
An EÆcient Exact Algorithm for Singly

Connected Graphical Games

Michael L. Littman
AT&T Labs Research

Florham Park, New Jersey
mlittman@research.att.com

Michael Kearns
Satinder Singh
Syntek Capital

New York, New York
fmichael.kearns,satinder.bavejag@syntekcapital.com

Abstract

We describe a new algorithm for computing a Nash equilibrium in
graphical games , a compact representation for multi-agent systems
that we introduced in previous work. The algorithm is the �rst
to compute equilibria both eÆciently and exactly for a non-trivial
class of graphical games.

1 Introduction

Seeking to replicate the representational and computational bene�ts that graph-
ical models have provided to probabilistic inference, several recent works
have introduced graph-theoretic frameworks for the study of multi-agent sys-
tems (La Mura 2000; Koller and Milch 2001; Kearns et al. 2001). In the simplest
of these formalisms, each vertex represents a single agent, and the edges represent
pairwise interaction between agents. As with many familiar network models, the
macroscopic behavior of a large system is thus implicitly described by its local inter-
actions, and the computational challenge is to extract the global states of interest.
Classical game theory is typically used to model multi-agent interactions, and the
global states of interest are thus the so-called Nash equilibria, in which no agent
has a unilateral incentive to deviate.

In a recent paper (Kearns et al. 2001), we introduced such a graphical formalism for
multi-agent game theory, and provided two algorithms for computing Nash equilib-
ria when the underlying graph is a tree (or is suÆciently sparse). The �rst algorithm
computes approximations to all Nash equilibria, in time polynomial in the size of
the representation and the quality of the desired approximation. A second and
related algorithm computes all Nash equilibria exactly, but in time exponential in
the number of agents. We thus left open the problem of eÆciently computing exact
equilibria in sparse graphs.

In this paper, we describe a new algorithm that solves this problem. Given as input
a graphical game that is a tree, the algorithm computes in polynomial time an ex-
act Nash equilibrium for the global multi-agent system. The main advances involve
the de�nition of a new data structure for representing \upstream" or partial Nash
equilibria, and a proof that this data structure can always be extended to a global
equilibrium. The new algorithm can also be extended to eÆciently accommodate
parametric representations of the local game matrices, which are analogous to para-
metric conditional probability tables (such as noisy-OR and sigmoids) in Bayesian
networks.

The analogy between graphical models for multi-agent systems and probabilistic
inference is tempting and useful to an extent. The problem of computing Nash
equilibria in a graphical game, however, appears to be considerably more diÆcult
than computing conditional probabilities in Bayesian networks. Nevertheless, the
analogy and the work presented here suggest a number of interesting avenues for
further work in the intersection of game theory, network models, probabilistic in-
ference, statistical physics, and other �elds.

The paper is organized as follows. Section 2 introduces graphical games and other
necessary notation and de�nitions. Section 3 presents our algorithm and its analysis,
and Section 4 gives a brief conclusion.

2 Preliminaries

An n-player, two-action 1 game is de�ned by a set of n matrices Mi (1 � i � n),
each with n indices. The entryMi(x1; : : : ; xn) =Mi(~x) speci�es the payo� to player
i when the joint action of the n players is ~x 2 f0; 1gn. Thus, eachMi has 2

n entries.
If a game is given by simply listing the 2n entries of each of the n matrices, we will
say that it is represented in tabular form.

The actions 0 and 1 are the pure strategies of each player, while a mixed strategy
for player i is given by the probability pi 2 [0; 1] that the player will play 1. For
any joint mixed strategy, given by a product distribution ~p, we de�ne the expected
payo� to player i as Mi(~p) = E~x�~p[Mi(~x)], where ~x � ~p indicates that each xj is 1
with probability pj and 0 with probability 1� pj .

We use ~p[i : p0i] to denote the vector which is the same as ~p except in the ith
component, where the value has been changed to p0i. A Nash equilibrium for the
game is a mixed strategy ~p such that for any player i, and for any value p0i 2
[0; 1], Mi(~p) � Mi(~p[i : p

0

i]). (We say that pi is a best response to ~p.) In other
words, no player can improve its expected payo� by deviating unilaterally from a
Nash equilibrium. The classic theorem of Nash (1951) states that for any game,
there exists a Nash equilibrium in the space of joint mixed strategies (product
distributions).

An n-player graphical game is a pair (G;M), where G is an undirected graph on n
vertices andM is a set of n matricesMi (1 � i � n), called the local game matrices .
Player i is represented by a vertex labeled i in G. We use NG(i) � f1; : : : ; ng to
denote the set of neighbors of player i in G|that is, those vertices j such that the
undirected edge (i; j) appears in G. By convention, NG(i) always includes i itself.
The interpretation is that each player is in a game with only his neighbors in G.
Thus, if jNG(i)j = k, the matrixMi has k indices, one for each player in NG(i), and

1At present, no polynomial-time algorithm is known for �nding Nash equilibria even
in 2-player games with multiple actions, so we leave the extension of our work to the
multi-action setting for future work.

if ~x 2 [0; 1]k, Mi(~x) denotes the payo� to i when his k neighbors (which include
himself) play ~x. The expected payo� under a mixed strategy ~p 2 [0; 1]k is de�ned
analogously. Note that in the two-action case, Mi has 2

k entries, which may be
considerably smaller than 2n.

Since we identify players with vertices in G, it will be easier to treat vertices sym-
bolically (such as U; V and W) rather than by integer indices. We thus use MV to
denote the local game matrix for the player identi�ed with vertex V .

Note that our de�nitions are entirely representational, and alter nothing about the
underlying game theory. Thus, every graphical game has a Nash equilibrium. Fur-
thermore, every game can be trivially represented as a graphical game by choosing
G to be the complete graph, and letting the local game matrices be the original tab-
ular form matrices. Indeed, in some cases, this may be the most compact graphical
representation of the tabular game. However, exactly as for Bayesian networks and
other graphical models for probabilistic inference, any time in which the local neigh-
borhoods in G can be bounded by k � n, exponential space savings accrue. The
algorithm presented here demonstrates that for trees, exponential computational
bene�ts may also be realized.

3 The Algorithm

If (G;M) is a graphical game in which G is a tree, then we can always designate
some vertex Z as the root. For any vertex V , the single neighbor of V on the path
from V to Z shall be called the child of V , and the (possibly many) neighbors of V
on paths towards the leaves shall be called the parents of V . Our algorithm consists
of two passes: a downstream pass in which local data structures are passed from the
leaves towards the root, and an upstream pass progressing from the root towards
the leaves.

Throughout the ensuing discussion, we consider a �xed vertex V with parents
U1; : : : ; Uk and child W . On the downstream pass of our algorithm, vertex V will
compute and pass to its child W a breakpoint policy , which we now de�ne.

De�nition 1 A breakpoint policy for V consists of an ordered set of W -breakpoints
w0 = 0 < w1 < w2 < � � � < wt�1 < wt = 1 and an associated set of V -values
v1; : : : ; vt. The interpretation is that for any w 2 [0; 1], if wi�1 < w < wi for some
index i and W plays w, then V shall play vi; and if w = wi for some index i, then
V shall play any value between vi and vi+1. We say such a breakpoint policy has
t� 1 breakpoints.

A breakpoint policy for V can thus be seen as assigning a value (or range of values)
to the mixed strategy played by V in response to the play of its child W . In a slight
abuse of notation, we will denote this breakpoint policy as a function FV (w), with
the understanding that the assignment V = FV (w) means that V plays either the
�xed value determined by the breakpoint policy (in the case that w falls between
breakpoints), or plays any value in the interval determined by the breakpoint policy
(in the case that w equals some breakpoint).

Let GV denote the subtree of G with root V , and let MV
W=w denote the subset of

M corresponding to the vertices in GV , except that the matrixMV is collapsed one
index by setting W = w, thus marginalizing W out. On its downstream pass, our
algorithm shall maintain the invariant that if we set the child W = w, then there
is a Nash equilibrium for the graphical game (GV ;MV

W=w) (an upstream Nash) in
which V = FV (w). If this property is satis�ed by FV (w), we shall say that FV (w)

is a Nash breakpoint policy for V . Note that since (GV ;MV
W=w) is just another

graphical game, it of course has (perhaps many) Nash equilibria, and V is assigned
some value in each. The trick is to commit to one of these values (as FV (w)) that
can be extended to a Nash equilibrium for the entire tree G, before we have even
processed the tree below V . Accomplishing this eÆciently and exactly is one of the
main advances in this work over our previous algorithm (Kearns et al. 2001).

The algorithm and analysis are inductive: V computes a Nash breakpoint policy
FV (w) from Nash breakpoint policies FU1

(v); : : : ; FUk
(v) passed down from its par-

ents (and from the local game matrix MV). The complexity analysis bounds the
number of breakpoints for any vertex in the tree. We now describe the inductive
step and its analysis.

3.1 Downstream Pass

For any setting ~u 2 [0; 1]k for ~U and w 2 [0; 1] for W , let us de�ne

�V (~u; w) �MV (1; ~u; w)�MV (0; ~u; w):

The sign of �V (~u; w) tells us V 's best response to the setting of the local neighbor-

hood ~U = ~u;W = w; positive sign means V = 1 is the best response, negative that
V = 0 is the best response, and 0 that V is indi�erent and may play any mixed
strategy. Note also that we can express �V (~u; w) as a linear function of w:

�V (~u; w) = �V (~u; 0) + w(�V (~u; 1)��V (~u; 0)):

For the base case, suppose V is a leaf with child W ; we want to describe the Nash
breakpoint policy for V . If for all w 2 [0; 1], the function �V (w) is non-negative
(non-positive, respectively), V can choose 1 (0, respectively) as a best response
(which in this base case is an upstream Nash) to all values W = w. Otherwise,
�V (w) crosses the w-axis, which separates the values of w for which V should
choose 1, 0, or be indi�erent (at the crossing point). Thus, this crossing point
becomes the single breakpoint in FV (w). Note that if V is indi�erent for all values
of w, we assume without loss of generality that V plays 1.

The following theorem is the centerpiece of the analysis.

Theorem 2 Let vertex V have parents U1; : : : ; Uk and child W , and assume V has
received Nash breakpoint policies FUi

(v) from each parent Ui. Then V can eÆciently
compute a Nash breakpoint policy FV (w). The number of breakpoints is no more
than two plus the total number of breakpoints in the FUi

(v) policies.

Proof: Recall that for any �xed value of v, the breakpoint policy FUi
(v) speci�es

either a speci�c value for Ui (if v falls between two breakpoints of FUi
(v)), or a range

of allowed values for Ui (if v is equal to a breakpoint). Let us assume without loss of
generality that no two FUi

(v) share a breakpoint, and let v0 = 0 < v1 < � � � < vs = 1
be the ordered union of the breakpoints of the FUi

(v). Thus for any breakpoint v`,
there is at most one distinguished parent Uj (that we shall call the free parent) for
which FUj

(v`) speci�es an allowed interval of play for Uj . All other Ui are assigned
�xed values by FUi

(v`). For each breakpoint v`, we now de�ne the set of values for
the child W that, as we let the free parent range across its allowed interval, permit
V to play any mixed strategy as a best response.

De�nition 3 Let v0 = 0 < v1 < � � � < vs = 1 be the ordered union of the break-
points of the parent policies FUi

(v). Fix any breakpoint v`, and assume without loss

of generality that U1 is the free parent of V for V = v`. Let [a; b] be the allowed
interval of U1 speci�ed by FU1

(v`), and let ui = FUi
(v`) for all 2 � i � k. We de�ne

W` = fw 2 [0; 1] : (9u1 2 [a; b])�V (u1; u2; : : : ; uk; w) = 0g:

In other words, W` is the set of values that W can play that allow V to play any
mixed strategy, preserving the existence of an upstream Nash from V given W = w.

The next lemma, which we state without proof and is a special case of Lemma 6 in
Kearns et al. (2001), limits the complexity of the sets W`. It also follows from the
earlier work that W` can be computed in time proportional to the size of V 's local
game matrix | O(2k) for a vertex with k parents.

We say that an interval [a; b] � [0; 1] is oating if both a 6= 0 and b 6= 1.

Lemma 4 For any breakpoint v`, the set W` is either empty, a single interval, or
the union of two intervals that are not oating.

We wish to create the (inductive) Nash breakpoint policy FV (w) from the sets W`.
The idea is that if w 2 W` for some breakpoint index `, then by de�nition of W`, if
W plays w and the Ui play according to the setting determined by the FUi

(including
a �xed setting for the free parent of V), any play by V is a best response|so in
particular, V may play the breakpoint value v`, and thus extend the Nash solution
constructed. To create FV (w) we must �rst show that every w 2 [0; 1] is contained
in some W`.

For b 2 f0; 1g, we de�ne Wb as the set of values w such that if W = w and the Ui
are set according to their breakpoint policies for V = b, V = b is a best response.

Lemma 5 Let v0 = 0 < v1 < � � � < vs = 1 be the ordered union of the breakpoints of
the FUi

(v) policy. Then for any value w 2 [0; 1], either w 2 Wb for some b 2 f0; 1g,
or there exists an index ` such that w 2 W`.

Proof: Consider any �xed value of w, and for each open interval (vi; vi+1) de-
termined by the breakpoints, label this interval by V 's best response (0 or 1) to

W = w and ~U set according to the FUi
in this interval. If either the leftmost in-

terval [0; v1] is labeled with 0 or the rightmost interval [vs�1; 1] is labeled with 1,
then w is included in W0 or W1, respectively. Otherwise, since the labeling starts
at 1 on the left and ends at 0 on the right, there must be a breakpoint v` such that
V 's best response changes over this breakpoint. Let Ui be the free parent for this
breakpoint. By continuity, there must be a value of Ui in its allowed interval for
which V is indi�erent to playing 0 or 1, so w 2 W`. This completes the proof of
Lemma 5.

Armed with Lemmas 4 and 5, we can now describe the construction of FV (w). Since
every w is contained in some W` (Lemma 5), and since every W` is the union of at
most two intervals (Lemma 4), we can uniquely identify the setW`1 that covers the
largest (leftmost) interval containing w = 0; let [0; a] be this interval. Continuing
in the same manner to the right, we can identify the unique set W`2 that contains
w = a and extends farthest to the right of a. Any overlap between W`1 and W`2

can be arbitrarily assigned coverage by W`1 , and W`2 \trimmed" accordingly; see
Figure 1. This process results in a Nash breakpoint policy FV (w).

Finally, we bound the number of breakpoints in the FV (w) policy. By construction,
every breakpoint must be the rightmost portion of some interval in W0, W1, or
someW`. After the �rst breakpoint, each of these sets contributes at most one new

v1
 v2

 v3

 v6

 v4

 v7

 v5V

W
Figure 1: Example of the inductive construction of FV (w). The dashed horizontal
lines show the v-breakpoints determined by the parent policies FUi

(v). The solid
intervals along these breakpoints are the sets W`. As shown in Lemma 4, each of
these sets consists of either a single (possibly oating) interval, or two non-oating
intervals. As shown in Lemma 5, each value of w is covered by some W`. The
construction of FV (w) (represented by a thick line) begins on the left, and always
next \jumps" to the interval allowing greatest progress to the right.

breakpoint (Lemma 4). The �nal \breakpoint" is at w = 1 and does not contribute
to the count. There is at most one W` for each breakpoint in each FUi

(v) policy,
so the total breakpoints in FV (w) can be no more than two plus the total number
of breakpoints in the FUi

(v) policies.

This completes the proof of Theorem 2.

3.2 Upstream Pass

The downstream pass completes when each vertex in the tree has had its Nash
breakpoint policy computed. For simplicity of description, imagine that the root of
the tree includes a dummy child with constant payo�s and no inuence on the root,
so the root's breakpoint policy has the same form as the others in the tree.

To produce a Nash equilibrium, our algorithm performs an upstream pass over
the tree, starting from the root. Each vertex is told by its child what value to
play, as well as the value the child itself will play. The algorithm ensures that all
downstream vertices are Nash (playing best response to their neighbors). Given
this information, each vertex computes a value for each of its parents so that its
own assigned action is a best response. This process can be initiated by the dummy
vertex picking an arbitrary value for itself, and selecting the root's value according
to its Nash breakpoint policy.

Inductively, we have a vertex V connected to parents U1; : : : ; Uk (or no parents if
V is a leaf) and child W . The child of V has informed V to chose V = v and that
it will play W = w. To decide on values for V 's parents to enforce V playing a best

response, we can look at the Nash breakpoint policies FUi
(v), which provide a value

(or range of values) for Ui as a function of v that guarantee an upstream Nash. The
value v can be a breakpoint for at most one Ui. For each Ui, if v is not a breakpoint
in FUi

(v), then Ui should be told to select Ui = FUi
(v). If v is a breakpoint in

FUi
(v), then Ui's value can be computed by solving �V (u1; : : : ; ui; : : : ; uk; w) = 0;

this is the value of ui that makes V indi�erent. The equation is linear in ui and has
a solution by the construction of the Nash breakpoint policies on the downstream
pass. Parents are passed their assigned values as well as the fact that V = v.

When the upstream pass completes, each vertex has a concrete choice of action such
that jointly they have formed a Nash equilibrium.

The total running time of the algorithm can be bounded as follows. Each vertex
is involved in a computation in the downstream pass and in the upstream pass.
Let t be the total number of breakpoints in the breakpoint policy for a vertex V
with k parents. Sorting the breakpoints and computing the W` sets and computing
the new breakpoint policy can be completed in O(t log t + t2k). In the upstream
pass, only one breakpoint is considered, so O(log t + 2k) is suÆcient for passing
breakpoints to the parents. By Theorem 2, t � 2n, so the entire algorithm executes
in time O(n2 logn+n22k), where k is the largest number of neighbors of any vertex
in the network.

The algorithm can be implemented to take advantage of local game matrices pro-
vided in a parameterized form. For example, if each vertex's payo� is solely a
function of the number of 1s played by the vertex's neighbors, the algorithm takes
O(n2 logn+ n2k), eliminating the exponential dependence on k.

4 Conclusion

The algorithm presented in this paper �nds a single Nash equilibrium for a game
represented by a tree-structured network. By building representations of all equilib-
ria, our earlier algorithm (Kearns et al. 2001) was able to select equilibria eÆciently
according to criteria like maximizing the total expected payo� for all players. The
polynomial-time algorithm described in this paper throws out potential equilibria
at many stages, most signi�cantly during the construction of the Nash breakpoint
policies. An interesting area for future work is to manipulate this process to produce
equilibria with particular properties.

References

Michael Kearns, Michael L. Littman, and Satinder Singh. Graphical models for game
theory. In Proceedings of the 17th Conference on Uncertainty in Arti�cial Intelligence
(UAI), 2001.

Daphne Koller and Brian Milch. Multi-agent inuence diagrams for representing and
solving games. Submitted, 2001.

Pierfrancesco La Mura. Game networks. In Proceedings of the 16th Conference on Uncer-
tainty in Arti�cial Intelligence (UAI), pages 335{342, 2000.

J. F. Nash. Non-cooperative games. Annals of Mathematics, 54:286{295, 1951.

