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Abstract

We consider a number of classical and new computational problems regarding
marginal distributions, and inference in models specifying a full joint distribution.
We prove general and efficient reductions between a number of these problems,
which demonstrate that algorithmic progress in inference automatically yields
progress for “pure data” problems. Our main technique involves formulating the
problems as linear programs, and proving that the dual separation oracle required
by the ellipsoid method is provided by the target problem. This technique may be
of independent interest in probabilistic inference.

1 Introduction

The movement between the specification of “local” marginals and models for complete joint distri-
butions is ingrained in the language and methods of modern probabilistic inference. For instance,
in Bayesian networks, we begin with a (perhaps partial) specification of local marginals or CPTs,
which then allows us to construct a graphical model for the full joint distribution. In turn, this allows
us to make inferences (perhaps conditioned on observed evidence) regarding marginals that were not
part of the original specification.

In many applications, the specification of marginals is derived from some combination of (noisy)
observed data and (imperfect) domain expertise. As such, even before the passage to models for the
full joint distribution, there are a number of basic computational questions we might wish to ask of
given marginals, such as whether they are consistent with any joint distribution, and if not, what the
nearest consistent marginals are. These can be viewed as questions about the “data”, as opposed to
inferences made in models derived from the data.

In this paper, we prove a number of general, polynomial time reductions between such problems
regarding data or marginals, and problems of inference in graphical models. By “general” we mean
the reductions are not restricted to particular classes of graphs or algorithmic approaches, but show
that any computational progress on the target problem immediately transfers to progress on the
source problem. For example, one of our main results establishes that the problem of determining
whether given marginals, whose induced graph (the “data graph”) falls within some class G, are
consistent with any joint distribution reduces to the problem of MAP inference in Markov networks
falling in the same class G. Thus, for instance, we immediately obtain that the tractability of MAP
inference in trees or tree-like graphs yields an efficient algorithm for marginal consistency in tree
data graphs; and any future progress in MAP inference for other classes G will similarly transfer.
Conversely, our reductions also can be used to establish negative results. For instance, for any class
G for which we can prove the intractability of marginal consistency, we can immediately infer the
intractability of MAP inference as well.

There are a number of reasons to be interested in such problems regarding marginals. One, as
we have already suggested, is the fact that given marginals may not be consistent with any joint
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Figure 1: Summary of main results. Arrows indicate that the source problem can be reduced to the target
problem for any class of graphs G, and in polynomial time. Our main results are the left-to-right arrows from
marginals-based problems to Markov net inference problems.

distribution, due to noisy observations or faulty domain intuitions,1 and we may wish to know this
before simply passing to a joint model that forces or assumes consistency. At the other extreme,
given marginals may be consistent with many joint distributions, with potentially very different
properties.2 Rather than simply selecting one of these consistent distributions in which to perform
inference (as would typically happen in the construction of a Markov or Bayes net), we may wish to
reason over the entire class of consistent distributions, or optimize over it (for instance, choosing to
maximize or minimize independence).

We thus consider four natural algorithmic problems involving (partially) specified marginals:

• CONSISTENCY: Is there any joint distribution consistent with given marginals?
• CLOSEST CONSISTENCY: What are the consistent marginals closest to given inconsistent

marginals?
• SMALL SUPPORT: Of the consistent distributions with the closest marginals, can we com-

pute one with support size polynomial in the data (i.e., number of given marginal values)?
• MAX ENTROPY: What is the maximum entropy distribution closest to given marginals?

The consistency problem has been studied before as the membership problem for the marginal poly-
tope (see Related Work); in the case of inconsistency, the closest consistency problem seeks the
minimal perturbation to the data necessary to recover coherence.

When there are many consistent distributions, which one should be singled out? While the maxi-
mum entropy distribution is a staple of probabilistic inference, it is not the only interesting answer.
For example, consider the three features “votes Republican”, “supports universal healthcare”, and
“supports tougher gun control”, and suppose the single marginals are 0.5, 0.5, 0.5. The maximum
entropy distribution is uniform over the 8 possibilities. We might expect reality to hew closer to a
small support distribution, perhaps even 50/50 over the two vectors 100 and 011. The small support
problem can be informally viewed as attempting to minimize independence or randomization, and
thus is a natural contrast to maximum entropy. It is also worth noting that small support distributions
arise naturally through the joint behavior of no-regret algorithms in game-theoretic settings [1].

We also consider two standard algorithmic inference problems on full joint distributions (models):
1For a simple example, consider three random variables for which each pairwise marginal specifies that the

settings (0,1) and (1,0) each occurs with probability 1/2. The corresponding “data graph” is a triangle. This
requires that each variable always disagrees with the other two, which is impossible.

2 For example, consider random variables X,Y, Z. Suppose the pairwise marginals for X and Y and for Y
and Z specify that all four binary settings are equally likely. No pairwise marginals for X and Z are given, so
the data graph is a two-hop path. One consistent distribution flips a fair coin independently for each variable;
but another flips one coin for X , a second for Y , and sets Z = X . The former maximizes entropy while the
latter minimizes support size.
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• MAP INFERENCE: What is the MAP joint assignment in a given Markov network?

• GENERALIZED PARTITION: What is the normalizing constant of a given Markov network,
possibly after conditioning on the value of one vertex or edge?

All six of these problems are parameterized by a class of graphs G — for the four marginals prob-
lems, this is the graph induced by the given pairwise marginals, while for the models problems, it is
the graph of the given Markov network. All of our reductions are of the form “for every class G, if
there is a polynomial-time algorithm for solving inference problem B for (model) graphs in G, then
there is a polynomial-time algorithm for marginals problem A for (marginal) graphs in G” — that
is, A reduces to B. Our main results, which are summarized in Figure 1, can be stated informally as
follows:

• CONSISTENCY reduces to MAP INFERENCE.

• CLOSEST CONSISTENCY reduces to MAP INFERENCE.

• SMALL SUPPORT reduces to MAP INFERENCE.

• MAX ENTROPY reduces to GENERALIZED PARTITION.3

While connections between some of these problems are known for specific classes of graphs —
most notably in trees, where all of these problems are tractable and rely on common underlying al-
gorithmic approaches such as dynamic programming — the novelty of our results is their generality,
showing that the above reductions hold for every class of graphs.

All of our reductions share a common and powerful technique: the use of the ellipsoid method
for Linear Programming (LP), with the key step being the articulation of an appropriate separation
oracle. The first three problems we consider have a straightforward LP formulation which will
typically have a number of variables that is equal to the number of joint settings, and therefore
exponential in the number of variables; for the MAX ENTROPY problem, there is an analogous
convex program formulation. Since our goal is to run in time polynomial in the input length (the
number and size of given marginals), the straightforward LP formulation will not suffice. However,
by passing to the dual LP, we instead obtain an LP with only a polynomial number of variables, but
an exponential number of constraints that can be represented implicitly. For each of the reductions
above, we show that the required separation oracle for these implicit constraints is provided exactly
by the corresponding inference problem (MAP INFERENCE or GENERALIZED PARTITION). We
believe this technique may be of independent interest and have other applications in probabilistic
inference.

It is perhaps surprising that in the study of problems strictly addressing properties of given marginals
(which have received relatively little attention in the graphical models literature historically), prob-
lems of inference in full joint models (which have received great attention) should arise so naturally
and generally. For the marginal problems, our reductions (via the ellipsoid method) effectively
create a series of “fictitious” Markov networks such that the solutions to corresponding inference
problems (MAP INFERENCE and GENERALIZED PARTITION) indirectly lead to a solution to the
original marginal problems.

Related Work: The literature on graphical models and probabilistic inference is rife with connec-
tions between some of the problems we study here for specific classes of graphical models (such as
trees or otherwise sparse structures), and under specific algorithmic approaches (such as dynamic
programming or message-passing algorithms more generally, and various forms of variational infer-
ence); see [2, 3, 4] for good overviews. In contrast, here we develop general and efficient reductions
between marginal and inference problems that hold regardless of the graph structure or algorithmic
approach; we are not aware of prior efforts in this vein. Some of the problems we consider are also
either new or have been studied very little, such as CLOSEST CONSISTENCY and SMALL SUPPORT.

The CONSISTENCY problem has been studied before as the membership problem for the marginal
polytope. In particular, [8] shows that finding the MAP assignment for Markov random fields with
pairwise potentials can be cast as an integer linear program over the marginal polytope — that is,
algorithms for the CONSISTENCY problem are useful subroutines for inference. Our work is the

3The conceptual ideas in this reduction are well known. We include a formal treatment in the Appendix for
completeness and to provide an analogy with our other reductions, which are our more novel contributions.
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first to show a converse, that inference algorithms are useful subroutines for decision and optimiza-
tion problems for the marginal polytope. Furthermore, previous polynomial-time solutions to the
CONSISTENCY problem generally give a compact (polynomial-size) description of the marginal
polytope. Our approach dodges this ambitious requirement, in that it only needs a polynomial-time
separation oracle (which, for this problem, turns out to be MAP inference). As there are many
combinatorial optimization problems with no compact LP formulation that admit polynomial-time
ellipsoid-based algorithms — like non-bipartite matching, with its exponentially many odd cycle
inequalities — our approach provides a new way of identifying computationally tractable special
cases of problems concerning marginals.

The previous work that is perhaps most closely related in spirit to our interests are [5] and [6, 7].
These works provide reductions of some form, but not ones that are both general (independent of
graph structure) and polynomial time. However, they do suggest both the possibility and interest in
such stronger reductions. The paper [5] discusses and provides heuristic reductions between MAP
INFERENCE and GENERALIZED PARTITION.

The work in [6, 7] makes the point that maximizing entropy subject to an (approximate) consistency
condition yields a distribution that can be represented as a Markov network over the graph induced
by the original data or marginals. As far as we are aware, however, there has been essentially no for-
mal complexity analysis (i.e., worst-case polynomial-time guarantees) for algorithms that compute
max-entropy distributions.4

2 Preliminaries

2.1 Problem Definitions

For clarity of exposition, we focus on the pairwise case in which every marginal involves at most
two variables.5 Denote the underlying random variables by X1, . . . , Xn, which we assume have
range [k] = {0, 1, 2, . . . , k}. The input is at most one real-valued single marginal value µis for
every variable i ∈ [n] and value s ∈ [k], and at most one real-valued pairwise marginal value µijst
for every ordered variable pair i, j ∈ [n]×[n] with i < j and every pair s, t ∈ [k]. Note that we allow
a marginal to be only partially specified. The data graph induced by a set of marginals has one vertex
per random variableXi, and an undirected edge (i, j) if and only if at least one of the given pairwise
marginal values involves the variables Xi and Xj . Let M1 and M2 denote the sets of indices (i, s)
and (i, j, s, t) of the given single and pairwise marginal values, and m = |M1| + |M2| the total
number of marginal values. Let A = [k]n denote the space of all possible variable assignments.
We say that the given marginals µ are consistent if there exists a (joint) probability distribution
consistent with all of them (i.e., that induces the marginals µ).

With these basic definitions, we can now give formal definitions for the marginals problems we
consider. Let G denote an arbitrary class of undirected graphs.

• CONSISTENCY (G): Given marginals µ such that the induced data graph falls in G, are they
consistent?

• CLOSEST CONSISTENCY (G): Given (possibly inconsistent) marginals µ such that the
induced data graph falls in G, compute the consistent marginals ν minimizing ||ν − µ||1.

• SMALL SUPPORT (G): Given (consistent or inconsistent) marginals µ such that the in-
duced data graph falls in G, compute a distribution that has a polynomial-size support and
marginals ν that minimize ||ν − µ||1.

• MAX ENTROPY (G): Given (consistent or inconsistent) marginals µ such that the induced
data graph falls in G, compute the maximum entropy distribution that has marginals ν that
minimize ||ν − µ||1.

4There are two challenges to doing this. The first, which has been addressed in previous work, is to circum-
vent the exponential number of decision variables via a separation oracle. The second, which does not seem to
have been previously addressed, is to bound the diameter of the search space (i.e., the magnitude of the optimal
Lagrange variables). Proving this requires using special properties of the MAX ENTROPY problem, beyond
mere convexity. We adapt recent techniques of [13] to provide the necessary argument.

5All of our results generalize to the case of higher-order marginals in a straightforward manner.
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It is important to emphasize that all of the problems above are “model-free”, in that we do not
assume that the marginals are consistent with, or generated by, any particular model (such as a
Markov network). They are simply given marginals, or “data”.

For each of these problems, our interest is in algorithms whose running time is polynomial in the
size of the input µ. The prospects for this depend strongly on the class G, with tractability generally
following for “nice” classes such as tree or tree-like graphs, and intractability for the most general
cases. Our contribution is in showing a strong connection between tractability for these marginals
problems and the following inference problems for any class G.

• MAP INFERENCE (G): Given a Markov network whose graph falls in G, find the maximum
a posteriori (MAP) or most probable joint assignment.6

• GENERALIZED PARTITION: Given a Markov network whose graph falls in G, compute
the partition function or normalization constant for the full joint distribution, possibly after
conditioning on the value of a single vertex or edge.7

2.2 The Ellipsoid Method for Linear Programming

Our algorithms for the CONSISTENCY, CLOSEST CONSISTENCY, and SMALL SUPPORT problems
use linear programming. There are a number of algorithms that solve explictly described linear
programs in time polynomial in the description size. Our problems, however, pose an additional
challenge: the obvious linear programming formulation has size exponential in the parameters of
interest. To address this challenge, we turn to the ellipsoid method [9], which can solve in poly-
nomial time linear programs that have an exponential number of implicitly described constraints,
provided there is a polynomial-time “separation oracle” for these constraints. The ellipsoid method
is discussed exhaustively in [10, 11]; we record in this section the facts necessary for our results.

Definition 2.1 (Separation Oracle) Let P = {x ∈ Rn : aT1 x ≤ b1, . . . ,a
T
mx ≤ bm} denote the

feasible region of m linear constraints in n dimensions. A separation oracle for P is an algorithm
that takes as input a vector x ∈ Rn, and either (i) verifies that x ∈ P; or (ii) returns a constraint i
such that atix > bi. A polynomial-time separation oracle runs in time polynomial in n, the maximum
description length of a single constraint, and the description length of the input x.

One obvious separation oracle is to simply check, given a candidate solution x, each of the m
constraints in turn. More interesting and relevant are constraint sets that have size exponential in the
dimension n but admit a polynomial-time separation oracle.

Theorem 2.2 (Convergence Guarantee of the Ellipsoid Method [9]) Suppose the set P = {x ∈
Rn : aT1 x ≤ b1, . . . ,a

T
mx ≤ bm} admits a polynomial-time separation oracle and cTx is a linear

objective function. Then, the ellipsoid method solves the optimization problem {max cTx : x ∈ P}
in time polynomial in n and the maximum description length of a single constraint or objective
function. The method correctly detects if P = ∅. Moreover, if P is non-empty and bounded, the
ellipsoid method returns a vertex of P .8

Theorem 2.2 provides a general reduction from a problem to an intuitively easier one: if the problem
of verifying membership in P can be solved in polynomial time, then the problem of optimizing an
arbitrary linear function over P can also be solved in polynomial time. This reduction is “many-to-
one,” meaning that the ellipsoid method invokes the separation oracle for P a large (but polynomial)
number of times, each with a different candidate point x. See Appendix A.1 for a high-level de-
scription of the ellipsoid method and [10, 11] for a detailed treatment.

The ellipsoid method also applies to convex programming problems under some additional techni-
cal conditions. This is discussed in Appendix A.2 and applied to the MAX ENTROPY problem in
Appendix A.3.

6Formally, the input is a graph G = (V,E) with a log-potential log φi(s) and log φij(s, t) for each vertex
i ∈ V and edge (i, j) ∈ E, and each value s ∈ [k] = {0, 1, 2 . . . , k} and pair s, t ∈ [k] × [k] of values. The
MAP assignment maximizes P (a) :=

∏
i∈V φi(ai)

∏
(i,j)∈E φij(ai, aj) over all assignments a ∈ [k]V .

7Formally, given the log-potentials of a Markov network, compute
∑

a∈[k]n P (a);
∑

a : ai=s P (a) for a
given i, s; or

∑
a : ai=s,aj=t P (a) for a given i, j, s, t.

8A vertex is a point of P that satisfies with equality n linearly independent constraints.
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3 CONSISTENCY Reduces to MAP INFERENCE

The goal of this section is to reduce the CONSISTENCY problem for data graphs in the family G to
the MAP INFERENCE problem for networks in G.

Theorem 3.1 (Main Result 1) Let G be a set of graphs. If the the MAP INFERENCE (G) problem
can be solved in polynomial time, then the CONSISTENCY (G) problem can be solved in polynomial
time.

We begin with a straightforward linear programming formulation of the CONSISTENCY problem.

Lemma 3.2 (Linear Programming Formulation) An instance of the CONSISTENCY problem ad-
mits a consistent distribution if and only if the following linear program (P) has a solution:

(P ) max
p

0

subject to: ∑
a∈A:ai=s

pa = µis for all (i, s) ∈M1∑
a∈A:ai=s,aj=t

pa = µijst for all (i, j, s, t) ∈M2∑
a∈A pa = 1

pa ≥ 0 for all a ∈ A.

Solving (P) using the ellipsoid method (Theorem 2.2), or any other linear programming method,
requires time at least |A| = (k+1)n, the number of decision variables. This is generally exponential
in the size of the input, which is proportional to the number m of given marginal values.

A ray of hope is provided by the fact that the number of constraints of the linear program in
Lemma 3.2 is equal to the number of marginal values. With an eye toward applying the ellipsoid
method (Theorem 2.2), we consider the dual linear program. We use the following notation. Given
a vector y indexed by M1 ∪M2, we define

y(a) =
∑

(i,s)∈M1 : ai=s

yis +
∑

(i,j,s,t)∈M2 : ai=s,aj=t

yijst (1)

for each assignment a ∈ A, and

µTy =
∑

(i,s)∈M1

µisyis +
∑

(i,j,s,t)∈M2

µijstyijst. (2)

Strong linear programming duality implies the following.

Lemma 3.3 (Dual Linear Programming Formulation) An instance of the CONSISTENCY prob-
lem admits a consistent distribution if and only if the optimal value of the following linear pro-
gram (D) is 0:

(D) max
y,z

µTy + z

subject to:
y(a) + z ≤ 0 for all a ∈ A

y, z unrestricted.

The number of variables in (D) — one per constraint of the primal linear program — is polynomial
in the size of the CONSISTENCY input.

What use is the MAP INFERENCE problem for solving the CONSISTENCY problem? The next
lemma forges the connection.

Lemma 3.4 (Map Inference as a Separation Oracle) Let G be a set of graphs and suppose that
the MAP INFERENCE (G) problem can be solved in polynomial time. Consider an instance of the
CONSISTENCY problem with a data graph in G, and a candidate solution y, z to the corresponding
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dual linear program (D). Then, there is a polynomial-time algorithm that checks whether or not
there is an assignment a ∈ A that satisfies∑

(i,s)∈M1 : ai=s

yis +
∑

(i,j,s,t)∈M2 : ai=s,aj=t

yijst > −z, (3)

and produces such an assignment if one exists.

Proof: The key idea is to interpret y as the log-potentials of a Markov network. Precisely, construct a
Markov network N as follows. The vertex set V and edge set E correspond to the random variables
and edge set of the data graph of the CONSISTENCY instance. The potential function at a vertex i
is defined as φi(s) = exp{yis} for each value s ∈ [k]. The potential function at an edge (i, j)
is defined as φij(s, t) = exp{yijst} for (s, t) ∈ [k] × [k]. For a missing pair (i, s) /∈ M1 or 4-
tuple (i, j, s, t) /∈ M2, we define the corresponding potential value φi(s) or φij(st) to be 1. The
underlying graph of N is the same as the data graph of the given CONSISTENCY instance and hence
is a member of G.

In the distribution induced by N , the probability of an assignment a ∈ [k]n is, by definition, propor-
tional to ∏

i∈V : (i,ai)∈M1

exp{yiai}

 ∏
(i,j)∈E : (i,j,ai,aj)∈M2

exp{yijaiaj}

 = exp{y(a)}.

That is, the MAP assignment for the Markov network N is the assignment that maximizes the left-
hand size of (3).

Checking if some assignment a ∈ A satisfies (3) can thus be implemented as follows: compute the
MAP assignment a∗ for N — by assumption, and since the graph of N lies in G, this can be done
in polynomial time; return a∗ if it satisfies (3), and otherwise conclude that no assignment a ∈ A
satisfies (3). �

All of the ingredients for the proof of Theorem 3.1 are now in place.

Proof of Theorem 3.1: Assume that there is a polynomial-time algorithm for the MAP INFERENCE
(G) problem with the family G of graphs, and consider an instance of the CONSISTENCY problem
with data graph G ∈ G. Deciding whether or not this instance has a consistent distribution is equiv-
alent to solving the program (D) in Lemma 3.3. By Theorem 2.2, the ellipsoid method can be used
to solve (D) in polynomial time, provided the constraint set admits a polynomial-time separation
oracle. Lemma 3.4 shows that the relevant separation oracle is equivalent to computing the MAP
assignment of a Markov network with graph G ∈ G. By assumption, the latter problem can be
solved in polynomial time. �

We defined the CONSISTENCY problem as a decision problem, where the answer is “yes” or no.”
For instances that admit a consistent distribution, we can also ask for a succinct representation of a
distribution that witnesses the marginals’ consistency. We next strengthen Theorem 3.1 by showing
that for consistent instances, under the same hypothesis, we can compute a small-support consistent
distribution in polynomial time. See Figure 2 for the high-level description of the algorithm.

Theorem 3.5 (Small-Support Witnesses) Let G be a set of graphs. If the MAP INFERENCE (G)
problem can be solved in polynomial time, then for every consistent instance of the CONSISTENCY
(G) problem with m = |M1| + |M2| marginal values, a consistent distribution with support size at
most m+ 1 can be computed in polynomial time.

Proof: Consider a consistent instance of CONSISTENCY with data graph G ∈ G. The algorithm
of Theorem 3.1 concludes by solving the dual linear program of Lemma 3.3 using the ellipsoid
method. This method runs for a polynomial number K of iterations, and each iteration generates
one new inequality. At termination, the algorithm has identified a “reduced dual linear program”, in
which a set of only K out of the original (k+1)n constraints is sufficient to prove the optimality of
its solution. By strong duality, the corresponding “reduced primal linear program,” obtained from
the linear program in Lemma 3.2 by retaining only the decision variables corresponding to the K
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1. Solve the dual linear program (D) (Lemma 3.3) using the ellipsoid method (Theorem 2.2),
using the given polynomial-time algorithm for MAP INFERENCE (G) to implement the
ellipsoid separation oracle (see Lemma 3.4).

2. If the dual (D) has a nonzero (and hence, unbounded) optimal objective function value,
then report “no consistent distributions” and halt.

3. Explicitly form the reduced primal linear program (P-red), obtained from (P) by retaining
only the variables that correspond to the dual inequalities generated by the separation oracle
in Step 1.

4. Solve (P-red) using a polynomial-time linear programming algorithm that returns a vertex
solution, and return the result.

Figure 2: High-level description of the polynomial-time reduction from CONSISTENCY (G) to MAP INFER-
ENCE (G) (Steps 1 and 2) and postprocessing to extract a small-support distribution that witnesses consistent
marginals (Steps 3 and 4).

reduced dual constraints, has optimal objective function value 0. In particular, this reduced primal
linear program is feasible.

The reduced primal linear program has a polynomial number of variables and constraints, so it can be
solved by the ellipsoid method (or any other polynomial-time method) to obtain a feasible point p.
The point p is an explicit description of a consistent distribution with support size at most K. To
improve the support size upper bound from K to m+ 1, recall from Theorem 2.2 that p is a vertex
of the feasible region, meaning it satisfies K linearly independent constraints of the reduced primal
linear program with equality. This linear program has at most one constraint for each of the m given
marginal values, at most one normalization constraint

∑
a∈A pa = 1, and non-negativity constraints.

Thus, at leastK−m−1 of the constraints that p satisfies with equality are non-negativity constraints.
Equivalently, it has at most m+ 1 strictly positive entries. �

4 CLOSEST CONSISTENCY, SMALL SUPPORT Reduce to MAP INFERENCE

This section considers the CLOSEST CONSISTENCY and SMALL SUPPORT problems. The input
to these problems is the same as in the CONSISTENCY problem — single marginal values µis for
(i, s) ∈ M1 and pairwise marginal values µijst for (i, j, s, t) ∈ M2. The goal is to compute sets
of marginals {νis}M1

and {νijst}M2
that are consistent and, subject to this constraint, minimize the

`1 norm ||µ − ν||1 with respect to the given marginals. An algorithm for the CLOSEST CONSIS-
TENCY problem solves the CONSISTENCY problem as a special case, since a given set of marginals
is consistent if and only if the corresponding CLOSEST CONSISTENCY problem has optimal objec-
tive function value 0. Despite this greater generality, the CLOSEST CONSISTENCY problem also
reduces in polynomial time to the MAP INFERENCE problem, as does the still more general SMALL
SUPPORT problem.

Theorem 4.1 (Main Result 2) Let G be a set of graphs. If the MAP INFERENCE (G) problem
can be solved in polynomial time, then the CLOSEST CONSISTENCY (G) problem can be solved in
polynomial time. Moreover, a distribution consistent with the optimal marginals with support size
at most 3m+ 1 can be computed in polynomial time, where m = |M1|+ |M2| denotes the number
of marginal values.

The formulation of the CLOSEST CONSISTENCY (G) problem has linear constraints — the same
as those in Lemma 3.2, except with the given marginals µ replaced by the computed consistent
marginals ν — but a nonlinear objective function ||µ − ν||1. We can simulate the absolute value
functions in the objective by adding a small number of variables and constraints. We provide details
and the proof of Theorem 4.1 in Appendix A.4.
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A Appendix: Supplementary Material

A.1 High-Level Description of the Ellipsoid Method

Very roughly, the method works as follows. First, the optimization problem is reduced to a feasibility
problem by adding the constraint cTx ≥ Z to P and binary searching on Z in an outer loop. For the
feasibility problem, the method maintains an ellipsoid E that is an outer bound (i.e., superset of) P .
At every iteration i, the method uses the separation oracle to check if the centroid of the current
ellipsoid Ei is feasible. If so, the method stops. If not, the separation oracle furnishes a violated
constraint; intersecting this with Ei yields a “ partial ellipsoid” E′i that excludes the centroid of Ei.
The next ellipsoid Ei+1 is taken to be the minimum-volume one that encloses E′i. A technical
argument shows that the volume of Ei+1 is significantly less than that of Ei, and this leads to the
convergence bound. See [10, 11] for details.

A.2 The Ellipsoid Method for Convex Programming

As is well known, the MAX ENTROPY problem is a convex optimization problem. The ellipsoid
method can be adapted to such problems under mild technical conditions. The following guarantee,
which can be derived from more general results (e.g. [10, 11]), is sufficient for our purposes. It
states that, provided the relevant magnitudes of feasible solutions and objective function values are
at most exponential, then given polynomial-time oracles for evaluating the objective function of a
convex program and its gradient, the ellipsoid method can solve the program in time polynomial in
the input size and the desired precision.

Theorem A.1 (The Ellipsoid Method for Convex Programs) Consider an unconstrained mini-
mization problem of the form {infy f(y) : y ∈ Rn} and suppose that:

1. For an a priori known bound R, there is an optimal solution y∗ with ||y||∞ ≤ R.

2. For every pair y1,y2 with ||y1||∞, ||y2||∞ ≤ R, |f(y1)− f(y2)| ≤ K.

3. For every point y, the objective function value f(y) and its gradient ∇f(y) can be evalu-
ated in time polynomial in n and description length of y.

Then, given ε > 0, the ellipsoid method computes a point ỹ such that f(ỹ) < f(y∗) + ε in time
polynomial in n, logR, logK, and log 1

ε .

A.3 MAX ENTROPY Reduces to GENERALIZED PARTITION

This section describes a reduction from the MAX ENTROPY (G) problem to the GENERALIZED
PARTITION (G) problem that is based on the ellipsoid method for convex programming (Theo-
rem A.1). Before explaining the precise technical conditions that enable this reduction, we first
ignore computational complexity issues and review some well-known theory about the MAX EN-
TROPY (G) problem (see e.g. [12, 3] for more details).

The standard convex programming formulation of the MAX ENTROPY problem, subject to
marginals {µ}, is simply the linear program (P) of Lemma 3.2, augmented with the entropy ob-
jective function:

(P −ME) sup
p

∑
a∈A pa ln

1
pa

subject to: ∑
a∈A:ai=s

pa = µis for all (i, s) ∈M1∑
a∈A:ai=s,aj=t

pa = µijst for all (i, j, s, t) ∈M2∑
a∈A pa = 1

pa ≥ 0 for all a ∈ A.
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Using the notation in (1) and (2), we can write the dual program to (P-ME) as:

(D −ME) inf
y

µTy + ln
∑
a∈A exp{−y(a)}

subject to:
y unrestricted.

Assuming there is a feasible solution to (P-ME) with full support (i.e., pa > 0 for all a ∈ A, a form of
the Slater condition), strong duality holds and both convex programs have identical optimal objective
function values. Moreover, in this case the maximum entropy distribution can be exactly represented
as a Markov networkN with underlying graph equal to the data graphG of the marginals µ, with the
negative of the log-potentials ofN corresponding to the optimal dual solution, similar to the mapping
in the proof of Lemma 3.4. (Missing marginals from µ are defined to have zero log-potential.)

Under what conditions can we implement this approach with an algorithm with running time poly-
nomial in the size of the MAX ENTROPY input? To see why convexity is not obviously enough,
observe that the number of decision variables in the programs (P-ME) and (D-ME) is proportional
to the number (k + 1)n of variable assignments, with is typically exponential in the input size. We
can, however, apply the ellipsoid method (Theorem A.1) to the dual program (D-ME) provided con-
ditions 1.-3. are met by the problem. The next lemma connects the third condition in Theorem A.1
to the GENERALIZED PARTITION problem.

Lemma A.2 (Generalized Partition as a Gradient Oracle) Let G be a set of graphs and suppose
that the GENERALIZED PARTITION (G) problem can be solved in polynomial time. Consider an
instance of the MAX ENTROPY problem with a data graph G ∈ G, with corresponding dual convex
program (D-ME). Then, there are algorithms for evaluating the objective function f of (D-ME) and
its gradient ∇f that run in time polynomial in the size of the MAX ENTROPY instance and the
magnitude of the evaluation point y.

Proof (sketch): Consider an evaluation point y. Let N denote the Markov network for which y is
the negative of the log-potentials, as above. The graph of N is identical to the data graph G of the
given MAX ENTROPY instance. The term

∑
a exp{−y(a)} in the objective function of (D-ME) is

precisely the Partition function of N . Given this quantity, which by assumption can be computed in
polynomial time, the rest of the objective function is straightforward to compute.

Second, a simple computation shows that the gradient component ∇fis(y) at y corresponding
to (i, s) ∈M1 is

µis −
∑
a : ai=s

y(a)∑
a∈A y(a)

,

and similarly for components of the form µijst. There are a polyomial number of components, and
each is straightforward to compute given the assumed polynomial-time algorithm for the GENER-
ALIZED PARTITION problem. �

Singh and Vishnoi [13] studied entropy maximization over combinatorial structures subject to single
marginals, and in their context identified an additional condition, essentially a quantitative strength-
ening of the Slater condition, that implies the first two conditions of Theorem A.1 for the dual pro-
gram (D-ME). To adapt it to our settings, consider a set µ of marginal values defined on M1 ∪M2.
Let P(M1,M2) denote the set of all marginal vectors ν induced by probability distributions over A.
For example, a set of marginals µ is consistent if and only if µ ∈ P(M1,M2). More strongly, we
say that µ is η-strictly feasible if the intersection of the ball with center µ and radius η with the
set P(M1,M2) is contained in the relative interior of P(M1,M2). Our results below are interesting
when η is at least some inverse polynomial function of the input size.

Following the proof in [13, Theorem 2.7] shows that, in every η-strictly feasible instance of MAX
ENTROPY, there is an optimal dual solution y∗ to (D-ME) with ||y||∞ ≤ m

η , where m = |M1| +
|M2| is the number of marginal values. We can therefore take the constant R in Theorem A.1
to be m

η . Plugging this bound into the objective function of (D-ME) shows that we can take the
constantK in Theorem A.1 to be exponential in m

η . Applying Theorem A.1 then gives the following
reduction from the MAX ENTROPY problem to the GENERALIZED PARTITION problem.
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Theorem A.3 (Main Result 3) Let G be a set of graphs. If the GENERALIZED PARTITION (G)
problem can be solved in polynomial time, then every η-strictly feasible instance of the MAX EN-
TROPY (G) problem can be solved up to error ε in time polynomial in the input size, 1

η , and log 1
ε .

A.4 Proof of Theorem 4.1:
CLOSEST CONSISTENCY and SMALL SUPPORT Reduce to MAP INFERENCE

Lemma A.4 (LP Formulation for CLOSEST CONSISTENCY) The consistent marginals {ν} that
minimize the `1 distance ||ν − µ||1 to the given marginals {µ} correspond to optimal solutions
to the following linear program:

(P − close) min
p,ν,σ

∑
(i,s)∈M1

σis +
∑

(i,j,s,t)∈M2
σijst

subject to:
σi,s ≥ νis − µis for all (i, s) ∈M1

σi,s ≥ µis − νis for all (i, s) ∈M1

σi,j,s,t ≥ νijst − µijst for all (i, j, s, t) ∈M2

σi,j,s,t ≥ µijst − νijst for all (i, j, s, t) ∈M2∑
a∈A:ai=s

pa = νis for all (i, s) ∈M1∑
a∈A:ai=s,aj=t

pa = νijst for all (i, j, s, t) ∈M2∑
a∈A pa = 1

pa ≥ 0 for all a ∈ A.

Proof: The constraints enforce the inequality σi,s ≥ |νi,s − µi,s| for all (i, s) ∈ M1, and similarly
for the pariwise constraints and M2, at every feasible solution. The minimization objective ensures
that equality holds for every such constraint at every optimal solution. Thus, optimal solutions to this
linear program are in correpondence with those of the more straightforward nonlinear formulation.
�

We next need to pass to the linear programming dual to (P-close) to enable application of the ellip-
soid method. The negative of this dual is, after some simplifications, as follows.

(D − close) max
y,z

µTy + z

subject to:
y(a) + z ≤ 0 for all a ∈ A
−1 ≤ yis ≤ 1 for all (i, s) ∈M1

−1 ≤ yijst ≤ 1 for all (i, j, s, t) ∈M2

z unrestricted.

Our proof of Theorem 4.1 now follows the same outline as that of Theorem 3.1.

Proof of Theorem 4.1: Assume that there is a polynomial-time algorithm for the MAP INFERENCE
(G) problem with the family G of graphs, and consider an instance of the CLOSEST CONSISTENCY
problem with data graph in G ∈ G. The ellipsoid method can be used to solve the dual linear pro-
gram (D-close) in polynomial time, provided the constraint set admits a polynomial-time separation
oracle. Given a candidate dual solution y, z, the polynomially many constraints that enforce |y| ≤ 1
can be checked explicitly, and the rest can be checked by computing the MAP assignment of a
Markov network with graph G, as in Lemma 3.4. By assumption, this MAP inference problem can
be solved in polynomial time.

To recover an optimal solution for the CLOSEST CONSISTENCY instance, and to solve the SMALL
SUPPORT problem, we proceed as in the proof of Theorem 3.5. We form a reduced version of (P-
close), with variables corresponding to the (polynomially many) inequalities of (D-close) that were
generated by the ellipsoid method. This reduced linear program has the same optimal objective
function value as (P-close) and has polynomial size. The algorithm concludes by returning an op-
timal solution of this reduced linear program. Since this linear program has at most 3m + 1 con-
straints other than the non-negativity constraints, every optimal vertex solution has support size at
most 3m+ 1. �
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