 repel
each other in the sense given above. As for K-means,
this can be shown in a fairly general manner (details
omitted).
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