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Abstract

Multi-agent games are becoming an increas-
ingly prevalent formalism for the study of
electronic commerce and auctions. The speed
at which transactions can take place and
the growing complexity of electronic market-
places makes the study of computationally
simple agents an appealing direction. In this
work, we analyze the behavior of agents that
incrementally adapt their strategy through
gradient ascent on expected payo�, in the
simple setting of two-player, two-action, iter-
ated general-sum games, and present a sur-
prising result. We show that either the agents
will converge to a Nash equilibrium, or if the
strategies themselves do not converge, then
their average payo�s will nevertheless con-
verge to the payo�s of a Nash equilibrium.

1 Introduction

It is widely expected that in the near future, software
agents will act on behalf of humans in many electronic
marketplaces based on auctions, barter, and other
forms of trading. This makes multi-agent game the-
ory (Owen, 1995) increasingly relevant to the emerg-
ing electronic economy. There are many di�erent for-
malisms within game theory that model interaction
between competing agents. Our interest is in iterated
games, which model situations where a set of agents
or players repeatedly interact with each other in the
same game. There is a long and illustrious history
of research in iterated games, such as the study of
(and even competitions in) solving iterated prisoner's
dilemma (Owen, 1995). Of particular interest in iter-
ated games is the possibility of the players adapting
their strategy based on the history of interaction with
the other players.

Many di�erent algorithms for adaptive play in iterated

games have been proposed and analyzed. For example,
in �ctitious play , each player maintains a model of the
mixed strategy of the other players based on the em-
pirical play so far, and always plays the best response
to this model at each iteration (Owen, 1995). While
it is known that the time averages of the strategies
played form a Nash equilibrium, the strategies them-
selves do not converge to Nash, nor are the averaged
payo�s to the players guaranteed to be Nash. Kalai
and Lehrer (1993) proposed a Bayesian strategy for
players in a repeated game that requires the players
to have \informed priors", and showed that under this
condition play converges to a Nash equilibrium. A se-
ries of recent results has shown that the informed prior
condition is actually quite restrictive, limiting the ap-
plicability of this result.

These seminal results implicitly assume that un-
bounded computation is allowed at each step. In con-
trast, we envision a future in which agents may main-
tain complex parametric representations of either their
own strategy or their opponents, and in which full
Bayesian updating or computation of best responses
is computationally intractable. In other words, as in
the rest of arti�cial intelligence and machine learning,
in order to e�ciently act in a complex environment,
agents will adopt both representational and computa-
tional restrictions on their behavior in iterated games
and other settings (e.g., Papadimitrou and Yannakakis
(1994) and Freund et al. (1995)).

Perhaps the most common type of algorithm within
machine learning are those that proceed by gradient
ascent or descent (or other local methods) on some ap-
propriate objective function. In this paper we study
the behavior of players adapting by gradient ascent
in expected payo� in two-person, two-action, general-
sum iterated games. Thus, here we study a speci�c and
very simple adaptive strategy in a setting in which a
general mixed strategy is easy to represent. Such a
study is a prerequisite to an understanding of gradi-
ent methods on rich, parametric strategy representa-



tions. While it is known from the game theory litera-
ture that the strategies computed by gradient ascent
in two-person iterated games need not converge, we
present a new and perhaps surprising result here. We
prove that although the strategies of the two players
may not always converge, their average payo�s always
do converge to the expected payo�s of some Nash equi-
librium. Thus, the dynamics of gradient ascent ensure
that the average payo�s to two players adopting this
simple strategy is the same as the payo� they would
achieve by adopting arbitrarily complex strategies.

In the remaining sections, we de�ne our problem and
the gradient ascent algorithm, and show that the be-
havior of players adapting via gradient ascent can be
modeled as an a�ne dynamical system. Many prop-
erties of this dynamical system are known from con-
trol theory literature, and have been applied before to
the somewhat di�erent setting of evolutionary game
theory (Weibull, 1997). Our main technical contribu-
tion is a new and detailed geometric analysis of these
dynamics in the setting of classical game theory, and
particularly of the e�ects of the boundary conditions
imposed by game theory on those dynamics (in con-
trast, evolutionary game theory explicitly and arti�-
cially prevents the dynamics from reaching the bound-
aries).

2 Problem De�nition and Notation

A two-player, two-action, general-sum game is de�ned
by a pair of matrices

R =

�
r11 r12
r21 r22

�
andC =

�
c11 c12
c21 c22

�

specifying the payo�s for the row player (player 1) and
the column player (player 2), respectively. If the row
player chooses action i 2 f1; 2g and the column player
chooses action j 2 f1; 2g the payo� to the row player
is rij and the payo� to the column player is cij. Two
cases of special interest are that of zero-sum games, in
which the payo� of the column player and the payo�
of the row player always sums to zero (rij + cij = 0
for i; j 2 f1; 2g), and that of team games, in which
both players always get the same payo� (rij = cij for
i; j 2 f1; 2g).
The players can choose actions stochastically, in which
case they are said to be following amixed strategy. Let
0 � � � 1 denote the probability of the row player
picking action 1 and let 0 � � � 1 denote the prob-
ability of the column player picking action 1. Then
Vr(�; �), the value or expected payo� of the strategy
pair (�; �) to the row player, is

Vr(�; �) = r11(��) + r22((1 � �)(1� �))

+r12(�(1� �)) + r21((1 � �)�) (1)

and Vc(�; �), the value of the strategy pair (�; �) to
the column player, is

Vc(�; �) = c11(��) + c22((1� �)(1� �))

+c12(�(1� �)) + c21((1� �)�): (2)

The strategy pair (�; �) is said to be a Nash equilib-
rium (or Nash pair) if (i) for any mixed strategy �0,
Vr(�

0; �) � Vr(�; �), and (ii) for any mixed strategy
�0, Vc(�; �

0) � Vc(�; �). In other words, as long as
one player plays their half of the Nash pair, the other
player has no incentive to change their half of the Nash
pair. It is well-known that every game has at least one
Nash pair in the space of mixed (but not necessarily
pure) strategies.

3 Gradient Ascent for Iterated Games

One can view the strategy pair (�; �) as a point in R2

constrained to lie in the unit square. The functions
Vr(�; �) and Vc(�; �) then de�ne two value surfaces
over the unit square for the row and column players
respectively. For any given strategy pair, (�; �), one
can compute a gradient for the row player from the
Vr-value surface and for the column player from the
Vc-value surface as follows. Letting u = (r11 + r22) �
(r21 + r12) and let u0 = (c11 + c22) � (c21 + c12)), we
have

@Vr(�; �)

@�
= �u� (r22 � r12) (3)

@Vc(�; �)

@�
= �u0 � (c22 � c21): (4)

In the gradient ascent algorithm, each player repeat-
edly adjusts their half of the current strategy pair in
the direction of their current gradient with some step
size �:

�k+1 = �k + �
@Vr(�k; �k)

@�

�k+1 = �k + �
@Vc(�k; �k)

@�
(5)

where (�0; �0) is an arbitrary starting strategy pair.
Points on the boundary of the unit square (where at
least one of � and � is zero or one) have to be handled
in a special manner, because the gradient may lead the
players to an infeasible point outside the unit square.
Therefore, for points on the boundary for which the
gradient points outside the unit square, we rede�ne the
gradient to be the projection of the true gradient onto
the boundary. For ease of exposition, we do not change
the notation in Equation 5 to reect the projection of
the gradient at the boundary, but the behavior there
should be understood and is important to our analysis.

Note that the gradient ascent algorithm assumes a full
information game | that is, both players know both



game matrices, and can see the mixed strategy of their
opponent at the previous step. (However, if only the
actual previous move played is visible, we can de�ne a
stochastic gradient ascent algorithm.)

4 Gradient Ascent as A�ne
Dynamical System

If the row and column players were to play according
to the gradient ascent algorithm of Equation 5, they
would at iteration k play the strategy pair (�k; �k),
and receive expected payo�s Vr(�k; �k) and Vc(�k; �k)
respectively. We are interested in the performance of
the two players over time. In particular, we are inter-
ested in what happens to the strategy pair and payo�
sequences over time. It is well-known in game theory
that the strategy pair sequence produced by following a
gradient ascent algorithm may never converge (Owen,
1995). In this paper we prove that the average payo�
of both players always converges to that of some Nash
pair, regardless of whether the strategy pair sequence
itself converges or not. Note that this also means that
if the strategy pair sequence does converge, it must
converge to a Nash pair.

For the purposes of analysis, it is convenient to �rst
consider the gradient ascent algorithm for the limiting
case of in�nitesimal step size (lim�!0); hereafter we
will refer to this as the IGA (for In�nitesimal Gradient
Ascent) algorithm. Subsequently we will show that the
asymptotic convergence properties of IGA also hold
in the more practical case of gradient ascent with de-
creasing �nite step size. In IGA, the sequence of strat-
egy pairs becomes a continuous trajectory in the unit
square (though there are discontinuities at the bound-
aries of the unit square because of the projected gra-
dient). The basic intuition behind our analysis comes
from viewing the two players behaving according to
IGA as a dynamical system in R2. In particular, as
we show below the dynamics of the strategy pair tra-
jectory is that of an a�ne dynamical system. This
view does not take into account the constraint that the
strategy pair has to lie in the unit square. This sep-
aration between the unconstrained dynamics and the
constraints of the unit square will be useful throughout
the rest of this paper.

Using Equations 3,4 and 5 and an in�nitesimal step
size, it is easy to show that the unconstrained dynam-
ics of the strategy pair as a function of time is de�ned
by the following di�erential equation:�

@�
@t
@�

@t

�
=

�
0 u

u0 0

� �
�

�

�
+

��(r22 � r12)
�(c22 � c21)

�
: (6)

We denote the o�-diagonal matrix containing the
terms u and u0 in Equation 6 as U .

a) b)

Figure 1: The general form of the dynamics: a) when U

has imaginary eigenvalues and b) when U has real eigen-
values.

From dynamical systems theory (Reinhard, 1987), it
is known that if the matrix U is invertible (we handle
the non-invertible case separately below), the uncon-
strained strategy pair trajectories can only take the
two possible qualitative forms shown in Figure 1. No-
tice that these two dynamics are very di�erent: the one
in Figure 1a has a limit-cycle behavior, while the one in
Figure 1b is divergent. Now depending on the exact
values of u and u0, the ellipses in Figure 1a can be-
come narrower or wider, or even reverse the direction
of the ow. Similarly, the angle between the dashed
axes in Figure 1b and the direction of ow along the
axes will depend on u and u0. But these are the two
general forms of unconstrained dynamics that are pos-
sible. In the next section we de�ne the characteristics
of general-sum game that determine whether the un-
constrained dynamics is elliptical or divergent.

The center where the axes of the ellipses meet, or
where the dashed-axes of the divergent dynamics meet,
is the point at which the true gradient is zero. By set-
ting the left hand side of Equation 6 to zero and solving
for the unique center (��; ��), we get:

(��; ��) =

�
(c22 � c21)

u0
;
(r22 � r12)

u

�
(7)

Note that the center is in general not at (0; 0), and it
may not even be inside the unit square.

5 Analysis of IGA

The following is our main result:

Theorem 1 (Nash convergence of IGA in iterated
general-sum games) If in a two-person, two-action, it-
erated general-sum game, both players follow the IGA
algorithm, their average payo�s will converge in the
limit to the expected payo�s for some Nash equilibrium.
This will happen in one of two ways: 1) the strategy
pair trajectory will itself converge to a Nash pair, or
2) the strategy pair trajectory will not converge, but
the average payo�s of the two players will nevertheless
converge to the expected payo�s of some Nash pair.



The proof of this theorem is complex and involves con-
sideration of several special cases, and we present it in
some detail below. But �rst we give some high-level in-
tuition as to why the theorem is correct. First observe
that if the strategy pair trajectory ever converges, it
must be that it has reached a point with zero gradi-
ent (or zero projected gradient if the point is on the
boundary of the unit square). It turns out that all such
points must be Nash pairs because no improvement is
possible for either player. More remarkably, it turns
out that the average payo� of each ellipse in Figure 1a
is exactly the expected payo� of the center (which is a
point with zero gradient). But how is all this a�ected
by the constraints of the unit square? Imagine taking
a unit square and placing it anywhere in the plane of
Figure 1a. The projected gradient along the boundary
will be determined by which quadrant the boundary
is in. We show that if there are some ellipses con-
tained entirely in the unit square, the dynamics will
converge to one such ellipse, and that if no ellipses
are contained in the unit square (the center is out-
side the unit square), then the constrained dynamics
must converge to a point. In either case, by the ar-
guments above, the average payo� will become Nash.
Similarly, imagine taking a unit square and placing it
anywhere on the plane in Figure 1b. Given the gra-
dient direction in each quadrant of the plane we show
that the dynamics will converge to some corner of the
unit square. Again, the average payo� will become
Nash.

From dynamical systems (Reinhard, 1987) it can be
shown that we only need to consider three mutually
exclusive and exhaustive cases to complete a proof:

1. U is not invertible. This will happen whenever u
or u0 or both are zero. Such a case can occur in
team, zero-sum, and general-sum games. Exam-
ples of the dynamics in such a case are shown in
Figure 2.

2. U is invertible and its eigenvalues are purely imag-
inary. We can compute the eigenvalues by solving
for � in the following equation:

�
0 u

u0 0

� �
x

y

�
= �

�
x

y

�
;

yielding �2 = uu0. Therefore we will get imagi-
nary eigenvalues whenever uu0 < 0. Such a case
can occur in zero-sum and general-sum games but
cannot happen in team games (because u = u0

and therefore uu0 � 0). Two examples of the dy-
namics are shown in Figure 4.

3. U is invertible and its eigenvalues are purely real.
This will happen whenever uu0 > 0. Such a

case can occur in team and general-sum games
but cannot happen in zero-sum games (because
u = �u0 and therefore uu0 � 0). Example dy-
namics are shown in Figure 6.

Theorem 1 is proved below by showing that Nash con-
vergence holds in all three cases summarized above.
But before we analyze these three cases in sequence
in the next three subsections, we present a basic re-
sult common to all three cases that shows that if the
(�(t); �(t)) trajectory ever converges to a point, then
that point must be a Nash pair.

Lemma 2 (Convergence of strategy pair implies con-
vergence to Nash equilibrium) If, in following IGA,
limt!1(�(t); �(t)) = (�c; �c), then (�c; �c) is a Nash
pair. In other words, if the strategy pair trajectory
converges at all, it converges to a Nash pair.

Proof: The strategy pair trajectory converges if and
only if it reaches a point where the projected gradient
is exactly zero. This can happen in two ways: 1) the
point is the center (��; ��), where by de�nition the
gradient is zero (this can only happen if the center is
in the unit square), or 2) the point is on the bound-
ary and the projected gradient is zero. Either way, it
means that from that point no local improvement is
possible. For a proof by contradiction, assume that
such a point is not a Nash pair. Then for at least
one of the players, say the column player, there must
be a unilateral change that increases their payo�. Let
the improved point be (�c; �i). Then for all � > 0,
(�c; (1 � �)�c + ��i) must also be an improvement.
This follows from the linear dependence of Vc(�; �)
on � and the fact that the unit square is a convex re-
gion. Therefore the projected gradient at �c; �c must
be non-zero. 2

Corollary 3 If the center (��; ��) is in the unit
square it is a Nash pair.

5.1 U is not Invertible

Lemma 4 (Nash convergence when U is not invert-
ible) When the matrix U is not invertible, the IGA
algorithm leads the strategy pair trajectory to converge
to a point on the boundary that is a Nash pair.

Proof: First consider the case when exactly one of u
and u0 is zero. Without loss of generality assume that
u = 0, i.e., (r11+r22) = (r21+r12). Then the gradient
for the row player is constant (see Equation 3) and de-
pending on its sign, the row player will converge to ei-
ther � = 0 or to � = 1. Once the row player's strategy
has converged, the gradient of the column player will
also become constant (see Equation 4) and therefore



it too will converge to an extreme value and therefore
the joint strategy will converge to some corner. If both
u and u0 are zero, then both the gradients are constant
and again we get convergence to a corner of the unit
square.

In summary, if U is not invertible the gradient algo-
rithm will lead to convergence to some point on the
boundary of the unit square, and hence from Lemma 2
will lead to convergence to a Nash pair of the game.
2
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Figure 2: Example dynamics with U not invertible. a) In
this case u is zero and u0 is not. b) Both u and u0 are zero.

Figure 2 shows the dynamics for two general-sum
games in which U is not invertible. Figure 2a is for
a case where u = 0 and u0 > 0. The gradient for
the row player is constant and points downwards. The
gradient for the column player depends on �, but once
� converges to zero it point to the right and therefore
from all starting points we get convergence to the bot-
tom right corner. Figure 2b is for a case where both
u and u0 are zero. In this case both the gradients are
constant and we get piecewise straight line dynamics.

5.2 U has Purely Imaginary Eigenvalues

Purely imaginary eigenvalues occur when uu0 < 0
in which case the two eigenvalues are

p
jujju0ji and

�pjujju0ji. It can be shown that in such a case the
unconstrained dynamics are elliptical around axes de-
termined by the eigenvectors of U (Reinhard, 1987).
See Figure 3a) for an illustration. There are two pos-
sible cases to consider: 1) u > 0 and u0 < 0, and 2)
u < 0 and u0 > 0. However, without loss of general-
ity we can consider only one case. When u < 0 and
u0 > 0, �

0q
ju0j
juj

�
+

�
1
0

�
i

is a complex eigenvector corresponding to the eigen-
value

p
jujju0ji, and

�
0q
ju0j
juj

�
�
�
1
0

�
i

is a complex eigenvector corresponding to the eigen-
value �pjujju0ji. The axes of the ellipses in Figure 3a

are determined by the real and imaginary parts of the
two eigenvectors, that is, by the vectors

�
0q
ju0j
juj

�
and

�
1
0

�
:

Note that these two vectors, and hence the axes of
the ellipses, are always orthogonal to each other and
parallel to the axes of the unit square. In the zero-
sum case, because juj = ju0j, they are also equal in
size which means that the dynamics in the zero-sum
case are circular (we merely observe this but do not
use it hereafter). Note that the ellipses are centered
at (��; ��) and that the unit square may be anywhere
in R2 and therefore the center can be outside the unit
square.

a) b)
A

BC

D

Center

Figure 3: a) Unconstrained dynamics when U has imagi-
nary eigenvalues. b) The constrained dynamics when the
center is in the unit square. In each case only some sample
trajectories are shown.

We can solve the a�ne di�erential Equation 6 for the
unconstrained dynamics of � and � to get:

�(t) = B
p
u cos(

p
uu0t+ �) + �� (8)

and

�(t) = B
p
u0 sin(

p
uu0t+ �) + �� (9)

where B and � are constants dependent on the ini-
tial � and �. These are the equations for the ellipses
of Figure 3a. Note that if an ellipse happens to lie
entirely inside the unit square then these equations
also describe the constrained dynamics for any start-
ing strategy pair that falls on that ellipse.

Lemma 5 (Nash Average Payo� for Ellipse entirely
inside unit square) For any initial strategy pair
(�0; �0), if the trajectory given by Equations 8 and 9
lies entirely within the unit square, then the average
payo�s along that trajectory are exactly the expected
payo�s of a Nash pair.

Proof: Under the assumption that the ellipse lies en-
tirely in the unit square, the average payo� for the
row player can be computed by integrating the value



obtained by the row-player in Equation 1 where the
� and � trajectories are those speci�ed in equations 8
and 9. It can be shown that the integral of just the
cosine term, just the sine term, and the product of
the cosine and sine terms is exactly zero. This leaves
just the terms containing �� and ��. Therefore, the
average payo�s are exactly the expected payo�s of the
center which by Corollary 3 is a Nash pair. 2

Therefore when the center point of the ellipses is in
the interior of the unit square, then all ellipses around
it that lie entirely within the unit square have Nash
payo�s.

Finally, we are ready to prove that when U has imagi-
nary eigenvalues, the average payo�s of the two players
are always that of some Nash pair.

Lemma 6 (Nash Convergence in the case of imagi-
nary eigenvalues) When the matrix U has imaginary
eigenvalues, the IGA algorithm either leads the strat-
egy pairs to converge to a point on the boundary that is
a Nash pair, or else the strategy pairs do not converge,
but the average payo� of each player converges in the
limit to that of some Nash pair.

Proof: Consider again the unconstrained dynamics
of Figure 3a. The four quadrants have the following
general properties: in quadrant A the gradient has a
positive component in the down and right directions,
in quadrant B the gradient has a positive component
in the down and left directions, in quadrant C the
gradient has a positive component in the up and left
directions, and in quadrant D the gradient has a posi-
tive component in the up and right directions. The di-
rection of the gradient on the boundaries between the
quadrants is also shown in Figure 3a. The important
observation here is that the direction of the gradient
in each quadrant is such that there is a clockwise cycle
through the quadrants.

There are three possible cases to consider depending
on the location of the center (��; ��).

1. Center is in the interior of the unit square.

First observe that all boundaries are tangent to
some ellipse, and that at least one boundary is
tangent to an ellipse that lies entirely within the
unit square. For example, in Figure 3b the tan-
gent ellipse to the left-side boundary lies wholly
inside the unit square, while the other three
boundarys' tangent ellipses are not contained in
the unit square.

If the initial strategy pair coincides with the cen-
ter, we will get immediate convergence to a Nash
equilibrium because the gradient there is zero. If
the initial strategy pair is o� the center point,

then one of two things can happen: 1) either the
ellipse that passes through the initial point does
not intersect with the boundary, or 2) the ellipse
that passes through the initial point intersects
with a boundary. In the �rst case the dynam-
ics will just follow the ellipse, and by Lemma 5
above, the average payo� for both players will be
Nash, even though the strategy pairs themselves
will not converge, but will follow the ellipse for-
ever. In Figure 3b this will happen if the initial
strategy pair is inside or on the dashed ellipse.
In case 2) above, the strategy pair trajectory will
hit a boundary, and then travel along it until it
reaches a point at which the boundary is tangent
to some ellipse that may or may not lie entirely
in the unit square. If it does, then the trajec-
tory will follow that ellipse thereafter. If it does
not, then the trajectory will follow the tangent
ellipse to the next boundary in the clockwise di-
rection. This process will repeat until the bound-
ary that has a tangent ellipse lying entirely within
the unit square is reached. In Figure 3b, if the
initial strategy pair starts anywhere outside the
dashed ellipse, the dynamics will eventually follow
the dashed ellipse. In all cases, from Lemma 5 we
will get asymptotic convergence to the expected
payo�s of some Nash pair.

2. Center is on the Boundary. Consider the case
where the center is on the left-side boundary of
the unit square. The �rst observation is that all
points below the center on the left-side boundary
will then have a projected gradient of zero. (Fig-
ure 3a shows that the gradient at such points will
point left, and therefore outside the unit square
and perpendicular to the left-side boundary.) The
bottom boundary will have a projected gradient
to the left. No matter where we start, we will ei-
ther hit the bottom boundary, in which case we
will get convergence to the lower left corner of
the unit square, or we will hit the left bound-
ary below the center, in which case again we will
converge because of the zero projected gradient
there. In either case, from Lemma 2 such points
will be Nash pairs. By symmetry, a similar argu-
ment is easily constructed when the center is on
some other boundary of the unit square.

3. Center outside unit square. There are two
cases to consider: 1) the unit square lies en-
tirely inside one quadrant, and 2) the unit square
lies entirely inside two adjacent quadrants. No
other case is possible. First consider the situation
when the unit square lies entirely within quad-
rant A. Then the gradient at each point points
down and right (see Figure 3a), and hence we



will get convergence to the bottom right corner
of the unit square. A similar argument is eas-
ily constructed when the unit square lies entirely
within some other quadrant (yielding convergence
to some other corner of the unit square).

Next consider the case where the unit square lies
in quadrants A and D. In quadrant D the gra-
dient points right and up, so either the trajec-
tory will enter quadrant A without hitting the
top boundary, or it will hit the top boundary,
in which case the projected gradient will be to-
wards the right, and again it will enter quadrant
A. In quadrant A we will converge to the lower
right corner of the unit square as above. A simi-
lar argument is easily constructed when the unit
square lies within some other two adjacent quad-
rants (again yielding convergence to some corner
of the unit square).

2
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Figure 4: Example dynamics when U has imaginary eigen-
values. a) The center is in the unit square. b) The center
is on the left boundary of the unit square.

In Figure 4 we present examples of strategy pair tra-
jectories for example problems whose U matrices have
imaginary eigenvalues. The left-hand �gure is for a
case where the center is contained in the unit square
while the right-hand �gure is for a case where the cen-
ter is on the left-hand boundary of the unit square.

5.3 U has Real Eigenvalues

a) b)
1

2

3

45
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Figure 5: a) General characteristics of the unconstrained
dynamics when U has real eigenvalues. b) The possible
transitions between the quadrants of the left-hand �gure.

The unconstrained dynamics of a linear di�erential
system with real eigenvalues are known to be diver-

gent (Reinhard, 1987). See Figure 1b) for an illus-
tration. Thus, without the constraints of the unit
square, the strategy pair trajectory would diverge.
Figure 5a shows the crucial general properties of the
unconstrained dynamics. The center (��; ��) is the
point where the gradient is zero. Everywhere in quad-
rant A the gradient has a positive component in the
right direction and in the up direction; in quadrant
B the gradient has a positive component in the up
direction and in the left direction; in quadrant C the
gradient has a positive component in the left and down
directions; and in quadrant D the gradient has a pos-
itive component in the right and down directions. At
the boundary between quadrants A and D the gradi-
ent points left; at the boundary between A and B it
points up; at the boundary between B and C it points
to the right; and at the boundary between C and D is
points down. The unit square that de�nes the feasible
range of strategy pairs can be anywhere relative to the
center. The eigenvectors corresponding to the two real
eigenvalues,

p
uu0 and �puu0 are�

1q
u0

u

�
;

�
1

�
q

u0

u

�

respectively (this is for the case that u; u0 > 0; the
analysis for the case that u; u0 < 0 is analogous and
omitted). The eigenvectors are represented in Fig-
ure 5a with dashed lines: one by drawing a line

through the center and the point (1;
q

u0

u
) and and

the other by drawing a line through the center and

the point (1;�
q

u0

u
). Note that the general qualita-

tive characteristics of the positive components of the
gradient in the di�erent quadrants do not depend on
the eigenvectors. However, the eigenvectors are rele-
vant to the detailed dynamics, as we will see in the
examples below.

Lemma 7 (Nash convergence in the case of real
eigenvalues) For the case of U having real eigenvalues,
the IGA algorithm leads the strategy pair trajectory to
converge to a point on the boundary that is a Nash
pair.

Proof: Consider the graph of possible transitions be-
tween the quadrants in Figure 5b. From every point
inside quadrant A, the gradient is such that the strat-
egy pair will never leave that quadrant. Therefore if
the strategy pair trajectory ever enters quadrant A, it
will converge to the top right corner of the unit square.
Similarly, from every point inside quadrant C, the gra-
dient is such that the strategy pair will never leave that
quadrant. Thus if the strategy pair trajectory ever en-
ters quadrant C, it will converge to the lower left cor-
ner of the unit square. If the initial strategy pair is in
quadrant B or D, the dynamics is a bit more complex



because it depends on the location of the unit square
relative to the center. We consider only the case of
quadrant D, for by symmetry a similar analysis will
hold for quadrant B. Unless the unit square lies en-
tirely in quadrant D, the strategy pair trajectory will
enter quadrant C or quadrant A, in which case we will
get convergence to the associated corner as above. If
the unit square is entirely within quadrant D, then
the direction of the gradient in that quadrant will lead
to convergence to the lower right corner of the unit
square. Finally, if the right-hand boundary of the unit
square is on the boundary between quadrants D and
A, then all the points on that boundary will have zero
projected gradient, and any trajectory from D hitting
that boundary will converge there. Similarly, if the
bottom boundary of the unit square is aligned with
the boundary between quadrants C and D, then any
trajectory fromD hitting that boundary will converge
there. From Lemma 2, if we ever get convergence to a
strategy pair, it must be a Nash pair. 2
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Figure 6: Example dynamics when U has real eigenval-
ues. a) Center in the unit square. b) Center on the right
boundary of the unit square.

In Figure 6 we present examples of strategy pair tra-
jectories for example problems whose U matrices have
real eigenvalues. The left-hand �gure has the center in
the unit square; the right-hand �gure has the center
on the right-hand boundary of the unit square. The
locations of the Nash points are shown.

6 Finite Decreasing Step Size

The above analysis and Theorem 1 have been about
the IGA algorithm that assumes that both players
are following the true gradient with in�nitesimal step
sizes. In practice, of course, the two players would
use the gradient ascent algorithm of Equation 5 with
a decreasing �nite step size �k (where k is the iteration
number).

Theorem 8 The sequence of strategy pairs produced
by both players following the gradient ascent algo-
rithm of Equation 5 with a decreasing step size (several
schedules will work, e.g., �k =

1

k2=3
) will satisfy one of

the following two properties: 1) it will converge to a

Nash pair, or 2) the strategy pair sequence will not
converge, but the average payo� will converge in the
limit to that of some Nash pair.

Proof: (Sketch) Here we provide some intuition; the
full proof is deferred to the full paper. Consider �rst
the cases in which the IGA algorithm converges to a
Nash pair. The proofs in such cases exploited only the
direction of the gradient in the four quadrants around
the center. These same proofs will extend without
modi�cation to the case of decreasing step sizes. The
one case (with imaginary eigenvalues) in which the
IGA algorithm does not converge to a point but in-
stead converges to some ellipse fully contained in the
unit square is more complex to handle. The basic in-
tuition is that the strategy pairs cannot get \trapped"
anywhere, and as the step size decreases, the dynamics
of gradient ascent approaches the dynamics of IGA. 2

7 Conclusion

Algorithms based on gradient ascent in expected pay-
o� are natural candidates for adapting strategies in
repeated games. In this work we analyzed the per-
formance of such algorithms in the base case of two-
person, two-action, iterated general-sum games, and
showed that even though the strategies of the two play-
ers may not converge, the asymptotic average payo�
of the two players always converges to the expected
payo� of some Nash equilibrium. Our proof also pro-
vides some insight into special classes of games, such
as zero-sum and team games.

In the future we will study the behavior of gradient
ascent algorithms in complex multi-action and contin-
uous action games in which the players use parameter-
ized representations of strategies.
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