
Graphical Models for Bandit Problems

Kareem Amin Michael Kearns Umar Syed

Department of Computer and Information Science
University of Pennsylvania

{akareem,mkearns,usyed}@cis.upenn.edu

Abstract

We introduce a rich class of graphical models
for multi-armed bandit problems that permit
both the state or context space and the action
space to be very large, yet succinctly specify
the payoffs for any context-action pair. Our
main result is an algorithm for such models
whose regret is bounded by the number of
parameters and whose running time depends
only on the treewidth of the graph substruc-
ture induced by the action space.

1 Introduction

We introduce a rich class of graphical models for multi-
armed bandit (MAB) problems that permit both the
state or context space and the action space to be
very large, yet succinctly specify the payoffs for any
context-action pair. In our models there may be many
context state variables, whose values are chosen ex-
ogenously by Nature, as well as many action variables,
whose values must be chosen by an MAB algorithm.
Only when all context and action variables are as-
signed values is an overall payoff observed. Thus each
setting of the context variables yields a distinct but re-
lated bandit problem in which the number of actions
scales exponentially.

Settings where the number of contexts and actions are
both large are becoming common in applied settings
such as sponsored search, where the number of possible
user queries is effectively unbounded, and on many fre-
quent queries the number of possible ads to show may
also be large. Similarly, in many problems in quan-
titative trading, the number of ways one might break
a trade up over multiple exchanges (the action space)
is large, but might also depend on many conditioning
variables such as market volatility (the context space).
Recent lines of research have considered large parame-
terized context spaces and large parameterized action

spaces separately (see Related Work below); here we
are interested in models and algorithms for their si-
multaneous presence.

We consider a setting in which an MAB algorithm
knows the coarse underlying graphical or dependency
structure of the model, but not the actual parameters.
Our main result is a no-regret algorithm for solving
graphical MAB problems that is computationally effi-
cient for a wide class of natural graphical structures.
By no-regret we mean that the total regret of our al-
gorithm is bounded by the number of parameters of
the model, and thus is generally greatly sublinear in
the number of contexts and actions. Interestingly, the
running time of our algorithm depends only on proper-
ties of the substructure of the graphical model induced
by the action variables — the dependencies between
context variables, or between context and action vari-
ables, may be arbitrarily complex. If the treewidth of
the action subgraph is constant, our algorithm runs in
polynomial time.

The algorithm itself combines distributed dynamic
programming — where the main challenge we face
compared to standard such computations is the lack
of any payoff until the entire model is instantiated (no
local observations) — with the fact that our models
admit linearization via a certain natural vector space
of coefficients, which permits the application of recent
“Knows What It Knows” (KWIK) algorithms for noisy
linear regression. At a high level, for each context cho-
sen by Nature, either our algorithm succeeds in choos-
ing a reward-maximizing action (an exploitation step),
or it effectively discovers another basis vector in a low-
dimensional linear system determined by the graphical
model (an exploration step).

The regret of the algorithm depends on the rank of this
underlying vector space, which is always bounded by
the number of parameters but may be smaller. It is a
feature of our algorithm that no distributional assump-
tions are needed on the sequence of contexts chosen,
which may be arbitrary. However, in the case that a



distribution is present, the effective rank and thus our
regret may be smaller still.

2 Related Work

Many authors have studied bandit problems where the
number of states or contexts (each of which indexes a
separate but perhaps related bandit problem) is al-
lowed to be large (Auer et al., 2002; Langford and
Zhang, 2007; Beygelzimer et al., 2011), while the num-
ber of actions, or the size of the function class to which
the expected payoff function belongs, are assumed to
be small (i.e. the sample and computational complex-
ity of these algorithms are allowed to depend linearly
on either of these quantities). In contrast, our results
will consider both expected payoff function classes that
are infinite, as well as context and action spaces that
are assumed to be very large and thus call for sublinear
complexity.

As we will demonstrate in Section 6, the setting we
consider can be thought of as a linearly parameterized
bandit problem. Such models associate each action x

with a feature vector φ(x), and the expected payoff for
taking that action is given by φ(x) ·w, where w is an
unknown weight vector. The computational complex-
ity of most existing algorithms is nevertheless linear in
the number of actions (Abe et al., 2003; Auer, 2002; Li
et al., 2010). Furthermore, rather than being specified
explicitly, the linear space in which our parameteri-
zations lie are given by the underlying graphical or
locality structure of the model.

More recent work on metric space contextual bandits
(Slivkins, 2011; Lu et al., 2010) assumes that both
action and context spaces are infinite, and that the
expected payoff function comes from a large function
class, namely the set of all Lipschitz continuous func-
tions. The regret bounds given by both (Slivkins,

2011) and (Lu et al., 2010) are Õ(T (1+d)/(2+d)) where
d is some dimensionality constant dependent on the
action and context spaces. In contrast, we make a dif-
ferent set of assumptions, namely that dependencies
between actions admit a certain graphical representa-
tion, and provide regret bounds that are Õ(T 2/3).

3 Preliminaries

We begin by assuming that both actions and contexts
are represented by vectors of discrete variables, and
that there is an unknown function which maps assign-
ments to these variables to a payoff. The graphical
assumption of our model will come when we assume
how these variables interact.

Let F :
∏

i∈V Xi → [0, 1] be the unknown expected

payoff function, where each Xi is the set of possible
values for variable i ∈ V , with |Xi| ≥ 2. The set of
variables is partitioned into a subset A ⊆ V of action
variables and a subset C ⊆ V (disjoint from A) of
context variables, with V = A∪C. Let m = maxi |Xi|
and n = |V |.
For any subset of variables S ⊆ V , let xS ∈ ∏

i∈S Xi

denote a joint assignment of values to variables S. For
shorthand, we write XS =

∏
i∈S Xi to denote the set

of all possible joint assignments to variables S. When
S = V , we typically drop the subscript and write x

and X instead of xV and XV , and call x a complete
joint assignment. We also abbreviate x{i} as xi, when
referring the assignment of a single variable. If S = A
we call xS a joint action, and if S = C we call xS a
joint context.

3.1 Learning Protocol

Learning in our model proceeds as a series of trials.
On each trial, Nature determines the current state or
context, and our algorithm must choose values for the
action variables in order to complete the joint assign-
ment. Only then is a reward obtained, which depends
on both the context and action.

In each round t = 1, . . . , T :

1. Nature chooses an arbitrary joint context assign-
ment xt

C , which is observed by the learning algo-
rithm.

2. The learning algorithm chooses a joint action as-
signment xt

A.

3. The learning algorithm receives an independent
random payoff f t ∈ [0, 1] with expectation
F (xt

A,x
t
C).

The regret after T rounds is

R(T ) , E

[
T∑

t=1

max
xA

F (xA,x
t
C)− F (xt

A,x
t
C)

]

where the expectation is with respect to randomness
in the payoffs and the algorithm.

Note that in the learning protocol above, Nature
chooses the context assignments as an arbitrary se-
quence; our main results hold for this rather strong
setting. However, in Section 7.1, we also consider the
special case in which each joint context xt

C is drawn
from a fixed distribution D (which is also the assump-
tion of much of the previous research on contextual
bandits), where better bounds may be obtained.



3.2 Assumption on Payoff Function

The main assumption that we leverage in this paper is
that, while F is unknown, we know that certain sets
of variables may interact with each other to affect the
payoff, while other sets may not. This is made precise
in Assumption 1 below.

Assumption 1 (Payoff Decomposition). We are
given a collection of variable subsets P ⊆ 2V such that
the unknown expected payoff function F has the form

F (x) =
∑

P∈P

fP (xP )

where each unknown function fP : XP → R is called
a potential function.

We emphasize that the potential functions are un-
known and arbitrary. What is known is that F admits
such a decomposition; more precisely, P is known.

Note that Assumption 1 is without loss of generality,
since we can always take P = {V } and fV = F . How-
ever, we are primarily interested in settings where F
decomposes into much simpler potential functions. If
|P | ≤ k for all P ∈ P then we say the potential func-
tions are k-ary.

Also note that Assumption 1 is very similar to the
kinds of assumptions often made for tractable approx-
imate inference (such as in a Markov random field),
where a complex multivariate distribution is assumed
to factorize into a product of several potential func-
tions, each of which depend on only a subset of the
variables. We next elaborate on the graph-theoretic
aspects of our model.

3.3 Interaction Graphs

In the rest of the paper, we will use structural prop-
erties of the expected payoff function F to bound the
regret and running time of our graphical bandit algo-
rithm. In particular, our results will depend on prop-
erties of the interaction graph G of the expected payoff
function F . Let G = (V,E) be a graph on variables V
with edges E defined as follows: For any pair of vari-
ables i, i′ ∈ V we have edge {i, i′} ∈ E if and only if
there exists P ∈ P such that i, i′ ∈ P , where P was
defined in Assumption 1. In other words, we join i
and i′ by an edge if and only if there is some potential
function fP that depends jointly on the variables i and
i′. The action subgraph GA = (A,EA) is the subgraph
of G containing only the action variables A ⊆ V and
the edges between them EA ⊆ E.

Note that the relationship between the interaction
graph G and an expected payoff function F is essen-
tially analogous to the relationship between a graph-

ical model and a distribution whose independence
structure it represents. The absence of an edge be-
tween two variables in a graphical model indicates that
the variables are probabilistically independent in the
distribution (conditioned on the remaining variables),
while the absence of an edge between two variables
in an interaction graph indicates that the two vari-
ables are separable in the expected payoff function.
A sparse graphical model leads to computationally
tractable inference algorithms, and we will shortly see
that a sparse interaction graphs (more precisely, sparse
action subgraphs) lead to computationally tractable
no-regret algorithms for a graphical bandit problem.

To illustrate the role that the interaction graph plays
in our approach, let us consider a simple contextual
bandit problem that models a restricted version of
sponsored web search. One of the most important cat-
egories of search queries in sponsored web search are
those related to shopping, so we consider the task of
serving ads in response to the search queries from users
interested in purchasing airline tickets. Each query
specifies the values of two context variables: the ori-
gin city xorigin and the destination city xdest. Each ad
specifies the values of four action variables: the origin
city yorigin, the destination city ydest, the cost of the
flight ycost (e.g., ‘cheap’, ’first class’), and the brand of
any accompanying hotel promotion yhotel (e.g., ‘none’,
‘Hyatt’, ‘Days Inn’).1

The unknown expected payoff function F specifies the
clickthrough rate of each query/ad pair. Without fur-
ther assumptions, F may depend on all six variables
jointly, and thus the interaction graph will be the fully-
connected graph on six vertices. However, we can
leverage our knowledge of the domain to decompose
the expected payoff function and thus simplify the in-
teraction graph. For any query/ad pair, we assume
that the cities in the query affect the clickthrough rate
only via their similarity, or lack thereof, with the cities
contained in the ad. Also, we assume that the effect
of an advertised hotel on the clickthrough rate is inde-
pendent of the origin city, since presumably the hotel
is located at the destination.

Leveraging the preceding assumptions, we assert that
the unknown expected payoff function F has the form

F (x) =f1(yorigin,ycost,ydest) + f2(yhotel,ycost,ydest)

+ f3(yorigin,xorigin) + f4(ydest,xdest)

(where, for notational brevity, we have subscripted the
potential functions with numbers instead of subsets
of variables). The interaction graph corresponding to

1For clarity, in this example we allow an action and
context variable to share an index, and denote the action
variable by y instead of x.



this family of expected payoff functions is given in Fig-
ure 1, with context variables denoted by circles in the
graph, and action variables by squares.

yorigin 

ydest 

yhotel 

ycost 

xorigin 

xdest 

Figure 1: Interaction graph for the simple sponsored
search example described in Section 3. Context vari-
ables, which are related to the query, are denoted by
circles. Action variables, which are related to the ad,
are denoted by squares.

The graph in Figure 1 is simpler than the fully-
connected graph in at least two quantifiable ways: It
has smaller maximum degree, and the treewidth of the
subgraph of action variables is smaller. The regret and
running time of the contextual bandit algorithm we
present in Sections 4-7 will be bounded in terms of
these two properties of the interaction graph.

We stress again that the values of the potential func-
tions are not specified, and will be learned online by
our algorithm. In this example, our algorithm might
learn, for instance, that ‘JFK’ is a good substitute for
‘New York’, and that the users traveling to Las Vegas
are more likely to click on ads that also offer rooms in
luxury hotels.

Also, note that not all the independencies encoded by
the expected payoff decomposition are preserved when
forming the interaction graph. In the example above,
the interaction graph would have been identical even
if the potential functions f1 and f2 were merged into a
single potential function. In this kind of situation, our
algorithm implicitly uses an expected payoff decom-
position in which each potential function corresponds
to a maximal clique in the interaction graph. Certain
probabilistic graphical models, such as Markov ran-
dom fields, share a similar property.

4 Algorithm Overview

We present the details of our graphical bandit algo-
rithm over the next three sections, and give a high-
level overview in this section. Our approach will be to
divide the graphical bandit problem into two subprob-
lems — one essentially dealing with exploitation, and
the other with exploration — and then compose the

solutions to those subproblems into a no-regret algo-
rithm.

In Section 5, we describe the BestAct algorithm,
which, for any given joint context xC , computes an
ǫ-optimal joint action xǫ

A. The BestAct algorithm
assumes access to an ǫ-good approximation F ǫ(·,xC)
of the expected payoff F (·,xC), and when computing
xǫ
A for given joint context xC the BestAct algorithm

makes many calls to the oracle F ǫ(·,xC). Note that
BestAct cannot simply issue these queries to Nature
instead, since it has no way of fixing the joint context
xC over several rounds. The running time of BestAct
is polynomially bounded if the treewidth of the action
subgraph GA is constant. BestAct is related to exist-
ing dynamic programming algorithms for finding the
maximum a posteriori (MAP) assignment in a graph-
ical model, but unlike that setting must overcome the
additional challenge of receiving only global payoffs
and no direct local observations or information.

In Section 6, we describe the PayEst algorithm, which
implements the oracle required by BestAct. With high
probability, whenever PayEst receives a complete joint
assignment (xA,xC), either it outputs the value of
F ǫ(xA,xC), or it outputs a special symbol ⊥. PayEst
is an instance of a “Knows What It Knows” (KWIK)
algorithm (Li et al., 2008), and the number of times
PayEst outputs ⊥ is polynomially-bounded if the po-
tential functions are all k-ary for a constant k. The
bound is a consequence of the fact that F can be writ-
ten as a linear function, and each ⊥ output increments
the dimension of a certain linear subspace. Again, note
that PayEst cannot be as simple as repeatedly playing
the complete joint assignment (xA,xC) and averag-
ing the observed payoffs, since our algorithm can only
specify the joint action xA in each round, and has no
way of fixing the joint context xC .

In Section 7, we put BestAct and PayEst together to
form GraphicalBandits, an algorithm for graphical
bandit problems, which in each round t runs BestAct
for the current context xt

C , and uses PayEst to imple-
ment the oracle required by BestAct. The main diffi-
culty in integrating the two algorithms is that some-
times PayEst outputs ⊥ instead of the value of the
oracle F ǫ(·,xt

C). However, whenever this happens,
BestAct will provide feedback that causes PayEst to
make measurable exploration progress, improving its
ability to provide accurate payoff estimates in subse-
quent rounds.

5 Best Action Subroutine

We will now describe BestAct, an algorithm that
efficiently computes, for a given joint context xC ,
an ǫ-optimal joint action xǫ

A satisfying F (xǫ
A,xC) ≥



maxxA
F (xA,xC) − ǫ. The BestAct algorithm uses

dynamic programming applied to the action subgraph
GA, and is similar to standard dynamic programming
algorithms, such as the Viterbi algorithm, for comput-
ing the MAP assignment in a graphical model. Our
setting is more challenging, however. For one, we do
not have access to the individual potential functions
fP , but only to the global expected payoff function F
(assuming no noise). Furthermore, we do not control
the context argument to F .

To illustrate these difficulties, suppose that the action
subgraph GA is a tree, and that we wish to run a stan-
dard dynamic programming algorithm which, fixing an
assignment for a variable’s parent, attempts to find the
best assignment for the subtree rooted at that variable,
under a joint context xC . That algorithm would re-
quire several queries to F (·,xC). However, once the
first observation is received, the next context is not
guaranteed to be the same, and the algorithm suffers
regret for that round. Furthermore, as we have previ-
ously remarked, any observation F (xA,xC), does not
give us the values of the individual potentials fP (xP ).
Thus, to compare two joint assignments to a subtree
in the algorithm sketched, we must be careful to fix
the assignment to all variables outside the subtree in
question. This becomes even more delicate when GA

is not a tree.

In order to overcome these problems, we will assume
oracle access to a function F ǫ(·,xC) for the given joint
context xC that satisfies |F ǫ(xA,xC)−F (xA,xC)| ≤ ǫ
for all joint actions xA. In Section 6 we describe the
PayEst algorithm, which implements this oracle.

For ease of exposition, we only give a detailed algo-
rithm and analysis for the case when GA is acyclic,
although we have a related algorithm that can be ap-
plied when GA is an arbitrary graph. We state our
results for arbitrary graphs, without proofs, at the end
of this section.

Suppose that the action subgraph GA is a tree. (Note
that this implies that each potential function fP de-
pends jointly on at most two variables). Let r be an
arbitrarily chosen root for GA. For any a ∈ A, let
T (a) denote the vertices of the subtree rooted at a.
Let ch(a) denote the set of vertices which are children
of a, and for a 6= r, let pa(a) denote the parent of a.
Also for a 6= r, let R(a) = A \ (T (a) ∪ {pa(a)}) be
remaining vertices that are neither pa(a) nor belong
to T (a).

If S1, . . . , Sk ∈ 2V are mutually disjoint subsets of vari-
ables such that S = S1 ∪ · · · ∪ Sk, we write a joint
assignment xS as xS = (xS1

, . . . ,xSk
).

For a 6= r, we would like to compute the best joint

assignment to the variables of T (a), having fixed an
assignment for pa(a). We will denote this best joint
assignment by [a,xpa(a)]

∗. For any leaf a and assign-
ment xpa(a),

[a,xpa(a)]
∗ = argmax

xa

F (xa,xpa(a),x
′
R(a),xC)

where x′
R(a) is a fixed, but arbitrary joint assign-

ment to the vertices in R(a). For a fixed choice
of xpa(a), [a,xpa(a)]

∗ is the same regardless of how
x′
R(a) is chosen since, by assumption, we can write

F (xa,xpa(a),x
′
R(a),xC) = f{pa(a),a}(xpa(a),xa,xC) +∑

e∈EA\{(p(a),a)} fe(xp,xC), where second term is a
constant with respect to xa. If we had access to
F (·,xC), [a,xpa(a)]

∗ can be efficiently computed.

In general, for a 6= r not necessarily a leaf, and ch(a) =
{a1, ..., ad}, we can write:

x∗
a,xpa(a)

= argmax
xa

F
(
xa, [a1,xa]

∗, . . . ,

[ad,xa]
∗,xpa(a),x

′
R(a),xC

)

and

[a,xpa(a)]
∗ = (x∗

a,xpa(a)
, [a1,x

∗
a,xpa(a)

]∗, . . . , [ad,x
∗
a,xpa(a)

]∗)

This motivates an algorithm, wherein the values
[a,xpa(a)]

∗ are computed for each a and all choices
xpa(a). This can be done efficiently by taking a in
postfix order (children before parents).

However, we only have access to the approximate ora-
cle F ǫ(·,xC). Therefore, we will instead consider:

x∗,ǫ
a,xpa(a)

= argmax
xa

F ǫ
(
xa, [a1,xa]

ǫ, . . . ,

[ad,xa]
ǫ,xpa(a),x

′
R(a),xC

)

and

[a,xpa(a)]
ǫ = (x∗,ǫ

a,xpa(a)
, [a1,x

∗,ǫ
a,xpa(a)

]ǫ, . . . , [ad,x
∗,ǫ
a,xpa(a)

]ǫ)

where each x′
R(a) is selected arbitrarily. We now argue

that the [a,xpa(a)]
ǫ values, computed using the func-

tion F ǫ(·,xC), are good values with respect to the true
expected payoff function F (·,xC).

Theorem 1. For any action variable a ∈ A, and as-
signments xpa(a), x

′
R(a),

F (xpa(a), [a,xpa(a)]
∗,x′

R(a),xC)

≤ F (xpa(a), [a,xpa(a)]
ǫ,x′

R(a),xC) + 2|T (a)|ǫ

Proof. Fix a choice of x′
R(a) and xpa(a). Let a be a

leaf. We have that:

F ([a,xpa(a)]
∗,xpa(a),x

′
R(a),xC)− ǫ

≤ F ǫ([a,xpa(a)]
∗,xpa(a),x

′
R(a),xC)

≤ F ǫ([a,xpa(a)]
ǫ,xpa(a),x

′
R(a),xC)

≤ F ([a,xpa(a)]
ǫ,xpa(a),x

′
R(a),xC) + ǫ



Rearranging establishes the inequality. Now sup-
pose that the claim is true for each a′ ∈ ch(a) =
{a1, . . . , ad} for some variable a and assignment xp(a).

F ([a,xpa(a)]
∗,xpa(a),x

′
R(a),xC)

= F
(
x∗
a,pa(a), [a1, x

∗
a,pa(a)]

∗, . . . ,

[ad, x
∗
a,pa(a)]

∗,xpa(a),x
′
R(a),xC

)

≤ F
(
x∗
a,pa(a), [a1, x

∗
a,pa(a)]

ǫ, . . . ,

[ad, x
∗
a,pa(a)]

ǫ,xpa(a),x
′
R(a),xC

)
+ 2

d∑

i=1

|T (ai)|ǫ,

where the inequality is by invoking the induction hy-
pothesis for each [ai, x

∗
a,pa(a)]

∗. Similar reasoning as
the base case gives us that this last expression is less
than or equal to

F
(
x∗,ǫ
a,pa(a), [a1, x

∗,ǫ
a,pa(a)]

ǫ, . . . ,

[ad, x
∗,ǫ
a,pa(a)]

ǫ,xpa(a),x
′
R(a),xC

)
+ 2|T (a)|ǫ,

completing the proof.

Imagining a “super-root” r′ such that r′ = pa(r) and
f{r′,r} ≡ 0, selecting a = r, and selecting xr′ arbi-
trarily in Theorem 1, gives us an algorithm which will
compute an 2|A|ǫ-optimal joint action, given access to
F ǫ. We shall refer to this algorithm as BestAct.

Theorem 2. Suppose the action subgraph GA is a
tree. Given access to oracle F ǫ(·,xC), the BestAct al-
gorithm computes a 2|A|ǫ-optimal joint action for joint
context xC in O(m2|EA|) time.

Proof. Fix an arbitrary variable a. Given [ai,xpa(ai)]
ǫ

for each ai ∈ ch(a), [a,xpa(a)]
ǫ can be computed in

O(m) time by definition. Thus, computing [r,xr′ ]
ǫ

can be done in O(m2|A|) time.

Notice that any acyclic forest GA can be handled by
running the tree algorithm on each connected compo-
nent. Suppose now that the action subgraph GA is
arbitrary, but admits a tree decomposition T = (A, E)
where S ∈ A is a subset of A. Let w = maxS∈A |S|,
the treewidth of GA.

Theorem 3. Let T = (A, E) be a tree decomposition
of action subgraph GA with treewidth w. Given ac-
cess to oracle F ǫ(·,xC), the BestAct algorithm can be
generalized to compute a 2|A|ǫ-optimal joint action for
joint context xC in O(m2w|E|) time.

Proof idea. The approach used when GA is a tree can
be generalized to run on the tree decomposition of an
arbitrary action subgraph. The development is very
similar to then recursive argument given in this sec-
tion, and the details are omitted due to space con-
straints.

Note that in order for the generalized version of
BestAct to be computationally efficient, natural but
nontrivial restrictions on the action subgraph GA are
required (namely, small treewidth). It can be shown
that some restrictions are inevitable. For example, the
energy F of a 3-D Ising model from statistical physics
can be phrased as the sum of binary potential func-
tions. However, even if the behavior of each potential
function fP is known (i.e. there is no implicit learning
problem), and there are no contexts, it is still NP-hard
to select the action (i.e. spins on the variables of the
Ising graph) maximizing the energy function F (Bara-
hona, 1982).

6 Payoff Estimator Subroutine

In this section we present the PayEst algorithm, which
implements the ǫ-good oracle F ǫ(xA,xC) required by
the BestAct algorithm described in Section 5. Before
presenting PayEst, we give in Section 6.1 a precise
definition of the problem that it is designed to solve.
In Section 6.2 we give a simple solution for the spe-
cial case where the observed payoffs are determinis-
tic, which suffices to convey the main ideas of our ap-
proach. The solution to the general problem is given
in Section 6.3, which will be an instance of a “Knows
What It Knows” (KWIK) algorithm (Li et al., 2008).

6.1 Problem Statement

Let us review the details of how the BestAct algo-
rithm uses its oracle. On several time steps2 s =
1, . . . , S BestAct specifies a complete joint assignment
xs = (xs

A,x
s
C) and requests the value F ǫ(xs) from the

oracle. Ideally, we would like PayEst to unerringly
supply these values to BestAct. However, since the
true expected payoff function F is unknown, this will
be impossible in general. Instead, PayEst will be de-
signed for the following learning protocol: On each
time step s the algorithm must either output the value
f̂s = F ǫ(xs) or output a special symbol ⊥ and be
allowed to observe an independent random variable
fs with mean F (xs). As we shall see in Section 7,
BestAct and PayEst can be integrated in a way that
respects this protocol and also bounds the number of
times that PayEst outputs ⊥.

6.2 Deterministic Payoffs Setting

Let us first consider the special case where each payoff
fs is in fact deterministic; that is, PayEst always ob-
serves F (xs) directly. We give a simple algorithm for

2These time steps are not the rounds of the bandit prob-
lem; BestAct may call the oracle several times per round
of the bandit problem.



PayEst that is based on the idea that Assumption 1 al-
lows us to express the expected payoff function F in a
compact linearized form. We now proceed to describe
this linearization, and then give the algorithm.

For convenience, let N =
∑

P∈P

∏
i∈P |Xi|, and define

the payoff vector f ∈ R
N as follows: Divide the N

components of f into |P| blocks, where each block cor-
responds to a potential function fP . Within the block
for potential function fP , let there be one component
ℓ corresponding to each of the

∏
i∈P |Xi| possible joint

assignments xP , and set the ℓth component of f equal
to fP (xP ).

For any complete joint assignment x, let v(x) ∈
{0, 1}N be a binary coefficient vector defined as fol-
lows: If ℓ is the component of f corresponding to po-
tential function fP and joint assignment x′

P then the
ℓth component of v(x) equals 1 if and only if xP = x′

P .

For an illustration of a payoff vector and coefficient
vector, consider an expected payoff function F that de-
pends on three variables and decomposes into two po-
tential functions. Let F (x1, x2, x3) = f{1,2}(x1, x2) +
f{2,3}(x2, x3), and suppose that the first potential adds
its inputs, while the second potential multiplies them,
i.e., f{1,2}(x1, x2) = x1+x2 and f{2,3}(x2, x3) = x2x3.
If each variable xi takes its values from the set {a, b},
then the payoff vector for the function F can be writ-
ten f =

(
a + a, a + b, b + a, b + b, aa, ab, ba, bb

)
and

the coefficient vector corresponding to, say, the com-
plete joint assignment x = (x1, x2, x3) = (a, b, a) is
v(x) =

(
0, 1, 0, 0, 0, 0, 1, 0

)
. Most importantly, note

that in general, the definitions of f and v(x), together
with Assumption 1, imply that the expected payoff
function has the linear form F (x) = f · v(x).
Now a very natural PayEst algorithm presents itself:
On each time step s, if there exists a linear combina-
tion α1, . . . , αs−1 such that v(xs) =

∑s−1
s′=1 αs′v(x

s′)
— in other words, if v(xs) is in the linear span of pre-
vious coefficient vectors — then output the estimate
f̂s =

∑s−1
s′=1 αs′f

s′ , and otherwise output ⊥. Clearly,
because the expected payoff function F (x) is a linear
function of the coefficient vector v(x) and the observed

payoffs are deterministic, we have f̂s = F (xs) for all s.
Also, since each coefficient vector is in R

N , and there is
no set of linearly independent vectors in R

N containing
more than N vectors, the number of observation time
steps is at most N . Importantly, we can upper bound
N in terms of properties of the interaction graph G.
Recall that m = maxi |Xi| and n = |V |, and suppose
that each potential function P ∈ P is k-ary. We have
N =

∑
P∈P

∏
i∈P |Xi| ≤ |P|mk ≤

(
n
k

)
mk ≤ (mn)k.

Thus, if we regard k as a constant, the number of ob-
servation time steps is upper bounded by a polynomial.

In fact, we can further exploit the structure of the in-

teraction graph G to give a more refined upper bound
than N . Let M =

∏
i∈V |Xi|, and define the coeffi-

cient matrix M ∈ {0, 1}N×M as follows: For each of
the M possible complete joint assignments x, the ma-
trix M contains one column that equals the coefficient
vector v(x). Since there is no set of linearly inde-
pendent columns of M containing more than rank(M)
vectors, the number of observation time steps is at
most rank(M), which is at most N , but potentially
much less than N . In Section 8, we give another re-
sult bounding rank(M) in terms of properties of the
interaction graph G.

6.3 Probabilistic Payoffs Setting

We now return to the general setting, so that each
fs is no longer deterministic, but an independent ran-
dom variable with expected value F (xs). Thanks to
the linearized representation of the expected payoff
function F described in the previous section, we can
use a KWIK linear regression algorithm (Strehl and
Littman, 2007) to implement PayEst. On each time
step s = 1, . . . , S such an algorithm observes a feature
vector φφφs and does exactly one of the following: (1)
outputs prediction ŷs, or (2) outputs ⊥ and observes
independent random variable ys ∈ [0, 1] with expected
value w ·φφφs, where the weights w are unknown. In our
case, ŷs and ys are the predicted and observed payoffs
f̂s and fs, the feature vector φφφs is the coefficient vec-
tor v(xs), and the unknown weight vector w is the
payoff vector f .

There are several existing algorithms for KWIK linear
regression. For example, Cesa-Bianchi et al. (2009)
describe an algorithm for which the number of obser-
vation time steps is upper bounded by O

(
d
ǫ2 log(

S
ǫδ )

)
,

where d is the dimension of the subspace containing
the feature vectors. In our case, we have d = rank(M),
where M is the coefficient matrix. For concreteness,
we will henceforth use this algorithm for PayEst.

7 Graphical Bandits Algorithm

In this section, we compose the algorithms from the
previous two sections to form the GraphicalBandits

algorithm, which is described in detail in Algorithm 1.
In each round t, GraphicalBandits runs BestAct on
the current joint context xt

C , and whenever BestAct

asks the oracle for the value of F ǫ(xA,x
t
C) for some

joint action xA, this request is passed on to PayEst

as the coefficient vector v(xA,x
t
C). If PayEst never

returns ⊥ for a given run of BestAct, then by the
analysis in Sections 5 and 6, BestAct will return an ǫ-
optimal joint action xǫ

A for joint context xt
C , which

is then played in round t. However, if PayEst re-
turns ⊥ in response to some complete joint assignment



(xA,x
t
C), then BestAct is terminated immediately, the

joint action xA is played in round t, and the observed
payoff f t is returned to PayEst. Since PayEst is a
KWIK linear regression algorithm, this feedback is re-
quired in order to bound the number of times that
PayEst outputs ⊥.

Algorithm 1 GraphicalBandits

1: Given: Subroutine PayEst, subroutine BestAct,
parameters ǫ, δ.

2: Initialize PayEst with parameters ǫ, δ.
3: for each time step t = 1, . . . , T do

4: Run BestAct on observed joint context xt
C .

5: while BestAct is running do

6: if BestAct asks for value of F ǫ(xA,x
t
C) then

7: Input coeff. vector v(xA,x
t
C) to PayEst.

8: if PayEst returns ⊥ then

9: Play joint action xA, observe payoff f t.
10: Return f t to PayEst.
11: Terminate BestAct early.
12: else if PayEst returns f̂ then

13: Return f̂ to BestAct.
14: end if

15: end if

16: end while

17: if BestAct was not terminated early then

18: Play joint action xǫ
A returned by BestAct.

19: end if

20: end for

Theorem 4. Let d = rank(M) be the rank of the coef-
ficient matrix, and let T = (A, E) be the tree decompo-
sition of the action subgraph GA with treewidth w. The
regret R(T ) of GraphicalBandits after T rounds is
at most R(T ) ≤ O

(
dw
ǫ2 log(Tm|E|/ǫδ) + 2|A|ǫT + δT

)

and the computational complexity of each round is
O(m2w|E|).

Proof. The per round computational complexity fol-
lows from Theorem 3.

Since PayEst is the KWIK linear regression algorithm
due to Cesa-Bianchi et al. (2009), we have that with

probability 1− δ, every prediction f̂ has error at most
ǫ, and ⊥ is returned at most K ≤ O

(
d
ǫ2 log(

S
ǫδ )

)
times,

where S is the number of times BestAct calls PayEst.
Since BestAct call PayEst at most O(m2w|E|) times
per round, we have S ≤ O(Tm2w|E|). In the probabil-
ity δ event that PayEst fails to meet its guarantee, we
may suffer maximum regret on all T rounds. Other-
wise, we are guaranteed that BestAct completes suc-
cessfully on all but K rounds, and on the remaining
rounds, by Theorem 3, a 2|A|ǫ-optimal joint action is
selected.

Thus, R(T ) ≤ K + 2|A|ǫT + δT ≤
O
(
wd
ǫ2 log(Tm|E|/ǫδ) + 2|A|ǫT + δT

)

If we tune ǫ and δ appropriately in terms of the number
of rounds T , we obtain the following no-regret bound.

Corollary 1. If GraphicalBandits is run with
parameters ǫ = δ = 1

T 1/3 then R(T ) ≤
O
(
dw|A|T 2/3 log(Tm|E|)

)
.

In Corollary 1, the dependence of regret on the num-
ber of rounds is Õ(T 2/3), while the regret bounds for

many bandit algorithms are Õ(
√
T ), raising the ques-

tion of whether our regret bound can be improved.
The VE algorithm of Beygelzimer et al. (2011) is an in-
efficient (i.e., exponential-time) contextual bandit al-

gorithm that has regret Õ(
√
T ). Whether there exists

an polynomial-time algorithm that achieves Õ(
√
T )

regret is an open problem; Abernathy and Rakhlin
(2009) supply a relevant discussion.

7.1 Distributional Assumptions

So far we have considered a setting in which contexts
are chosen arbitrarily, and our regret bound in Theo-
rem 4 depends on d = rank(M). This is because, in
the worst-case, each coefficient vector v(xA,xC) ob-
served by PayEst will be linearly independent of all
previously observed coefficient vectors. However, note
that if the joint contexts are drawn from a distribu-
tion, then such a worst-case sequence may no longer
be likely. Let D be an unknown context distribution
on the joint contexts xC .

Fix a set X′
C ⊆ XC , and let M(¬X′

C) be the coeffi-
cient matrix restricted to joint contexts in XC \ X′

C .
In other words, the columns of M(¬X′

C) are exactly
{v(xC ,xA) | xA ∈ XA,xC ∈ XC \X′

C}. We can pro-
vide an alternate regret bound for the same algorithm
by conceding full regret on rounds in which a context
is chosen from X′

C , and considering the algorithm’s
performance only on the remaining rounds. This gives
us

R(T ) ≤ TPxC∼D(xC ∈ X′
C) +

O
(
rank(M(¬X′

C))w|A|T 2/3 log(Tm|E|)
)

Thus if D places a large amount of its mass on joint
contexts that generate a coefficient matrix with low
rank, the bound above may be significantly better than
our general bound. Note we can optimize this bound
for rare contexts under the distribution D by minimiz-
ing this quantity over sets of joint contexts X′

C .

8 Rank and Graph Structure

Let MF be the coefficient matrix corresponding to an
expected payoff function F , and GF = (V,E) be its
interaction graph. In this section, we observe that we



can use structural properties of GF to prove state-
ments about rank(MF ), and therefore the regret of
our algorithm. Consider an expected payoff function
F that is the sum of binary potential functions (i.e.,
k-ary with k = 2). In Section 6 we argued that
rank(M) = O(|V |2). In this section we will argue that
rank(M) = Ω(|V |).
Theorem 5. For any F with binary potentials,
rank(MF ) = Ω(|V |).

Proof. Suppose that the largest matching in GF con-
tains at least |V |/4 edges. Since each potential func-
tion is binary, each edge in GF represents a potential
function in the decomposition of F , and so there is a
subset S ⊆ P of size at least |V |/4 such that all po-
tentials P ∈ S are pairwise disjoint, and every P ⊆ V .
Let Y = ∪P∈SP be the set of vertices that participate
in this matching.

For each such P = {a, a′} ∈ S, fix an arbitrary “de-
fault” assignment x0

P for the vertices {a, a′}. Let
P− , Y \ P , and furthermore, let x0

P− be the as-
signment in which all variables in P− are set to their
default assignments. For each P = {a, a′} ∈ S, also let
X̂P = (Xa × Xa′) \ {x0

P } be all possible assignments
of P that are not the default assignment. Finally, let
x′
V \Y be an arbitrary joint assignment for the remain-

ing variables.

For each P ∈ S, and each each x̂P ∈ X̂P , con-
sider the complete joint assignments of the form
complete(x̂P ) = (x̂P ,x

0
P− ,x′

V \Y ). It’s not hard
to see that the coefficient vectors corresponding
these assignments are all linearly independent, since
v(complete(x̂P )) is the only such coefficient vector
that places a 1 in the component corresponding to the
potential fP and joint assignment x̂P . Thus, MF con-
tains at least |V |/4 linearly independent columns, one
for each of these complete assignments.

If the largest matching of GF does not contain at least
|V |/4 edges, then it contains at most |V |/2 vertices.
Thus B , V \Y contains at least |A|/2 vertices. There
cannot be an edge between two vertices in B, otherwise
there would have been a larger matching. Thus for any
a ∈ B, and P ∈ P with a ∈ P , we have P ∩ B = {a}.
SinceGF is an interaction graph, there must be at least
one such P for each a, call it Pa. As in the previous
case, we can construct a linearly independent set of at
least |V |/2 coefficient vectors by fixing all vertices to
“default” values, considering each possible assignment
of each variable a ∈ B, and finally considering the
component of the coefficient vector corresponding to
Pa and the particular assignment of a.

Example 1. There exists a class of functions F such
that MF has close to full rank for every F ∈ F .

In other words, rank(MF ) = Ω(N), where MF ∈
{0, 1}N×M and M > N .

Proof. Let Fn consist of functions F which are the
sum of unary potentials, so F =

∑n
i=1 fi(xi). Let

X = X1 × ... ×Xn where each Xi = {0, 1}. M = 2n,
while N = 2n. Let xi be the joint assignment with
xi
i = 1 and x

j
i = 0 for all j 6= i. It’s clear that {v(xi

j)}j
are linearly independent, establishing the claim.

Example 2. Any function F that does not decompose
(i.e. with P = {V }), has MF equal to the identity ma-
trix of size |X|, and thus has rank(MF ) =

∏
i∈V |Xi|.

9 Conclusions and Future Work

In this paper we described a new algorithm for MAB
problems in which the unknown expected payoff func-
tion obeys structural constraints that are encoded in
a graph. When the graph has bounded treewidth and
bounded degree, our algorithm is tractable and suf-
fers low regret. An important limitation of our ap-
proach is that the graphical structure of the expected
payoff function must be specified in advance, and we
would like to extend our algorithm so that it learns
this structure as well. This will likely be challenging,
since most formulations of structure learning in prob-
abilistic graphical models are NP-hard. Our general
approach will be to adapt tractable approximation al-
gorithms for structure learning to our setting.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments.

References

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal of Computing, 32
(1):48–77, 2002.

John Langford and Tong Zhang. The epoch-greedy
algorithm for contextual multi-armed bandits. In
Advances in Neural Information Processing Systems
20, 2007.

Alina Beygelzimer, John Langford, Lihong Li, Lev
Reyzin, and Robert E. Schapire. Contextual ban-
dit algorithms with supervised learning guarantees.
In Proceedings of the 14th International Conference
on Artificial Intelligence and Statistics, 2011.

Naoki Abe, Alan W. Biermann, and Philip M. Long.
Reinforcement learning with immediate rewards and
linear hypotheses. Algorithmica, 37:263–293, 2003.



Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3:397–422, 2002.

Lihong Li, Wei Chu, John Langford, and Robert E.
Schapire. A contextual-bandit approach to person-
alized news article recommendation. In Proceedings
of the 19th International World Wide Web Confer-
ence, 2010.

Aleksandrs Slivkins. Contextual bandits with simi-
larity information. In Proceedings of the 24th An-
nual Conference on Computational Learning The-
ory, 2011.

Tyler Lu, David Pal, and Martin Pal. Contextual
multi-armed bandits. In Proceedings of the 13th In-
ternational Conference on Artificial Intelligence and
Statistics, 2010.

Lihong Li, Michael L Littman, and Thomas J Walsh.
Knows what it knows: A framework for self-aware
learning. In Proceedings of the 27th International
Conference on Machine Learning, 2008.

Francisco Barahona. On the computational complexity
of Ising spin glass models. Journal of Physics A:
Mathematical, Nuclear and General, 15:3241–3253,
1982.

Alexander Strehl and Michael L Littman. Online linear
regression and its application to model-based rein-
forcement learning. In Advances in Neural Informa-
tion Processing Systems 20, 2007.

Nicolò Cesa-Bianchi, Claudio Gentile, and Francesco
Orabona. Robust bounds for classification via selec-
tive sampling. In Proceedings of the 28th Interna-
tional Conference on Machine Learning, 2009.

Jacob Abernathy and Alexander Rakhlin. An efficient
bandit algorithm for t1/2-regret in online multiclass
prediction? In Proceedings of the 22nd Annual Con-
ference on Computational Learning Theory, 2009.


