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Abstract

We study fairness in the linear bandit setting. Start-
ing from the notion of meritocratic fairness introduced
in Joseph et al. [11], we introduce a sufficiently more gen-
eral model in which meritocratic fairness can be imposed
and satisfied. We then perform a more fine-grained anal-
ysis which achieves better performance guarantees in
this more general model. Our work therefore studies
fairness for a more general problem and provides tighter
performance guarantees than previous work in the sim-
pler setting.

1 Introduction

The problem of repeatedly making choices and learning
from choice feedback arises in a variety of settings, in-
cluding granting loans, serving ads, and hiring. Encod-
ing these problems in a bandit setting enables one to take
advantage of a rich body of existing bandit algorithms.
UCB-style algorithms, for example, are guaranteed to
yield no-regret policies for these problems.

Joseph et al. [11], however, raises the concern that
these no-regret policies may be unfair : in some rounds,
they will choose options with lower expected rewards
over options with higher expected rewards, for example
choosing less qualified job applicants over more qualified
ones. Consider a UCB-like algorithm aiming to hire all
qualified applicants in every round: as time goes on, any
no-regret algorithm must behave unfairly for a vanishing
fraction of rounds, but the total number of mistreated
people – in hiring, people who saw a less qualified job
applicant hired in a round in which they themselves were
not hired – can be large, and mistreatment may accrue
to different subpopulations at drastically different rates
(see Figure 1).

Joseph et al. [11] then design no-regret algorithms
which minimize mistreatment and are fair in the follow-
ing sense: their algorithms (with high probability) never
at any round place higher selection probability on a less
qualified applicant than on a more qualified applicant.

∗The full technical version of this paper is available at
https://arxiv.org/abs/1610.09559.

However, their analysis assumes that there are k well-
defined groups, each with its own mapping from features
to expected rewards; at each round exactly one individ-
ual from each group arrives; and exactly one individual is
chosen in each round. In the hiring setting, this equates
to assuming that a company receives one job applicant
from each group and must hire exactly one (rather than
m or all qualified applicants) introducing an unrealis-
tic element of competition and unfairness both between
applicants and between groups.

The aforementioned assumptions are unrealistic in
many practical settings; our work shows they are also
unnecessary. Meritocratic fairness can be defined with-
out reference to groups, and algorithms can satisfy
the strictest form of meritocratic fairness without any
knowledge of group membership. Even without this
knowledge, we design algorithms which will be fair with
respect to any possible group structure over individu-
als. In Section 2, we present this general definition of
fairness. The definition further allows for the number
of individuals arriving in any round to vary, and is suffi-
ciently flexible to apply to settings where algorithms can
select m ∈ [k] individuals in each round. By virtue of
the definition making no reference to groups, the model
makes no assumptions about how many individuals ar-
riving at time t belong to any group. A company can
then consider a large pool of applicants, not necessarily
stratified by race or gender, with an arbitrary number of
candidates from any one of these populations, and hire
one or m or even every qualified applicant.

We then present a framework for designing merito-
cratically fair online linear contextual bandit algorithms.
Section 3 shows how to design fair algorithms when
at most some finite number k of individuals arrives in
any round (which corresponds to the linear contextual
bandits problem [2, 4]), as well as when m individuals
may be chosen in each round (which corresponds to the
“multiple play” introduced and studied absent fairness
in Anantharam et al. [3]). Our work therefore both fo-
cuses on a much more general model than Joseph et al.
[11] and substantially improves upon their black-box re-
gret guarantees for linear bandit problems using a tech-
nical analysis specific to the linear setting. We condense
our results as follows:
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Figure 1: Cumulative mistreatments for UCB.

1. In the m-bandit case where we must select exactly
m options in each round, we play all of our chains
in descending over, randomizing over the last chain
as necessary to select exactly m options, and obtain

regret R(T ) = Õ
(
dkm
√
T
)

.

2. In the k-bandit case where we can select any number
≤ k of options in each round, we deterministically
select every option in every chain with highest UCB

> 0 and obtain regret R(T ) = Õ
(
dk2
√
T
)

.

1.1 Related Work and Discussion of Our
Fairness Definition

Fairness in machine learning has seen substantial recent
growth as a subject of study, and many different def-
initions of fairness exist. We provide a brief overview
here; see e.g. Berk et al. [5] and Corbett-Davies et al. [7]
for detailed descriptions and comparisons of these defi-
nitions.

Many extant fairness notions are predicated on the
existence of groups, and aim to guarantee that certain
groups are not unequally favored or mistreated. In this
vein, Hardt et al. [10] introduced the notion of equality of
opportunity, which requires that a classifier’s predicted
outcome should be independent of a protected attribute
(such as race) conditioned on the true outcome, and
they and Woodworth et al. [13] have studied the fea-
sibility and possible relaxations thereof. Similarly, Za-
far et al. [14] analyzed an equivalent concurrent notion
of (un)fairness they call disparate mistreatment. Sepa-
rately, Kleinberg et al. [12] and Chouldechova [6] showed
that different notions of group fairness may (and some-
times must) conflict with one another.

This paper, like Joseph et al. [11], departs from the
work above in a number of ways. We attempt to cap-

ture a particular notion of individual and weakly merito-
cratic fairness that holds throughout the learning process.
This was inspired by Dwork et al. [8], who suggest fair
treatment equates to treating “similar” people similarly,
where similarity is defined with respect to an assumed
pre-specified task-specific metric. Taking the fairness
formulation of Joseph et al. [11] as our starting point,
our definition of fairness does not promise to correct for
past inequities or inaccurate or biased data. Instead, it
assumes the existence of an accurate mapping from fea-
tures to true quality for the task at hand1 and promises
fairness while learning and using this mapping in the
following sense: any individual who is currently more
qualified (for a job, loan, or college acceptance) than
another individual will always have at least as good a
chance of selection as the less qualified individual.

The one-sided nature of this guarantee, as well as its
formulation in terms of quality, leads to the name weakly
meritocratic fairness. Weakly meritocratic fairness may
then be interpreted as a minimal guarantee of fairness:
an algorithm satisfying our fairness definition cannot fa-
vor a worse option but is not required to favor a better
option. In this sense our fairness requirement encodes
a necessary variant of fairness rather than a completely
sufficient one.

We additionally note that our fairness guarantees re-
quire fairness at every step of the learning process. We
view this as an important point, especially for algorithms
whose learning processes may be long (or even contin-
uous). Furthermore, while it may seem reasonable to
relax this requirement to allow a small fraction of unfair
steps, it is unclear how to do so without enabling dis-
crimination against a correspondingly small population.

Finally, while our fairness definition draws

1 Friedler et al. [9] provide evidence that providing fairness from
bias-corrupted data is quite difficult.
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from Joseph et al. [11], we work in what we be-
lieve to be a significantly more general and realistic
setting. In the finite case we allow for a variable number
of individuals in each round from a variable number of
groups and also allow selection of a variable number
of individuals in each round, thus dropping several
assumptions from Joseph et al. [11].

2 Model

Fix some β ∈ [−1, 1]d, the underlying linear coefficients
of our learning problem, and T the number of rounds.
For each t ∈ [T ], let Ct ⊆ D = [−1, 1]d denote the set
of available choices in round t. We will consider both
the “finite” action case, where |Ct| ≤ k, and the infinite
action case. An algorithm A, facing choices Ct, picks a
subset Pt ⊆ Ct, and for each xt ∈ Pt, A observes reward
yt ∈ [−1, 1] such that E [yt] = 〈β, xt〉, and the distribu-
tion of the noise ηt = yt − 〈β, xt〉 is sub-Gaussian, i.e.
has tails dominated by those of a Gaussian distribution.

Refer to all observations in round t as Yt ∈ [−1, 1]|Pt|

where Yt,i = yt,i for each xt,i ∈ Pt. Finally, let Xt =
[X1; . . . ;Xt],Yt = [Y1; . . . ;Yt] refer to the design and
observation matrices at round t.

We are interested in settings where an algorithm may
face size constraints on Pt. We consider three cases: the
standard linear bandits problem (|Pt| = 1), the multi-
ple choice linear bandits problem (|Pt| = m), and the
heretofore unstudied (to the best of the authors’ knowl-
edge) case in which the size of Pt is unconstrained. For
short, we refer to these as 1-bandit, m-bandit, and k-
bandit.

Regret The notion of regret we will consider is that
of pseudo-regret. Facing a sequence of choice sets
C1, . . . , CT , suppose A chooses sets P1, . . . , PT .2 Then,
the expected reward of A on this sequence is Rew(A) =

E
[∑

t∈[T ]

[∑
xt∈Pt

yt
]]

.

Refer to the sequence of feasible choices3 which max-
imizes expected reward as P∗,1 ⊆ C1, . . . , P∗,T ⊆ CT ,
defined with full knowledge of β.

Then, the pseudo-regret of A on any sequence is
defined as

Rew(P∗,1, . . . , P∗,T )− Rew(A) = R(T ).

The pseudo-regret of A refers to the maximum
pseudo-regret A incurs on any sequence of choice sets

2If these are randomized choices, the randomness of A is incor-
porated into the expected value calculations.

3We assume these have the appropriate size for each problem we
consider: singletons in the 1-bandit problem, size at most m in the
m-bandit problem, and arbitrarily large in the k-bandit problem.

and any β ∈ [−1, 1]d. If R(T ) = o(T ), then A is said to
be no-regret. If, for any input parameter δ > 0, R(T )
upper-bounds the expectation of the rewards of the se-
quence chosen by A with probability 1− δ, then we call
this a high-probability regret bound for A.

Fairness Consider an algorithm A, which chooses a
sequence of probability distributions π1, π2, . . . , πT over
feasible sets to pick, πt ∈ ∆(2Ct). Note that distribution
πt depends upon C1, . . . , Ct, the choices P1, . . . , Pt−1,
and Y1, . . . , Yt−1.

We now give a formal definition of fairness of an al-
gorithm for the 1-bandit, m-bandit, and k-bandit prob-
lems. We adapt our fairness definition from Joseph et al.
[11], generalizing from discrete distributions over finite
action sets to mixture distributions over possibly infi-
nite action sets. We slightly abuse notation and refer
to the probability density and mass functions of an ele-
ment x ∈ Ct: this refers to the marginal distribution of
x being chosen (namely, the probability that x belongs
to the set picked according to the distribution πt).

Definition 1 (Weakly Meritocratic Fairness). We say
that an algorithm A is weakly meritocratic if, for any
input δ ∈ (0, 1] and any β, with probability at least 1−δ,
at every round t, for every x, x′ ∈ Ct if 〈β, x〉 ≥ 〈β, x′〉
then πt(x) ≥ πt(x

′). For brevity, as consider only this
fairness notion in this paper, we will refer to weakly
meritocratic fairness as “fairness”. We say A is round-
fair at time t if πt satisfies the above condition.

This definition can be easily generalized over any par-
tition G of D, by requiring this weak monotonicity hold
only for pairs x, x′ belonging to different elements of the
partition G,G′. The special case above of the singleton
partition is the most stringent choice of partition. We
focus our analysis on the singleton partition as a mini-
mal worst-case framework, but this model easily relaxes
to apply only across groups, as well as to only requir-
ing “one-sided” monotonicity, where monotonicity is re-
quired only for pairs where the more qualified member
belongs to group G rather than G′.

Remark 1. In the k-bandit setting, Definition 1 can be
simplified to require, with probability 1− δ over its ob-
servations, an algorithm never select a less-qualified in-
dividual over more-qualified one in any round, and can
be satisfied by deterministic algorithms.

3 Finite Action Spaces: Fair Ridge
Regression

In this section, we introduce a family of fair algorithms
for linear 1-bandit, m-bandit, and the (unconstrained)

3



k-bandit problems. Here, an algorithm sees a slate of at
most k distinct individuals each round and selects some
subset of them for reward and observation. This allows
us to encode settings where an algorithm repeatedly ob-
serves a new pool of k individuals, each represented by
a vector of d features, then decides to give some of those
individuals loans based upon those vectors, observes the
quality of the individuals to whom they gave loans, and
updates the selection rule for loan allocation. The regret
of these algorithms will scale polynomially in k and d as
the algorithm gets tighter estimates of β.

All of the algorithms are based upon the following
template. They maintain an estimate β̂t of β from ob-
servations, along with confidence intervals around the
estimate. They use β̂t to estimate the rewards for the
individuals on day t and the confidence interval around
β̂t to create a confidence interval around each of these
estimated rewards. Any two individuals whose intervals
overlap on day t will picked with the same probability
by the algorithm. Call any two individuals whose in-
tervals overlap on day t linked, and any two individuals
belonging to the transitive closure of the linked relation
chained. Since any two linked individuals will chosen
with the same probability, any two chained individuals
will also be chosen with the same probability.

An algorithm constrained to pick exactly m ∈ [k]
individuals each round will pick them in the following
way. Order the chains by their highest upper confidence
bound. In that order, select all individuals from each
chain (with probability 1 while that results in taking
fewer than m individuals. When the algorithm arrives
at the first chain for which it does not have capacity to
accept every individual in the chain, it selects to fill its
capacity uniformly at random from that chain’s individ-
uals. If the algorithm can pick any number of individu-
als, it will pick all individuals chained to any individual
with positive upper confidence bound.

We now present the regret guarantees for fair 1-bandit,
m-bandit, and k-bandit using this framework.

Theorem 1. Suppose, for all t, ηt is 1-sub-Gaussian,
Ct ⊆ [−1, 1]d, and ||xt||2 ≤ 1 for all xt ∈ Ct, and
||β|| ≤ 1. Then, RidgeFair1, RidgeFairm, and
RidgeFair≤k are fair algorithms for the 1-bandit, m-
bandit, and k-bandit problems, respectively. With proba-
bility 1− δ, for j ∈ {1,m, k}, the regret of RidgeFairj

is

R(T ) = O

(
dkj
√
T log

(
T

δ

))
= Õ(dkj

√
T ).

We pause to compare our bound for 1-bandit to that
found in Joseph et al. [11]. Their work supposes that
each of k groups has an independent d-dimensional lin-

ear function governing its reward and provides a fair al-

gorithm regret upper bound of Õ
(
T

4
5k

6
5d

3
5 , k3

)
. To di-

rectly encode this setting in ours, one would need to use
a single dk-dimensional linear function, yielding a regret

bound of Õ
(
dk2
√
T
)

. This is an improvement on their

upper bound for all values of T for which the bounds are
non-trivial (recalling that the bound from Joseph et al.
[11] becomes nontrivial for T > d3k6, while the bound
here becomes nontrivial for T > d2k4). We also briefly
observe that RidgeFair≤k satisfies an additional “fair-
ness” property: with high probability, it always selects
every available individual with positive expected reward.

Each of these algorithms will use `2-regularized least-
squares regressor to estimate β. Given a design ma-
trix X, response vector Y, and regularization parameter
γ ≥ 1 this is of the form β̂ = (XTX +γI)−1XTY. Valid
confidence intervals (that contain β with high probabil-
ity) are nontrivial to derive for this estimator (which
might be biased); to construct them, we rely on martin-
gale matrix concentration results [1].

We now sketch how the proof of Theorem 1 proceeds,
deferring a full proof (of this and all other results in this
paper) and pseudocode to the supplementary materials.
We first establish that, with probability 1 − δ, for all
rounds t, for all xt,i ∈ Ct, that yt,i ∈ [`t,i, ut,i] (i.e. that
the confidence intervals being used are valid). Using this
fact, we establish that the algorithm is fair. The algo-
rithm plays any two actions which are linked with equal
probability in each round, and any action with a confi-
dence interval above another action’s confidence interval
with weakly higher probability. Thus, if the payoffs for
the actions lie anywhere within their confidence inter-
vals, RidgeFair is fair, which holds as the confidence
intervals are valid.

Proving a bound on the regret of RidgeFair re-
quires some non-standard analysis, primarily because
the widths of the confidence intervals used by the algo-
rithm do not shrink uniformly. The sum of the widths
of the intervals of our selected (and therefore observed)
actions grows sublinearly in t. UCB variants, by virtue
of playing an action a with highest upper confidence
bound, have regret in round t bounded by a’s confidence
interval width. RidgeFair, conversely, suffers regret
equal to the sum of the confidence widths of the chained
set, while only receiving feedback for the action it ac-
tually takes. We overcome this obstacle by relating the
sum of the confidence interval widths of the linked set
to the sum of the widths of the selected actions.
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