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1 Introduction

We study the computational feasibility of learning
boolean expressions from examples. Our goals are
to prove results and develop general techniques that
shed light on the boundary between the classes of ex-
pressions that are learnable in polynomial time and
those that are apparently not. The elucidation of this
boundary, for boolean expressions and possibly other
knowledge representations, is an example of the po-
tential contribution of complexity theory to arti�cial
intelligence.

We employ the distribution-free model of learning
introduced in [?]. A more complete discussion and
justi�cation of this model can be found in [?, ?, ?, ?].
[?] includes some discussion that is relevant more par-
ticularly to in�nite representations, such as geometric
ones, rather than the �nite case of boolean functions.
For other recent related work see [?, ?, ?, ?, ?].

The results of this paper fall into three categories:
closure properties of learnable classes, negative results,
and distribution-speci�c positive results.

The closure properties are of two kinds. In section
3 we discuss closure under boolean operations on the
members of the learnable classes. The assumption that
the classes are learnable from positive or negative ex-
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amples alone is sometimes su�cient to ensure closure.
In the subsequent section, we give a general substi-
tution technique. It can be used to show, for exam-
ple, that if disjunctive normal form (DNF) formulae
are learnable in the monotone case, then they are also
learnable in the unrestricted case.

In section 5 we prove some negative results. One of
them shows that for purely information-theoretic rea-
sons, simple monomials cannot be learned from neg-
ative examples alone. This contrasts with the fact
that monomials can be learned from positive exam-
ples alone [?], and can be learned from very few ex-
amples if both kinds are available [?]. The remaining
results in the section are all predicated on the com-
putational hypothesis NP 6= RP. The classes shown
not to be learnable include disjunctions of two mono-
mials, formulae where each variable occurs just once
(�-formulae), and boolean threshold functions. Nega-
tive results are also given for heuristic learning, where
the rule to be learned needs to account correctly for
only a fraction of the examples.

In the �nal section, we consider learning �DNF and
monotone DNF, under the restriction that both the
positive and negative examples are drawn from uni-
form distributions. In the distribution-free setting, the
two questions are equivalent (shown in section 4) and
unresolved. We show that �DNF is learnable in this
distribution-speci�c case. In fact, the learning algo-
rithm can be used to learn 2-term �DNF, which is
NP-hard in the distribution-free case (section 5). We
also show that monotone DNF is at least group learn-
able. In group learning, it is su�cient to deduce a rule
for recognizing whether a large enough set of examples
contains only positive or only negative examples, given
that one of the two possibilities holds.

2 De�nitions

Let n be any natural number. A concept F is a boolean
function with domain f0; 1gn. Those vectors ~v such
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that F (~v) = 1 are called positive examples, the rest
are negative examples of F . For any F; there are many
possible boolean formulae f such that f is consistent
with the concept F . A class of representations of con-
cepts is a set A = [1n=1An where for each n;An is
a subset of all possible formulae of n variables. For
example, for each constant k, kDNF = [1n=1fkDNF
over n variablesg is a class of representations, where
kDNF denotes disjunctive normal form in which each
disjunct consists of at most k literals. Since learnabil-
ity may depend on the representation chosen, we de�ne
learnability of a class of representations of boolean con-
cepts, as opposed to de�ning learnability of the con-
cepts themselves.
If A is a class of representations, then for each f 2

A, let size(f) denote the fewest number of symbols
needed to write the representation f in A.
We assume that the learning algorithm has avail-

able a black box called EXAMPLES(f), with two but-
tons labeled POS and NEG. If POS (NEG) is pushed,
a positive (negative) example is generated according
to some �xed but unknown probability distribution
D+ (D�). We assume nothing about the distribu-
tions D+ and D�; except that

P
f(~x)=1D

+(~x) = 1

and
P

f(~x)=0D
�(~x) = 1 (i.e.,

P
f(~x)=1D

�(~x) = 0 andP
f(~x)=0D

+(~x) = 0).

De�nition 1 Let A be a class of representations.
Then A is learnable from examples i� there exists
a polynomial p; and a (possibly randomized) learn-
ing algorithm L; such that (8n)(8f 2 An)(8D

+ ; D�)
(8� > 0); L, given only EXAMPLES(f), halts in time
p(n; size(f); 1� ) and outputs a formula g 2 An that
with probability at least 1 � �; has the following prop-
erties: X

g(~x)=0

D+(~x) < �

and X
g(~x)=1

D�(~x) < �:

Throughout the paper, we shall abbreviate the
phrase \is learnable from examples" by the phrase \is
learnable". We shall call � the error parameter of the
learning algorithm.
If there is an algorithm L as above which never asks

for any negative (resp. positive) examples, then we'll
say that A is learnable from positive (negative) exam-
ples only.
This de�nition can be understood as follows. We

think of Nature as providing examples of the formula
to be learned according to some unknown probability
distribution for which we can make no assumptions.

Since there may be very bizarre examples of the for-
mula which occur with low probability, it is unrea-
sonable to expect the learning algorithm to produce a
formula which correctly classi�es all examples. Hence
a successful formula g is one which agrees with the
unknown f on most of the distribution. That is, the
probability that the formula g disagrees with either a
positive or a negative example is at most � in either
case. A second source of error is introduced by the
possibility that the particular sequence of examples
provided by Nature is highly unrepresentative. In this
case, it is reasonable that the formula g be highly in-
accurate. We require that this occur with probability
at most �: A further requirement of the de�nition is
that the run time of the algorithm be polynomial in
the size of the formula to be learned and in the inverse
of the error parameter.
A generalization of the above de�nition allows the

formula output to be from a di�erent class of repre-
sentations: the class A is learnable by the class B i�
De�nition 1 holds, except that g 2 Bn. In general, the
larger the class A, the harder the learning task, but for
�xed A, the larger the class B, the easier the learning
task. Thus A � B does not imply anything about the
learnability of A by A as compared to the learnability
of B by B.

3 Boolean Closure

These results provide tools for determining learnability
of new classes of formulae. Let A and B denote classes
of representations of boolean concepts. (For example,
k-term-DNF, monomials, etc.)

Theorem 1 If A is learnable, and if B is learnable
from negative examples only, then A _ B = ff1 _ f2 :
f1 2 A; f2 2 Bg is learnable.

Proof: Let f = f1 _ f2 be a formula in A _ B,
where f1 2 A and f2 2 B, and let D+ and D� be the
unknown distributions on positive and negative exam-
ples (respectively) for f . Since f~v : f(~v) = 0g � f~v :
f2(~v) = 0g, we can learn a formula g 2 B for f2 from
negative examples only, using the examples generated
by D�. We call the learning algorithm for B with er-
ror parameter �

2 to obtain a g that has probability of
error at most �

2 on the distribution D�. At this point,
we must determine how well g performs as an approx-
imation to f on the positive examples of f . We use
the following bounds on the tails of binomial distribu-
tions [?, ?]:

For 0 � p � 1 and m a positive integer, let LE(p;m; r)
denote the probability of at most r successes inm inde-



pendent trials of a Bernoulli variable with probability
of success p, and let GE(p;m; r) denote the probabil-
ity of at least r successes. Then for 0 � � � 1,
Fact 1. LE(p;m; (1� �)mp) � e��

2mp=2 and

Fact 2. GE(p;m; (1 + �)mp) � e��
2mp=3

We will make use of these facts throughout the paper.
Let q be the probability (according to D+) that a

random positive example of f does not satisfy g. We
now take 1

�2 positive examples from D+ in order to
estimate the value of q. From Fact 1, if q � �, at least
a fraction �

2 of our positive examples will not satisfy

g with probability at least 1 � e�1=8�. From Fact 2,
and the fact that GE is a nondecreasing function for
increasing p, we know that if q � �

4 , then at most
a fraction �

2 of our positive examples will not satisfy

g with probability at least 1 � e�1=12�. Thus, if at
least a fraction �

2 of the 1
�2

positive examples do not
satisfy g, then q � �

4
with overwhelming probability.

Otherwise, g is already a good approximation to f ,
and we are done.
If it is estimated that q � �

4 , then use the algorithm
for learning A from examples as follows: When a nega-
tive example is requested, supply one usingD�. When
a positive example is requested, search for a positive
example generated from D+ which does not satisfy
g. From the above argument, the probability of not
drawing such an example in 4

�2 tries is at most

(1�
�

4
)4=�

2

< e�1=�

Thus, the algorithm for learning A must output a good
approximation h for f1 when called with error param-
eter �

2 , and then h_ g is an approximation for f , with
probability of error at most �. Note that if pB(n;

1
�
) is

the time complexity of the learning algorithm for class
B, and pA(n;

1
� ) the time complexity of the algorithm

for class A, then the complexity for learning A_B by
the above procedure is pB(n;

2
�
) +O( 1

�2
) + 4

�2
pA(n;

2
�
).

Theorem 2 If A and B are each learnable from posi-
tive examples only, then A^B = ff1^f2 : f1 2 A; f2 2
Bg is learnable from positive examples only.

Proof: Let f = f1 ^ f2 be a formula in A ^ B,
where f1 2 A and f2 2 B, and let D+ and D� be
the unknown distributions on the positive and nega-
tive examples (respectively) for f . Since f~v : f(~v) =
1g � f~v : f1(~v) = 1g, we can learn a formula g 2 A for
f1 using positive examples generated by D+. By call-
ing the learning algorithm for A with error parameter
�
2 , we force g to cover at least a fraction 1� �

2 (accord-
ing to D+) of the positive examples of f with high
probability. Similarly, we can learn a formula h 2 B

A learnable
A _B A learnable A learnable from POS

from POS from NEG and NEG
B learnable
from POS NO YES NO
B learnable
from NEG YES YES YES
B learnable
from POS NO YES NO
and NEG

Figure 1: Learnability of A _B.

A learnable
A ^B A learnable A learnable from POS

from POS from NEG and NEG
B learnable
from POS YES YES YES
B learnable
from NEG YES NO NO
B learnable
from POS YES NO NO
and NEG

Figure 2: Learnability of A ^B.

for f2 from positive examples only that has this same
accuracy on D+. Then g ^ h covers a fraction 1� � of
the positive examples of f with high probability. Fur-
thermore, since f1 (respectively, f2) is learnable from
positive examples only, g (respectively, h) can be sat-
is�ed by no negative examples of f1 (respectively, f2).
Thus, g ^ h makes no errors on the negative examples
of f .

There are natural duals for both Theorems ?? and
?? (switch \^" and \_" wherever they occur, as well
as \positive" and \negative"), and together with The-
orem ??, we have two tables (Figures 1 and 2) for the
learnability of A^B, and A_B, given the learnability
of A and the learnability of B. In the tables, we label
the rows and columns according to whether each of A
and B is learnable from positive examples only, nega-
tive examples only, or from both positive and negative
examples. We then label the corresponding learning
problem (A _ B for Figure 1, A ^B for Figure 2) by
YES (if we can always learn in polynomial time) or
NO (if the learning problem is NP-hard for some pairs
(A;B)). Note that Theorem ?? is optimal in that we
cannot relax the constraints on B to allow B to be
learnable from both positive and negative examples.

As corollaries we can deduce the learnability of
classes not previously known to be learnable. For ex-
ample:



Corollary 3 ff _ g : f 2 kCNF; g 2 kDNFg is
learnable.

Corollary 4 ff ^ g : f 2 kDNF; g 2 kCNFg is
learnable.

Here kCNF is the class of conjunctive normal form for-
mulae in which each clause contains at most k literals.
Proofs for these corollaries follow from Theorem ??

and the algorithm in [?] for learning kCNF from pos-
itive examples only.

4 A Substitution Argument

We describe a simple substitution argument that
shows that learnable classes are closed under certain
kinds of substitution.

Theorem 5 Let C be learnable, and let G be a �nite
collection of boolean formulae over k (constant) vari-
ables. Let C 0 be the class of all formulae that can be
obtained by choosing an f(x1; : : : ; xn) 2 C, and replac-
ing one or more of the variables xi with any formula
gi(xi1 ; : : : ; xik), where gi 2 G; and each xij is one of
the original n variables (thus, the resulting formula is
still over n variables). Then C0 is also learnable.

Proof: We sketch the proof for the case that G con-
tains only the single formula g. The general case is
similar. Let MC be the learning algorithm for the
class C. Create new variables z1; : : : ; znk . Suppose we
are given a positive (negative case identical) example
(b1; : : : ; bn) 2 f0; 1gn of a formula f 0(x1; : : : ; xn) 2 C0.
The intention is that zi will simulate the value of
the formula g with the ith choice of k inputs from
fx1; : : : ; xng (note that there are exactly nk such
choices). Let ci 2 f0; 1g be the value assigned to
zi by this simulation. Then we give the example
(b1; : : : ; bn; c1; : : : ; cnk) to algorithm MC . Since there
is a formula in C that is consistent with all the samples
we generate (it is just f 0 with each occurrence of the
formula g replaced by the zi that simulates the inputs
to the occurrence of g), MC must output a good hy-
pothesis ~f 2 C. We then obtain a good approximation
for f 0 over n variables by replacing each occurrence of
a zi with an occurrence of g with the ith choice of
inputs.

Theorem 6 Let C be learnable. Let p(n) be a �xed
polynomial, let f be a formula in C over n + p(n)
variables, and let the description of the p(n)-tuple
(Bn

1 ; : : : ; B
n
p(n)) be polynomial time computable from

n; where each Bn
i is a boolean formula of n inputs.

Then the class C 0 of formulae of the form

f(x1; : : : ; xn; B
n
1 (x1; : : : ; xn); : : : ; B

n
p(n)(x1; : : : ; xn))

is also learnable.

Proof: Similar to the proof of Theorem ??.
An important corollary of both Theorems ?? and

?? is that the monotone learning problem is always
as hard as the general learning problem (for classes
that are closed under the required substitutions). For
example:

Corollary 7 If monotone DNF is learnable, then
DNF is learnable.

Proof: In the statement of Theorem ??, let C

be the class of monotone DNF formulae, and let
Bn
i (x1; : : : ; xn) = xi for 1 � i � n. The resulting

class C0 is simply DNF.
Another example is that learning DNF is as hard as

learning depth 3 formulae with constant fanout \ORs"
at the bottom layer.

Corollary 8 Let C be a class of formulae. Let �C be
the class of those formulae in C in which each variable
occurs at most once. Then if �C is learnable, then C

is learnable.

Proof: In the statement of Theorem ??, let
f(x1; : : : ; xn; xn+1; : : : ; xn+p(n)) be a formula in C in
which each variable occurs at most once. Then set-
ting Bn

i (x1; : : : ; xn) = xj for some 1 � i � p(n) and
some 1 � j � n yields a formula in which xj occurs at
most twice. Perform this substitution as many times
as necessary to allow extra occurrences of the original
n variables.
Corollary ?? is surprising, in that allowing only

one occurrence of each variable is a strong restriction.
This theorem states that the general learning problem
is no harder than this restricted version. One of our
results given later is that if A is the class of arbitrary
formulae, then �A is not learnable (Theorem ??).

5 Negative Results

All negative results except Theorem ?? assume that
RP 6= NP.
For each constant number k, let k-term DNF be the

class of formulae representable in DNF with at most
k terms. While 1-term DNF is known to be learnable,
we have:

Theorem 9 For all integers k � 2; (monotone) k-
term-DNF is not learnable by k-term-DNF.

Proof: We de�ne a generalization of the graph k-
colorability problem [?]. The k-NM-colorability prob-
lem is described by:



Instance: A �nite set S and a collection C =
fc1; c2; : : : ; cmg of constraints ci � S:

Question: Is there a k-coloring of the elements of
S (i.e. a function � : S ! f1; 2; : : :; kg), such
that for each constraint ci 2 C the elements of ci
are Not Monochromatically colored (i.e. (8ci 2
C)(9x; y 2 ci) such that �(x) 6= �(y))?

Lemma For all integers k � 2; k-NM-colorability is
NP-complete.

The lemma is proved by reduction from Satis�abil-
ity. To prove Theorem ??, we reduce k-NM-coloring
to the k-term-DNF learning problem. Let (S;C) be
an instance of k-NM-coloring. We construct a k-term-
DNF learning problem as follows:
Each instance will correspond to a particular k-

term-DNF formula to be learned. We must describe
what the positive and negative examples are, as well
as the distributions D+ and D� .
If S = fs1; s2; : : : ; sng then we will have n variables

fx1; x2; : : :xng for the learning problem. The set of
positive examples will be the vectors f~pig

n
i=1; where ~pi

is the vector with xi = 0 and all other bits set to 1.
The distributionD+ will be uniform over these n posi-
tive examples, with each ~pi occurring with probability
1
n : We'll form jCj negative examples, f~nig

jCj
i=1; each oc-

curring with probability 1
jCj

in the distribution D�:

For each constraint c 2 C; if c = fsi1 ; si2 ; : : : ; simg;
then the negative example ~ni is the vector which is all
\1's" except at positions i1; i2; : : : ; im. Thus the con-
straint fs1; s3; s8g gives rise to the negative example
h01011110111 : : :i: The theorem follows (by appropri-
ate choice of �) from the claim that there is a k-term-
DNF formula consistent with all of the positive and
negative examples above i� (S;C) is k-NM-colorable.
To prove this claim, assume (S;C) is k-NM-colorable
by a coloring � : S ! f1; 2; : : : ; kg that uses every
color at least once. Let f be the k-term-DNF expres-
sion f = T1 + T2 + : : :+ Tk; where the ith term Ti is
de�ned by

Ti =
Y

�(sj)6=i

xj:

In other words, the ith term is the conjunction of all
variables xj for which the corresponding element sj is
not colored i: Then it is easy to show that f is consis-
tent with all positive and negative examples. On the
other hand, suppose that T1+T2+ � � �+Tk is a k-term-
DNF formula which is satis�ed by all of the positive
examples and no negative example. Then note with-
out loss of generality, each Ti is a product of positive
literals only: If Ti contains two or more negated vari-
ables, then none of the positive examples can satisfy

it (since they all have only a single \0"), so it may be
eliminated. If Ti contains exactly one negative literal
xj then it can be satis�ed by at most the single positive
example ~pj so Ti can be replaced with T 0i =

Q
j 6=i xj

which is satis�ed by only the vectors ~pj and the vector
~1; neither of which are negative examples. Now color
the elements of S by the function � : S ! f1; 2; : : : ; kg
de�ned by �(si) = minfj : literal xi does not occur in
term Tjg: Note that � is well de�ned: since each pos-
itive example satis�es the formula T1 + T2 + � � �+ Tk;

each positive example ~pi must satisfy some term Tj :

But each term is a conjunct of only positive literals,
therefore for some j; xi must not occur in term Tj :

Thus each element of S receives a color. Furthermore,
it is easy to show that if � violates some color con-
straint, then some negative example satis�es one of
the terms Tj .

Corollary 10 For all integers k � 6; (monotone) k-
term-DNF is not learnable by (2k � 5)-term- DNF.

Proof: The di�culty of learning k-term-DNF stems
from the NP-hardness of a generalization of the graph
k-colorability problem. In fact, we could have used
graph k-colorability directly to obtain the same re-
sult for k � 3: (However, the NP-hardness of 2-NM-
colorability proves useful in a number of other con-
structions.) It is shown in [?] that for every � > 0;
unless P = NP, no polynomial time algorithm can ap-
proximate the fewest number of colors needed to color
a graph within a constant factor of 2 � �: The proof
in that paper, together with the proof of Theorem ??

above, provides a proof of Corollary ??. These results
show that the problem of learning from examples a
small DNF expression is at least as hard as the color-
ing approximation problem, and appears to be harder.

Thus, even when the unknown formula is the sum of
two monotone terms, it is NP-hard to �nd a two term
(possibly non-monotone) expression for the examples
seen. Corollary ?? is even stronger, and states that
�nding a good formula from examples is hard even if
we allow the formula found to have roughly twice as
many disjuncts as the formula to be learned.
A boolean tree is a circuit which is a tree, with the

input variables as leaves. Boolean trees are equivalent
to �-formulae, the class of formulae in which each vari-
able occurs at most once. It is surprising that for this
simple type of function, we have the following result.

Theorem 11 �-formulae (boolean trees) are not
learnable.

Proof: We reduce the 2-NM-colorability problem
to the �-formula learning problem. Let (S;C) be an



instance of 2-NM-colorability, and let f~pig; f~nig be
the positive and negative examples corresponding to
(S;C) as in the proof of Theorem ??. By reasoning
as in the proof of Theorem ??, we need only prove
the claim that there is a �-formula consistent with the
positive and negative examples if and only if (S;C) is
2-NM-colorable.

To prove the claim, observe that if (S;C) is 2-NM-
colorable, then (from the proof of Theorem ??) the
formula T1 + T2 is in fact a �-formula. Conversely,
suppose that there is a �-formula f consistent with the
examples f~pig and f~nig. Then consider the boolean
tree Tf which computes f . Tf is a rooted directed tree
with variables as leaves, internal nodes labeled with
\AND", \OR", and \NOT", and edges directed away
from the root. By a lemma we may assume without
loss of generality that no node has the same label as its
immediate ancestor, that none of the nodes are labeled
\NOT", and that each variable occurs as a leaf. There
are two cases to consider, depending on the label of
the root of the tree. In each case we show how a 2-
NM-Coloring may be found from Tf .

CASE 1: The root node is labeled \OR".

Then Tf is equivalent to the formula f1+f2+� � �+fk;
where fi is the subformula computed by the subtree
of Tf with Tf 's i

th child as root. Let L = f1 and
R = f2 + � � �+ fk: Color each element si with color
CL i� xi occurs in formula L; otherwise color si with
color CR: We show that this is a legitimate 2-NM-
Coloring: Suppose a constraint ci = fsi1 ; si2 ; : : : ; simg
is violated. Then all of si1 ; si2 ; : : : ; sim are colored
the same color, and all of xi1; xi2; : : : ; xim occur in
the same subformula, say L without loss of generality.
Then since formula R contains only positive literals,
and does not contain the variables xi1; xi2 ; : : : ; xim ; it
follows that ~ni satis�es formula R; and therefore sat-
is�es f; a contradiction.

CASE 2: The root node is labeled \AND".

Since there are no \NOT"s in the tree, there must
be an OR on the path from the root to each xi; other-
wise the positive example ~pi couldn't satisfy Tf Thus
there are k � 2 OR nodes which are children of the
root AND node. We divide the subtree beneath the
ith OR into two groups, Li and Ri; where Li is the
function computed by the leftmost subtree of the ith

OR, and Ri is the function computed by the OR of
the remaining branches of the ith OR.

Thus f = (L1 + R1)(L2 + R2) � � � (Lk + Rk):
Then let f 0 = L + R; where L = L1L2 � � �Lk and
R = R1R2 � � �Rk: Clearly f 0 ) f , therefore no nega-
tive example satis�es f 0: Now color si with color CL

i� xi occurs in formula L; and color it CR otherwise.
By the same argument as in Case 1, if some coloring

constraint is violated, then all of the elements of the
constraint occur in the same subformula, and then the
other subformula is satis�ed by the negative example
associated with the given constraint.
A boolean threshold function may be thought of in-

tuitively as follows. Among the set of n variables fxig
there is some important subset Y for the concept to
be learned. There is also a critical threshold k such
that whenever an example ~x has at least k of the bits
of Y set to 1, it is a positive example, otherwise it is a
negative example. We write this rule as THk(~y) where
~y is the characteristic vector for the set Y: Thus ~x is a
positive example i� it satis�es ~x � ~y � k:

Theorem 12 Boolean threshold functions are not
learnable.

Proof: We reduce the NP-complete Zero-One Inte-
ger Programming problem (ZIP) to the learning prob-
lem [?]. An instance of ZIP is a set of s pairs ~ci; bi
and the pair ~a;B; where ~ci 2 f0; 1gn; ~a 2 f0; 1gn;
bi 2 f0; 1g; and 0 � B � n: The problem is to de-

termine if there exists a vector ~d 2 f0; 1gn such that

~ci � ~d � bi for 1 � i � s and ~a � ~d � B.
Let ~0 and ~1 denote the all 0 and all 1 vectors, respec-

tively. Similarly, let ~1i;j;::: denote the vector which is

set to 1 only at the positions i; j; : : : : and ~0i;j;::: denote
the vector which is 0 only at the positions i; j; : : : :
Given an instance of ZIP, we construct a boolean

threshold learning problem. We'll have 2n features
x1; x2; : : : ; x2n: We will sometimes write a vector of
length 2n as the concatenation of two vectors ~x; ~y of
length n; and denote this by (~x; ~y): There are two pos-
itive examples, ~p1 = (~0;~1); and ~p2 = (~a;~11;2;:::;n�B):
There are two types of negative examples. First, for
each of the vectors ~ci; 1 � i � s; from the ZIP instance,
we de�ne the negative example (~ci;~11;2:::;n�bi�1): Sec-
ond, for 1 � i � n we de�ne the negative example
(~0;~0i): We claim that there is a solution to the ZIP
instance i� there is a boolean threshold function con-
sistent with the given examples. If our claim is true,
then any learning algorithm can be used to decide the
ZIP problem in random polynomial time by letting
D+ and D� be uniform over the positive and negative
examples respectively, and choosing � = 1

s+n .
Suppose that Y is a set with characteristic vector

~y = (~z; ~w); and k is a positive integer such that the
rule Thk(~y) is consistent with the positive and negative
examples de�ned above. (We must have 1 � k � 2n:)
Then k � ~p1 � ~y = (~0;~1) � ~y � n; thus k � n:

Furthermore, by the positive and negative examples,
for each i; (~0;~0i) � (~z; ~w) < k and (~0;~1) � (~z; ~w) � k;

and it follows that (since (~0;~1) di�ers from (~0;~0i) only
in the position n+ i;) ~w = ~1: Thus ~y = (~z;~1): Since



(~0;~0i) is a negative example, (~0;~0i) � (~z;~1) = n�1 < k;

therefore, k = n:

We then have that n � ~p2 �~y = (~a;~11;2;:::;n�B)�(~z;~1);

so ~a � ~z � B: Also,for each i, since (~ci;~11;2:::;n�bi�1) is

a negative example, (~ci;~11;2:::;n�bi�1) � (~z;~1) � n � 1;
and therefore ~ci � ~z � bi:

Thus ~z is a solution to the ZIP instance. Similarly,
any ZIP solution ~z gives rise in an obvious manner to
a boolean threshold function consistent with the given
examples.
In cases where learning a class of representations is

thought to be intractable, or when no learning algo-
rithm exists, we may wonder whether we can learn
heuristic rules for the concept; a rule which accounts
for some signi�cant fraction of the positive examples,
while avoiding incorrectly classifying most of the neg-
ative examples. For example, since there is a learning
algorithm for monomials, but not for k-term-DNF, and
none known for general DNF, perhaps we can �nd a
single monomial which covers half of the positive ex-
amples while avoiding error on all but 1�� of the neg-
ative examples whenever such a monomial exists. In
the full paper, we formalize the notion of h(n)-heuristic
learnability, so that a class is h(n)-heuristically learn-
able i� a learning algorithm can produce a hypothesis
which correctly classi�es at least the fraction h(n) of
the positive examples, while correctly classifying 1� �

of the negative examples.

Theorem 13 For any c, 0 < c < 1, DNF is not c-
heuristically learnable by monomials.

Proof: See [?].

Theorem 14 �-formulae (boolean trees) of n vari-

ables are not e�n
1=3

-heuristically learnable, if the tree
or formula produced must avoid misclassifying all neg-
ative examples.

Proof: See [?].
Theorem ?? shows that the heuristic of covering

as large a fraction of the positive examples as possi-
ble with a single monomial while learning DNF is not
feasible.
Theorem ?? is a very strong result. It shows that

even if there is a �-formula correctly classifying all
of the positive and negative examples, it is NP-hard
to �nd one which correctly classi�es an exponentially
vanishing fraction of the positive examples, if we re-
quire that it avoid misclassifying any negative exam-
ple.
While several classes of formulae are learnable from

examples of only one kind [?], the question of whether
both positive and negative examples are ever required

was unsolved. The following result, which is indepen-
dent of any complexity-theoretic hypothesis, answers
this in the a�rmative for the classes mentioned in
Corollaries ?? and ??.

Theorem 15 If A is the class of monotone monomi-
als and B is any class of representations, then A is
not learnable by B from negative examples only.

Proof: Suppose for contradiction that M were a
learning algorithm requiring only negative examples,
and let nc be the number of samples required by M

for learning monomials over n variables, with � = 1
n
.

Let a monomial be monotone dense if it is monotone
and contains at least n

2 of the variables. Let S be a set
of exactly nc vectors from f0; 1gn, and let 	 be the set
of all such S's. If m is a monotone dense monomial,
then pm 2 f0; 1gn is the unique vector satisfying m

with the fewest 1's. Finally, we say that S 2 	 is legal
negative for m if S contains no vector satisfying m.

We �rst de�ne distributions over the examples of
monotone dense monomials in such a way that if m is
being learned, any accurate hypothesis output by M

must satisfy pm. Thus, let D+(pm) = 1, and D+ is
0 elsewhere. Let D� be uniform over all ~v such that
m(~v) = 0. We now de�ne the predicate P (S;m) to
be 1 if and only if S is legal negative for m and when
S is given to M , M outputs a hypothesis h such that
h(pm) = 1 (Note that this de�nition assumes that M
is deterministic. To allow for probabilistic algorithms,
we simply change the de�nition to P (S;m) = 1 if and
only if S is legal negative for m, and when S is given
to M , M outputs a hypothesis h such that h(pm) = 1
with probability at least 1

2 , where the probability is
taken over the coin tosses of M ).

Suppose we draw ~v uniformly at random from
f0; 1gn. Then

Pr(m(~v) = 1) � 2
n
2 �

1

2n
=

1

2
n
2

since at most 2
n
2 vectors can satisfy a monotone dense

monomial. Thus, if we draw nc points uniformly at
random from f0; 1gn, the probability that we draw
some point satisfyingm is at most nc

2
n
2
. By this proba-

bility analysis, we conclude that the number of samples
of size nc that are legal negative for m must be at least
j	j
2 . SinceM is a learning algorithm, at least j	j

2 (1��)
of these must satisfy P (S;m) = 1. Summing over all
monotone dense monomials, we obtain

j	j

2
(1� �)

2n

2
�

X
S2	

 X
m is monotone dense

P (S;m)

!



For S 2 	, de�ne N (S) to be the number of monotone
dense monomials satisfying P (S;m) = 1. Then the
above can be rewritten as

j	j

2
(1� �)

2n

2
�

X
S2	

N (S)

From this inequality, and the fact that N (S) is always

at most 2n

2
, we conclude that at least j	j

8
of the S must

satisfy N (S) � 1
4(1 � �)2

n

2 . Since D� is uniform, for
any particular monotone dense m being learned byM ,
we have probability at least 1

8 of drawing such an S.
But then the hypothesis output byM is satis�ed by at
least 1

4 (1� �)2
n

2 vectors, and m is satis�ed by at most
2
n
2 vectors. Our error on D� is then at least

1
4(1� �)2

n

2 � 2
n
2

2n

and this error must be less than �. But this cannot be
true for � � 1

10 . Thus, M cannot achieve arbitrarily
small error on monotone dense monomials, and the
theorem follows.
We note that there are results similar to Theorem ??

with easier proofs. For instance, combining the fact
that monomials are learnable from positive examples
only with Theorems ?? and ??, it is easy to show that
monomials are not learnable from negative examples
only unless NP = RP. There is also a simpler proof
for Theorem ?? when the class A is relaxed to in-
clude all monomials; one could then apply the substi-
tution techniques of Theorems ?? and ?? to show that
monotone monomials are not learnable from negative
examples only by any class of representations that is
closed under the appropriate substitutions. However,
the result of Theorem ?? is stronger, as we have shown
that monotonemonomials are not learnable from nega-
tive examples only by any representation, independent
of any complexity-theoretic hypothesis (such as NP 6=
RP).

6 Distribution-Speci�c Positive

Results

In typical computational domains, such as graph al-
gorithms, it is found that NP-hard problems are in-
tractable in practice, except in situations where the
inputs can be identi�ed as belonging to a restricted
case of the domain. A problem may become tractable,
for example, if the inputs are drawn from certain dis-
tributions. We suspect that learnability conforms to
this pattern. In this section we shall show that learning
is in fact tractable in certain cases when D+ and D�

are both uniform distributions. Since the learnability
of DNF is perhaps the most tantalizing open problem,
and since general DNF is no harder than �DNF in the
distribution-free case by Corollary ??, the following
result is of some interest.

Theorem 16 If D+ and D� are uniform over the
positive and negative examples, respectively, of the for-
mula being learned, then �DNF (DNF in which each
variable occurs at most once) is learnable.

Proof: Let n be the number of variables in the
�DNF formula, F , to be learned. For some �xed inte-
ger d, let 1

nd
= � be the error parameter. We say that

a monomial in F is signi�cant if the probability that a
random positive example satis�es this monomial is at
least 1

nd+1
.

We �rst give an outline of our algorithm and then
show how each step can be implemented.

Learning Algorithm :
Step 1. Assume that every monomial in F is of

size larger than Clogn for C = (d+2)2. This step will
learn F using only positive examples if this assumption
is true. If this assumption is not true, then we will
discover this in step 2, and learn correctly in step 3
(from the negative examples). The substeps of step 1
are as follows :
1.1. For each i, decide whether xi is in one of the

monomials of F .
1.2. For each i; j such that xi and xj are in some

monomials of F , decide whether they are in the same
monomial.
1.3. Form the DNF �-formula in the obvious way.
Step 2. Test whether the DNF �-formula learned in

step 1 is correct by trying it on a polynomial number
of new examples. If it is correct, stop and output the
formula, otherwise (the assumption of step 1 is not
correct) go to step 3.
Step 3. Since some monomial in F is shorter than

Clogn, we can assume that all the monomials are
shorter than C3logn and discard the long ones (which
are not signi�cant). We use only negative examples in
this step. The substeps are :
3.1. For each i, decide whether xi is in some (short)

monomial.
3.2. For each i; j such that xi and xj are known

to be in some monomials by step 3.1, decide if they
belong to the same monomial.
3.3. Form the �DNF formula accordingly. (End of

Algorithm)

Now we show how each step is implemented and
prove its correctness and analyze its time complexity



along the way.
In step 1, we draw only positive examples. Since

there are at most n (disjoint) monomials in F , and
we assumed that the size of each monomial is at least
Clogn, the probability that a positive example satis-
�es 2 monomials of F is at most 1

nC�2
. Therefore, in

the following analysis, we consider only the positive
examples which satisfy precisely one monomial each,
without loss of generality.
Analysis of Substep 1.1 : For each i, if xi is not

in any monomials of F then in any randomly drawn
positive example,
Pr(xi = 0) = Pr(xi = 1) = 1

2 :

If xi is in a signi�cant monomial in F then
(1) Pr(xi = 1) � 1

2 +
1

2nd+1
� O(n�C+1):

(Notice that if xi is in an insigni�cant monomial then
we simply think that xi is in no monomial.) Using
Facts 1 and 2, we can determine if xi appears in a
signi�cant monomial by drawing a polynomial number
of examples.
Analysis of Substep 1.2 : For each pair xi and xj

that are in somemonomials (as decided in substep 1.1),
we now decide whether they are in the same monomial.
Consider xi _ xj.
Claim 1. If xi and xj are in the same monomial, then
for a random positive example
(2) Pr(xi _ xj = 1)

= 3
4 +

1
2(Pr(xi = 1)� 1

2) � o(n�C+2):
Proof. Since xi and xj appear in the same mono-
mial, Pr(xi = 1) = Pr(xj = 1). Let A be the event
where the monomial containing xi and xj is satis-
�ed in a randomly drawn positive example, and B

be the event of some other monomial(s) being satis-
�ed. Using the facts that Pr(A \ B) = o(n�C+2),
Pr(xi = 1) = Pr(A) + 1

2 (1 � Pr(A)) � o(n�C+2), and
Pr(A) + Pr(B) = 1 + o(n�C+2), we have
Pr(xi _ xj = 1)
= Pr(xi _ xj = 1jA)Pr(A)+

Pr(xi _ xj = 1jB)Pr(B) � o(n�C+2)
= Pr(A) + 3

4 (1� Pr(A))� o(n�C+2)
= 2(Pr(xi = 1)� 1

2 )+
3
4(1� 2(Pr(xi = 1) � 1

2 ))� o(n�C+2)
= 3

4 +
1
2(Pr(xi = 1)� 1

2 )� o(n�C+2):

Claim 2. If xi and xj appear in di�erent monomials,
then in a random positive example
(3) Pr(xi _ xj = 1) = 3

4 +
1
2(Pr(xi = 1)� 1

2 )+
1
2 (Pr(xj = 1)� 1

2) � o(n�C+2)
Proof. Let A be the event where the monomial con-
taining xi is satis�ed, B be the similar event for xj ,
and D be the event where some monomial other than
the above two is satis�ed. Similar to Claim 1, we have
Pr(xi _ xj = 1)

= Pr(xi _ xj = 1jA)Pr(A)+
Pr(xi _ xj = 1jB)Pr(B)+
Pr(xi _ xj = 1jD)Pr(D) � o(n�C+2)

= Pr(A) + Pr(B) + 3
4Pr(D)

�o(n�C+2)
= Pr(A) + Pr(B)+

3
4(1� Pr(A)� Pr(B)) � o(n�C+2)

= 3
4 +

1
4(Pr(A) + Pr(B)) � o(n�C+2)

= 3
4 +

1
2(Pr(xi = 1)� 1

2 )
+1

2 (Pr(xj = 1)� 1
2) � o(n�C+2)

Combining formulas (1),(2),(3) and the fact that if
xi and xj are in the same monomial, then Pr(xi =
1) = Pr(xj = 1), we can determine whether xi and
xj are in the same monomial by drawing a polynomial
number of examples, and using Facts 1 and 2.
In step 2, we draw a polynomial number of exam-

ples to test if our learned formula is correct, again
using Facts 1 and 2. Now if in step 2, it is decided
that the formula learned in step 1 is not correct, then
the assumption made in the beginning of step 1 is not
correct. So there is a monomial in F which is of size
at most Clogn. This implies that all the formulas of
size larger than C3logn are not signi�cant. Therefore
in step 3 we assume that all the monomials in F are
shorter than C3logn. We use only the negative exam-
ples.
Analysis of Substep 3.1 : If xi is not in any mono-

mials of F , then in a randomly drawn negative exam-
ple, we have
(4) Pr(xi = 0) = 1

2 :

Claim 3. If xi is in a signi�cant monomial of F , then
Pr(xi = 0) � 1

2 +
1

2(nC3�1)
:

Proof. Assume s is the size of the monomial xi is in.
Then
Pr(xi = 0) = 2s=2

2s�1
= 1

2
+ 1

2(2s�1)
:

Since s � C3logn, the claim is true.
By (4) and Claim 3, we can draw a polynomial num-

ber of examples, and decide if xi is in some monomial
of F , using Facts 1 and 2.
Analysis of Substep 3.2 : We have to decide

whether xi and xj are in the same monomial, given
that xi; xj are in some monomial(s).
Claim 4. If xi; xj are not in the same monomial, then
Pr(xi = xj = 0) = Pr(xi = 0)Pr(xj = 0):

Proof. If xi; xj are not in the same monomial, then
they are independent of each other.
Claim 5. If xi; xj are in the same monomial, then
Pr(xi = xj = 0) = 1

2
Pr(xi = 0):

Proof.
Pr(xi = xj = 0) = Pr(xi = 0)�

Pr(xj = 0jxi = 0)
But Pr(xj = 0jxi = 0) = 1

2 .



Putting Claims 3,4,5 together, we can test if xi; xj
are in the same monomial using Facts 1 and 2. This
completes the proof of the theorem.
It follows from Theorem ?? and Corollary ?? that

k-term �DNF (�DNF in which there are at most k dis-
juncts) is not learnable. However, the algorithm given
in the proof of Theorem ?? always outputs a hypoth-
esis which has at most the same number of terms as
the formula being learned - thus, it is also an algo-
rithm for learning k-term �DNF under uniform distri-
butions. This is the �rst example of a class for which
distribution-free learning is NP-hard, but learning un-
der a uniform distribution is tractable.
For monotone DNF under the uniform distribution

we prove a similar result for the weaker model of
\group learning", which appears to be of independent
interest. Informally, we say that class A is group learn-
able if there is a learning algorithm L that runs in
polynomial time, and outputs a deterministic hypoth-
esis program H with the following property : for some
polynomial p(n), when H is given p(n) examples that
are either all positive or all negative (a group), H de-
termines whether the group is positive or negative with
high probability (> 1� �).

Theorem 17 If D+ and D� are uniform over the
positive and negative examples, respectively, of the
formula being learned, then monotone DNF is group
learnable.

Proof: (Outline) We state four technical claims
without proofs. We then sketch the learning algo-
rithm, which follows easily from the claims.
Let F = m1+m2+ : : :+mq(n) be a monotone DNF

formula of n variables, where q(n) is some polynomial.
For ~vP a positive example of F , ~vN a negative example
of F , and ~x 2 f0; 1gn, we de�ne dP (dN , respectively)
to be the Hamming distance between ~x and ~vP (~vN ,
respectively). Without loss of generality, we assume
that m1 is the shortest monomial in F . Let C be a
constant such that nC > q3(n) for large n.
The �rst claim says that if the shortest monomial in

F is long, then two positive vectors (i.e., drawn from
the uniformD+) are more likely (with an inverse poly-
nomial advantage) to be closer (in Hamming distance)
than are one positive and one negative vector.
Claim 1. Let jm1j > Clog(n). Let ~vP and ~x be
drawn from the uniform distribution D+, and let ~vN
be drawn from the uniform distribution D�. Then

(1) Pr(dP < dN ) � Pr(dP > dN ) +
1

p(n)

for some polynomial p(n).

The second claim says that if the shortest mono-
mial is short, two negative vectors are more likely to
be closer to each other (with an inverse polynomial ad-
vantage) than are one positive and one negative vector.
Claim 2. Let jm1j � Clog(n). Let ~vP be drawn ran-
domly from the uniform distribution D+, and let ~vN
and ~x be drawn randomly from the uniform distribu-
tion D�. Then

(2) Pr(dN < dP ) � Pr(dN > dP ) +
1

p(n)

for some polynomial p(n).
We also use two easier claims that are true indepen-

dent of the size of the smallest monomial.
Claim 3. Let ~vP and ~x be drawn from D+ , and let
~vN be drawn from D�. Then

(3) Pr(dP < dN ) � Pr(dP > dN )

Claim 4. Let ~vP be drawn randomly from D+, and
let ~vN and ~x be drawn from D�. Then

(4) Pr(dN < dP ) � Pr(dN > dP )

Suppose G = f~x1; : : : ; ~xnkg is a set of vectors that are
either all drawn from D+ or all drawn from D�. We
use the above claims in the following algorithm to de-
termine if G is a positive or negative group.

Learning Algorithm :
Step 1. Draw a polynomial number of pairs

(~vP ; ~vN ), where ~vP is drawn fromD+ and ~vN is drawn
from D� (the exact number of pairs needed is deter-
mined by the use of Facts 1 and 2 in the proofs of the
claims). Form a table of these pairs.
Step 2. Determine with high probability if (1)

holds. This can be done by performing a polynomial
number of experiments, drawing ~vP ; ~x fromD+, draw-
ing ~vN fromD�, and using Facts 1 and 2. If (1) holds,
then with high probability, ~x will be closer to ~vP than
it is to ~vN . We can notice this probabilistic advantage
in polynomial time using Facts 1 and 2. If it is decided
that (1) does not hold, then with high probability, the
condition of Claim 1 must be false. Therefore, the
condition of Claim 2 must hold, so (2) holds.
Step 3. Suppose we determined that (1) holds. To

determine if G is positive or negative, for each i, com-
pute the Hamming distance between ~xi and the posi-
tive and negative vectors of the ith table entry. If ~xi
is closer to the positive vector, consider this a positive
vote; if it is closer to the negative vector, consider this
a negative vote. (1) says that if G is positive, the cu-
mulative vote will be \noticeably" (i.e., in polynomial
time, using Facts 1 and 2) positive; (3) says that if G



is negative, the cumulative vote will be at least half
negative. We can decide if G is positive or negative in
a similar way if (2) holds.
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