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Abstract. We investigate the problem ofmodel selectionin the setting of supervised learning of boolean functions
from independent random examples. More precisely, we compare methods for finding a balance between the
complexity of the hypothesis chosen and its observed error on a random training sample of limited size, when the
goal is that of minimizing the resulting generalization error. We undertake a detailed comparison of three well-
known model selection methods — a variation of Vapnik’sGuaranteed Risk Minimization(GRM), an instance of
Rissanen’sMinimum Description Length Principle(MDL), and (hold-out) cross validation (CV). We introduce a
general class of model selection methods (calledpenalty-basedmethods) that includes both GRM and MDL, and
provide general methods for analyzing such rules. We provide both controlled experimental evidence and formal
theorems to support the following conclusions:

• Even on simple model selection problems, the behavior of the methods examined can be both complex and
incomparable. Furthermore, no amount of “tuning” of the rules investigated (such as introducing constant
multipliers on the complexity penalty terms, or a distribution-specific “effective dimension”) can eliminate
this incomparability.

• It is possible to give rather general bounds on the generalization error, as a function of sample size, for penalty-
based methods. The quality of such bounds depends in a precise way on the extent to which the method
considered automatically limits the complexity of the hypothesis selected.

• For anymodel selection problem, the additional error of cross validation compared toanyother method can
be bounded above by the sum of two terms. The first term is large only if the learning curve of the underlying
function classes experiences a “phase transition” between(1−γ)m andm examples (whereγ is the fraction
saved for testing in CV). The second and competing term can be made arbitrarily small by increasingγ.

• The class of penalty-based methods is fundamentally handicapped in the sense that there exist two types of
model selection problems for which every penalty-based method must incur large generalization error on at
least one, while CV enjoys small generalization error on both.

Keywords: model selection, complexity regularization, cross validation, minimum description length principle,
structural risk minimization, vc dimension
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1. Introduction

In the model selection problem (sometimes also known as complexity regularization), we
must balance the complexity of a statistical model with its goodness of fit to the training data.
This problem arises repeatedly in statistical estimation, machine learning, and scientific
inquiry in general. Instances of the model selection problem include choosing the best
number of hidden nodes in a neural network, determining the right amount of pruning to
be performed on a decision tree, and choosing the degree of a polynomial fit to a set of
points. In each of these cases, the goal is not to minimize the error on the training data, but
to minimize the resulting generalization error.

The model selection problem is coarsely prefigured by Occam’s Razor: given two hy-
potheses that fit the data equally well, prefer the simpler one. Unfortunately, Occam’s Razor
does not explicitly address the more complex, more interesting and more common problem
in which we have a simple model with poor fit to the data, and a complex model with good
fit to the data. Such a problem arises when the data is corrupted by noise, or when the
size of the data set is small relative to the complexity of the process generating the data.
Here we require not a qualitative statement of a preference for simplicity, but aquantitative
prescription— a formula or algorithm — specifying the relative merit of simplicity and
goodness of fit.

Many model selection algorithms have been proposed in the literature of several different
research communities, too many to productively survey here. Various types of analysis
have been used to judge the performance of particular algorithms, including asymptotic
consistency in the statistical sense (Vapnik, 1982; Stone, 1977), asymptotic optimality
under coding-theoretic measures (Rissanen, 1989), and more seldom, rates of convergence
for the generalization error (Barron & Cover, 1991). Perhaps surprisingly, despite the
many proposed solutions for model selection and the diverse methods of analysis, direct
comparisons between the different proposals (either experimental or theoretical) are rare.

The goal of this paper is to provide such a comparison, and more importantly, to describe
the general conclusions to which it has led. Relying on evidence that is divided between
controlled experimental results and related formal analysis, we compare three well-known
model selection algorithms. We attempt to identify their relative and absolute strengths
and weaknesses, and we provide some general methods for analyzing the behavior and
performance of model selection algorithms. Our hope is that these results may aid the
informed practitioner in making an educated choice of model selection algorithm (perhaps
based in part on some known properties of the model selection problem being confronted).

Outline of the Paper

In Section 2, we provide a formalization of the model selection problem. In this formal-
ization, we isolate the problem of choosing the appropriatecomplexityfor a hypothesis or
model. We also introduce the specific model selection problem that will be the basis for our
experimental results, and describe an initial experiment demonstrating that the problem is
nontrivial. In Section 3, we introduce the three model selection algorithms we examine in
the experiments: Vapnik’s Guaranteed Risk Minimization (GRM) (Vapnik, 1982), an in-
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stantiation of Rissanen’s Minimum Description Length Principle (MDL) (Rissanen, 1989),
and Cross Validation (CV).

Section 4 describes our controlled experimental comparison of the three algorithms. Using
artificially generated data from a known target function allows us to plot complete learning
curves for the three algorithms over a wide range of sample sizes, and to directly compare
the resulting generalization error to the hypothesis complexity selected by each algorithm.
It also allows us to investigate the effects of varying other natural parameters of the problem,
such as the amount of noise in the data. These experiments support the following assertions:
the behavior of the algorithms examined can be complex and incomparable, even on simple
problems, and there are fundamental difficulties in identifying a “best” algorithm; there is
a strong connection between hypothesis complexity and generalization error; and it may be
impossible to uniformly improve the performance of the algorithms by slight modifications
(such as introducing constant multipliers on the complexity penalty terms).

In Sections 5, 6 and 7 we turn our efforts to formal results providing explanation and
support for the experimental findings. We begin in Section 5 by upper bounding the error of
any model selection algorithm falling into a wide class (calledpenalty-basedalgorithms)
that includes both GRM and MDL (but not cross validation). The form of this bound
highlights the competing desires for powerful hypotheses and controlled complexity. In
Section 6, we upper bound the additional error suffered by cross validation compared to
any other model selection algorithm. This quality of this bound depends on the extent to
which the function classes have learning curves obeying a classical power law. Finally, in
Section 7, we give an impossibility result demonstrating a fundamental handicap suffered
by the entire class of penalty-based algorithms that does not afflict cross validation. In
Section 8, we give a summary and offer some conclusions.

2. Definitions

Throughout the paper we assume that a fixed booleantarget functionf is used to label
inputs drawn randomly according to a fixed distributionD. For any boolean functionh, we
define thegeneralization error1

ε(h) = εf,D(h) def= Prx∈D[h(x) 6= f(x)] (1)

We useS to denote the random variableS = 〈x1, b1〉, . . . , 〈xm, bm〉, wherem is thesample
size, eachxi is drawn randomly and independently according toD, andbi = f(xi) ⊕ ci,
where the noise bitci ∈ {0, 1} is 1 with probabilityη; we callη ∈ [0, 1/2) thenoise rate.
In the case thatη 6= 0, we will sometimes wish to discuss the generalization error ofh with
respect to the noisy examples, so we define

εη(h) def= Prx∈D,c[h(x) 6= f(x)⊕ c], (2)

wherec is the noise bit. Note thatε(h) andεη(h) are related by the equality

εη(h) = (1− η)ε(h) + η(1− ε(h))
= (1− 2η)ε(h) + η. (3)
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Thus,εη(h) is simply a “damped” version ofε(h), and both quantities are minimized by the
sameh. For this reason, we use the termgeneralization errorinformally to refer to either
quantity, making the distinction only when it is important.

We assume a nested sequence ofhypothesis classes(or models)2 F1 ⊆ · · · ⊆ Fd ⊆ · · ·.
The target functionf may or may not be contained in any of these classes, so we define

hd
def= argminh∈Fd{ε(h)} and εopt(d) def= ε(hd) (4)

(similarly, εηopt(d) def= εη(hd)), where we assume for simplicity that there exists a minimum
value ofε(h) achievable by a function in the classFd. If this were not the case we could
slightly alter the definition ofε(h) so that it have some bounded precision. The function
hd is the best approximation tof (with respect toD) in the classFd, andεopt(d) measures
the quality of this approximation. Note thatεopt(d) is a non-increasing function ofd since
the hypothesis function classes are nested. Thus, larger values ofd can only improve the
potentialapproximative power of the hypothesis class. Of course, the difficulty is to realize
this potential on the basis of a small sample. Note that in these definitions, we can think of
the function class indexd as an abstract measure of the complexity of the functions inFd.

With this notation, the model selection problem can be stated informally: on the basis of
a random sampleS of a fixed sizem, the goal is to choose a hypothesiscomplexityd̃, and a
hypothesis̃h ∈ Fd̃, such that the resulting generalization errorε(h̃) is minimized. In many
treatments of model selection, including ours, it is explicitly or implicitly assumed that the
model selection algorithm has control only over the choice of the complexityd̃, but not
over the choice of the final hypothesish̃ ∈ Fd̃. It is assumed that there is a fixed algorithm
that chooses a set ofcandidatehypotheses, one from each hypothesis class. Given this set
of candidate hypotheses, the model selection algorithm then chooses one of the candidates
as the final hypothesis.

To make these ideas more precise, we define thetraining error

ε̂(h) = ε̂S(h) def= |{〈xi, bi〉 ∈ S : h(xi) 6= bi}|/m, (5)

and theversion space

VS (d) = VSS(d) def= {h ∈ Fd : ε̂(h) = min
h′∈Fd

{ε̂(h′)}}. (6)

Note thatVS (d) ⊆ Fd may contain more than one function inFd — several functions
may minimize the training error. If we are lucky, we have in our possession a (possibly
randomized)learning algorithmL that takes as input any sampleS and any complexity
valued, and outputs a memberh̃d of VS (d) (using some unspecified criterion to break ties
if |VS (d)| > 1). More generally, it may be the case that findingany function in VS (d)
is intractable, and thatL is simply a heuristic (such as backpropagation or ID3) that does
the best job it can at finding̃hd ∈ Fd with small training error on inputS andd. In this
paper we will consider both specific problems for which there is an efficient algorithmL
for selecting a function from the version space, and the more abstract case in whichL may
be arbitrary. In either case, we define
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h̃d
def= L(S, d) and ε̂(d) = ε̂L,S(d) def= ε̂(h̃d). (7)

Note that we expect̂ε(d), like εopt(d), to be a non-increasing function ofd — by going to
a larger complexity, we can only reduce our training error. Indeed, we may even expect
there to be a sufficiently large valuedmax (determined by the sequence of function classes,
the learning algorithm, the target function and distribution) such thatε̂(dmax) = 0 always.

We can now give a precise statement of the model selection problem. First of all, an
instanceof the model selection problem consists of a tuple({Fd}, f,D, L), where{Fd} is
the hypothesis function class sequence,f is the target function,D is the input distribution,
andL is the underlying learning algorithm. Themodel selection problemis then: Given the
sampleS, and the sequence of functionsh̃1 = L(S, 1), . . . , h̃d = L(S, d), . . . determined
by the learning algorithmL, select a complexity valuẽd such that̃hd̃ minimizes the resulting
generalization error. Thus, a model selection algorithm is given both the sampleS and the
sequence of (increasingly complex) hypotheses derived byL fromS, and must choose one of
these hypotheses. Notice that “special” model selection criteria that incorporate knowledge
about the behavior of the learning algorithmLmay be appropriate in certain cases; however,
we hold thatgood general model selection algorithms should at least perform reasonably
well in the case thatL is actually a training error minimization procedure.

The current formalization suffices to motivate a key definition and a discussion of the
fundamental issues in model selection. We define

ε(d) = εL,S(d) def= ε(h̃d). (8)

Thus, ε(d) is a random variable (determined by the random variableS) that gives the
true generalization errorof the functionh̃d chosen byL from the classFd. Of course,
ε(d) is not directly accessible to a model selection algorithm; it can only be estimated or
guessed in various ways from the sampleS. A simple but important observation is that no
model selection algorithm can achieve generalization error less thanmind{ε(d)}. Thus the
behavior of the functionε(d) — especially the location and value of its minimum — is in
some sense the essential quantity of interest in model selection.

The prevailing folk wisdom in several research communities posits the following picture
for the “typical” behavior ofε(d), at least in the optimistic case that the learning algorithmL
implements training error minimization. (In the ensuing discussion, if there is classification
noise the quantitiesεηopt andεη should be substituted forεopt andε). First, for small values
of d (d << m), ε(d) is large, due simply to the fact thatεopt(d) is large for smalld, and
ε(d) ≥ εopt(d) always holds. At such smalld, training errors will be close to generalization
errors (that is,̂ε(h) ≈ ε(h) for all h ∈ Fd — also known asuniform convergence, or small
“variance”3), andVS (d) will contain only functions whose true generalization error is near
the best possible inFd. But this best generalization error is large, because we have poor
approximation power for smalld (that is, we have a strong “bias”). For large values of
d (usuallyd ≈ m), ε(d) is again large, but for a different reason. Here we expect that
εopt(d) may actually be quite small (that is, we have a weak “bias”, andFd contains a good
approximation to the target functionf ). But becauseFd is so powerful,VS (d) will contain
many poor approximations as well (that is,VS (d) contains functionsh with ε̂(h) << ε(h)
— so uniform convergence doesnot hold inFd, or we have large “variance”)4.
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As a demonstration of the validity of this view, and as an introduction to a particular model
selection problem that we will examine in our experiments, we call the reader’s attention
to Figure 1. In this model selection problem (which we shall refer to as theintervals model
selection problem), the input domain is simply the real line segment[0, 1], and the hypothesis
classFd is simply the class of all boolean functions over[0, 1] in which we allow at most
d alternations of label; thusFd is the class of all binary step functions with at mostd/2
steps. For the experiments, the underlying learning algorithmL that we have implemented
performs training error minimization. This is a rare case where efficient minimization is
possible; we have developed an algorithm based on dynamic programming that runs in
nearly linear time, thus making experiments on large samples feasible. The sampleS was
generated using the target function inF100 that divides[0, 1] into 100 segments of equal
width 1/100 and alternating label. (Details of the algorithm and the experimental results of
the paper are provided in the Appendix.) In Figure 1 we plotε(d), andεη(d) (which we can
calculate exactly, since we have chosen the target function) whenS consists ofm = 2000
random examples (drawn from the uniform input distribution) corrupted by noise at the rate
η = 0.2. For our current discussion it suffices to note thatε(d) (similarly, εη(d), which is
a linear function ofε(d)) does indeed experience a nontrivial minimum. Not surprisingly,
this minimum occurs near (but not exactly at) the target complexity of 100.

In Figure 2, we instead plot the differenceε̂(d)− εη(d) for the same experiments. Notice
that there is something tempting about the simplicity of this plot. More precisely, as a
function ofd/m it appears that̂ε(d) − εη(d) has an initial regime (ford << 100, or for
thism, d/m < 100/2000 = 0.05) with behavior that is approximatelyΘ(

√
d/m), and a

later regime (ford/m >> 0.05) in which the behavior is linear ind/m. Unfortunately,
the behavior near the target complexityd = 100 does not admit easy characterization.
Nevertheless, Figure 2 demonstrates why one might be tempted to posit a “penalty” for
complexity that is a function ofd/m, and to simply add this penalty tôε(d) as a rough
approximation toεη(d).

According to Figure 1 and conventional wisdom, the best choice ofd̃ should be an
intermediate value (that is,not d̃ ≈ 0 or d̃ ≈ m). But how should we choosẽd when the
most common empirical measure of generalization ability — the functionε̂(d) — simply
decreases with increasingd, and whose straightforward minimization will therefore always
result in a large value ofd that causes overfitting? This is the central question raised by the
model selection problem, and many answers have been proposed and analyzed. We review
three of them in the following section.

We conclude this section with a list of the various error measures that were presented in
the section, and which are used extensively throughout the paper.

• ε(h) denotes the generalization error of a hypothesishwith respect to the target function

f and the distributionD. Namely,ε(h) def= Prx∈D[h(x) 6= f(x)]. Similarly, for noise

rateη > 0, εη(h) def= Prx∈D,c[h(x) 6= f(x) ⊕ c], wherec is the noise bit which is1
with probabilityη, and0 with probability1− η.

• ε̂(h) is the training error ofh on sampleS. Namely,ε̂(h) = ε̂S(h) def= |{〈xi, bi〉 ∈ S :
h(xi) 6= bi}|/m, wherem is the size ofS.
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• εopt(d) is the minimum generalization error taken over all hypotheses inFd. Namely,

εopt(d) def= ε(hd), wherehd
def= argminh∈Fd{ε(h)}. Similarly, εηopt(d) def= εη(hd).

• ε(d) is the generalization error of the hypothesis chosen by the learning algorithmL,
in hypothesis classFd, given sampleS, and ε̂(d) is the training error of the chosen

hypothesis. Namely,ε(d) = εL,S(d) def= ε(h̃d), andε̂(d) = ε̂L,S(d) def= ε̂(h̃d), where
h̃d = L(S, d). εη(d) is defined analogously.

3. Three Algorithms for Model Selection

The first two model selection algorithms we consider are members of a general class that
we shall informally refer to aspenalty-basedalgorithms (and shall formally define shortly).
The common theme behind these algorithms is their attempt to construct an approximation
to ε(d) solely on the basis of the training errorε̂(d) and the complexityd, often by try-
ing to “correct” ε̂(d) by the amount that it underestimatesε(d) through the addition of a
“complexity penalty” term.

In Vapnik’sGuaranteed Risk Minimization(GRM) (Vapnik, 1982),̃d is chosen according
to the rule

d̃ = argmind
{
ε̂(d) + (d/m)

(
1 +

√
1 + ε̂(d)m/d

)}
(9)

where we have assumed thatd is the Vapnik-Chervonenkis dimension (Vapnik & Chervo-
nenkis, 1971; Vapnik, 1982), of the classFd; this assumption holds in the intervals model
selection problem. Vapnik’s original GRM actually multiplies the second term inside the
argmin{·} above by a logarithmic factor intended to guard against worst-case choices from
VS (d), and thus has the following form:

d̃ = argmind

{
ε̂(d) +

d
(

ln 2m
d + 1

)
m

(
1 +

√
1 +

ε̂(d)m
d
(

ln 2m
d + 1

))} (10)

However, we have found that the logarithmic factor renders GRM uncompetitive on the
ensuing experiments, and hence in our experiments we only consider the modified and quite
competitive rule given in Equation (9) whose spirit is the same. The origin of this rule can
be summarized informally as follows (where for sake of simplicity we ignore all logarithmic
factors): it has been shown (Vapnik, 1982) that with high probability for everyd and for
everyh ∈ Fd,

√
d/m is an upper bound on|ε̂(h)−ε(h)| and hence|ε̂(d)−ε(d)| ≤

√
d/m.

In fact, the stronger uniform convergence property holds:|ε̂(h) − ε(h)| ≤
√
d/m for all

h ∈ Fd; the analogous statement holds forε̂(h) andεη(h) in the η 6= 0 case. Thus, by
simply adding

√
d/m to ε̂(d), we ensure that the resulting sum upper boundsε(d), and if

we are optimistic we might further hope that the sum is in fact a close approximation to
ε(d), and that its minimization is therefore tantamount to the minimization ofε(d). The
actual rule given in Equation (9) is slightly more complex than this, and reflects a refined
bound on|ε̂(d)− ε(d)| that varies fromd/m for ε̂(d) close to 0 to

√
d/m otherwise.
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The next algorithm we consider, theMinimum Description Length Principle(MDL) (Ris-
sanen, 1978; Rissanen, 1986; Rissanen, 1989; Barron & Cover, 1991, Quinlan & Rivest,
1989) has rather different origins than GRM. MDL is actually a broad class of algorithms
with a common information-theoretic motivation, each algorithm determined by the choice
of a specificcoding scheme for both functions and their training errors. This two-part
code is then used to describe the training sampleS. The familiar MDL motivation re-
gards each potential hypothesis function as a code for thelabelsin the sampleS, assuming
the code recipient has access only to the inputs inS: thus, the “best” hypothesis is the
one minimizing the total code length for the labels in the given coding scheme (the num-
ber of bits needed to represent the hypothesis function, plus the number of bits needed
to represent the labels given the hypothesis function). To illustrate the method, we give
a coding scheme for the intervals model selection problem5. Let h be a function with
exactlyd alternations of label (thus,h ∈ Fd). To describe the behavior ofh on the sam-
ple S = {〈xi, bi〉}, where we assume, without loss of generality, that the examples are
ordered, we can simply specify thed inputs whereh switches value (that is, the indices
i such thath(xi) 6= h(xi+1)) 6. This takeslog

(
m
d

)
bits; dividing bym to normalize,

we obtain(1/m) log
(
m
d

)
≈ H(d/m) (Cover & Thomas, 1991), whereH(·) is the binary

entropy function (i.e.H(p) def= − (p log p+ (1− p) log(1− p)) ). Now givenh, the labels
in S can be described simply by coding the mistakes ofh (that is, those indicesi where
h(xi) 6= f(xi)), at a normalized cost ofH(ε̂(h)). Technically, in the coding scheme just
described we also need to specify the values ofd andε̂(h) ·m, but the cost of these is neg-
ligible. Thus, the version of MDL that we shall examine for the intervals model selection
problem dictates the following choice of̃d:

d̃ = argmind∈[0,m/2]{H(ε̂(d)) +H(d/m)}. (11)

In the context of model selection, GRM and MDL can both be interpreted as attempts to
modelε(d) by some function of̂ε(d) andd. More formally, a model selection algorithm of
the form

d̃ = argmind{G(ε̂(d), d/m)} (12)

shall be called apenalty-basedalgorithm whereG(·, ·) is referred to as apenalty-based
function7. Notice that an ideal penalty-based function would obeyG(ε̂(d), d/m) ≈ ε(d)
(or at leastG(ε̂(d), d/m) andε(d) would be minimized by the same value ofd).

The third model selection algorithm that we examine has a different spirit than the penalty-
based algorithms. Incross validation(CV) (Stone, 1974; Stone, 1977), rather than attempt
to reconstructε(d) from ε̂(d) andd, we instead settle for a “worse”ε(d) (in a sense made
precise shortly) that we candirectly estimate. More specifically, in CV we use only a fraction
(1− γ) of the examples inS to obtain the hypothesis sequenceh̃1 ∈ F1, . . . , h̃d ∈ Fd, . . .
— that is,h̃d is nowL(S′, d), whereS′ consists of the first(1− γ)m examples inS. Here
γ ∈ [0, 1] is a parameter of the CV algorithm whose tuning we discuss briefly later. For
simplicity we assume thatγm is an integer. CV chooses̃d according to the rule

d̃ = argmind{ε̂S′′(h̃d)} (13)
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where ε̂S′′(h̃d) is the error ofh̃d on S′′, the lastγm examples ofS that were withheld
in selectingh̃d. Notice that for CV, we expect the quantityε(d) = ε(h̃d) to be (perhaps
considerably) larger than in the case of GRM and MDL, because nowh̃d was chosen on
the basis of only(1 − γ)m examples rather than allm examples. For this reason we

wish to introduce the more general notationε γ(d) def= ε(h̃d) to indicate the fraction of the
sample withheld from training. CV settles forε γ(d) instead ofε0(d) in order to have an
independent test set with which to directly estimateε γ(d).

In practice, it is typical to use various forms ofmulti-fold cross validation, in which many
(either disjoint or overlapping) training set/test set splits are selected from the original
sample, and the test set errors are averaged. The main advantage of multi-fold methods
is that each sample point is used for training on some splits; the main disadvantage is
the computational expense, and that the test sets are no longer independent. While we
expect that for many problems, this lack of independence does not introduce diminished
performance, we are unable to prove our general theoretical results for multi-fold methods,
and thus concentrate on the basic cross-validation method outlined above. For this reason it
is probably fair to say that we err on the side of pessimism when evaluating the performance
of CV-type algorithms throughout the investigation.

4. A Controlled Experimental Comparison

Our results begin with a comparison of the performance and properties of the three model
selection algorithms in a carefully controlled experimental setting — namely, the intervals
model selection problem. Among the advantages of such controlled experiments, at least in
comparison to empirical results on data of unknown origin, are our ability to exactly measure
generalization error (since we know the target function and the distribution generating the
data), and our ability to precisely study the effects of varying parameters of the data (such
as noise rate, target function complexity, and sample size), on the performance of model
selection algorithms. The experimental behavior we observe foreshadows a number of
important themes that we shall revisit in our formal results.

We begin with Figure 3. To obtain this figure, a training sample was generated from
the uniform input distribution and labeled according to an intervals function over[0, 1]
consisting of 100 intervals of alternating label and equal width8; the sample was corrupted
with noise rateη = 0.2. In Figure 3, we have plotted thetruegeneralization errors (measured
with respect to the noise-free source of examples)εgrm, εmdl andεcv (using test fraction
γ = 0.1 for CV) of the hypotheses selected from the sequenceh̃1, . . . , h̃d, . . . by each the
three algorithms as a function of the sample sizem, which ranged from 1 to 3000 examples.
As described in Section 2, the hypothesesh̃d were obtained by minimizing the training
error within each classFd. Details of the code used to perform these experiments is given
in the appendix.

Figure 3 demonstrates the subtlety involved in comparing the three algorithms: in partic-
ular, we see thatnone of the three algorithms outperforms the others for all sample sizes.
Thus we can immediately dismiss the notion that one of the algorithms examined can be
said to be optimal for this problem in any standard sense. Getting into the details, we see
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that there is an initial regime (form from 1 to slightly less than 1000) in whichεmdl is the
lowest of the three errors, sometimes outperformingεgrm by a considerable margin. Then
there is a second regime (form about 1000 to about 2500) where an interesting reversal of
relative performance occurs, since nowεgrm is the lowest error, considerably outperform-
ing εmdl, which has temporarily leveled off. In both of these first two regimes,εcv remains
the intermediate performer. In the third and final regime,εmdl decreases rapidly to match
εgrm and the slightly largerεcv, and the performance of all three algorithms remains quite
similar for all larger sample sizes.

Insight into the causes of Figure 3 is given by Figure 4, where for the same runs used
to obtain Figure 3, we instead plot the quantitiesd̃grm, d̃mdl and d̃cv, the value ofd̃
chosen by GRM, MDL and CV respectively (thus, the “correct” value, in the sense of
simply having the same number of intervals as the target function, is 100). Here we
see that for small sample sizes, corresponding to the first regime discussed for Figure 3
above,d̃grm is slowly approaching 100 from below, reaching and remaining at the target
value for aboutm = 1500. Although we have not shown it explicitly, GRM is incurring
nonzero training error throughout the entire range ofm. In comparison, for a long initial
period (corresponding to the first two regimes ofm), MDL is simply choosing the shortest
hypothesis that incurs no training error (and thus encodes both “legitimate” intervals and
noise), and consequentlỹdmdl grows in an uncontrolled fashion. It will be helpful to
compute an approximate expression ford̃mdl during this “overcoding” period. Assuming
that the target function iss equally spaced intervals, an approximate expression for the
number of intervals required to achieve zero training error is

d0
def= 2η(1− η)m+ (1− 2η)2s. (14)

For the current experiments = 100 andη = 0.2. Equation (14) can be explained as follows.
Consider the event that a given pair of consecutive inputs in the sample have opposite labels.
If the two points belong to the same interval of the target function, then this event occurs
if and only if exactly one of them is labeled incorrectly, which happens with probability
2η(1− η). If the two points are on opposite sides of a target switch in the target function,
then this event occurs either if both of them are labeled correctly or if both of them are
labeled incorrectly, which happens with probabilityη2 + (1 − η)2. Since the expected
number of pairs of the first type ism− s, and the expected number of pairs of the second
type iss, we obtain (ignoring dependencies between the different pairs) that the expected
number of switch points in the sample is roughly

2η(1− η)(m− s) + (η2 + (1− η)2)s = 2η(1− η)m+ (1− 4η + 4η2)s (15)

= 2η(1− η)m+ (1− 2η)2s = d0 . (16)

In the first regime of Figures 3 and 4, the overcoding behaviord̃mdl ≈ d0 of MDL is
actually preferable, in terms of generalization error, to the initial “undercoding” behavior
of GRM, as verified by Figure 3. Oncẽdgrm approaches 100, however, the overcoding
of MDL is a relative liability, resulting in the second regime. Figure 4 clearly shows that
the transition from the second to the third regime (where approximate parity is achieved)
is the direct result of a dramatic correction tod̃mdl from d0 (defined in Equation (14)) to
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the target value of 100. Finally,̃dcv makes a more rapid but noisier approach to 100 than
d̃grm, and in fact also overshoots 100, but much less dramatically thand̃mdl. This more
rapid initial increase again results in superior generalization error compared to GRM for
smallm, but the inability ofd̃cv to settle at 100 results in slightly higher error for largerm.

In a moment, we shall further discuss the interesting behavior ofd̃grm andd̃mdl, but first
we call attention to Figures 5 to 12. These figures, which come in pairs, show experiments
identical to that of Figures 3 and 4, but for the smaller noise ratesη = 0.0, 0.1 and the
larger noise ratesη = 0.3, 0.4; these plots also have an increased sample size range,
m = 1 . . . 6500. (Thus, the scale of these figures is different from that of Figures 3 and 4.)
Notice that asη increases, the initial period of undercoding by GRM seems to increase
slightly, but the initial period of overcoding by MDL increases tremendously, the result
being that the first regime of generalization error covers approximately the same values of
m (about 1 to 1000), but the second regime covers a wider and wider range ofm, until at
η = 0.4, d̃mdl has not corrected to 100 even atm = 6500 (further experiments revealed
thatm = 15000 is still not sufficient).

The behavior of the lengths̃dgrm andd̃mdl in Figure 4 can be traced to the form of the
total penalty functions for the two methods. For instance, in Figures 13, 14, and 15, we
plot the total MDL penaltyH(ε̂(d)) +H(d/m) as a function of complexityd for the fixed
sample sizesm = 500, 2000 and4000 respectively, again using noise rateη = 0.20. At
m = 500, we see that the rather dramatic total penalty curve has its global minimum at
approximatelyd = 200, which as expected (we are in the MDL overcoding regime at this
small sample size) isd0, the point of consistency with the noisy sample. However, a small
local minimum is already developing near the target value ofd = 100. Bym = 2000, this
local minimum is quite pronounced, and beginning to compete with the global consistency
minimum (which for this noise rate and sample size has now moved out to approximately
d0 = 650). At m = 4000, the former local minimum atd = 100 has become the global
minimum.

The rapid transition of̃dmdl that marks the start of the final regime of generalization error
discussed above (approximate parity of the three methods) is thus explained by the switch-
ing of the global total penalty minimum fromd0 to d = 100. From the expression given in
Equation (14) we can infer that this switching of the minimum is governed by a competi-
tion between the quantitiesH(2η(1 − η) + (s/m)(1 − 2η)2) andH(η) +H(s/m). The
first quantity is the expected value of the total penalty of MDL for the choiced = d0

(where the hypothesis chosen is consistent with the data and no training error is in-
curred), while the second quantity is the total penalty of MDL for the (correct) choice
d = s. As an interesting digression, in Figures 16, 17 and 18, we plot the difference
H
(
2η(1− η) + (s/m)(1− 2η)2

)
− (H(η) +H(s/m)) as a function ofη for s/m = 0.01

ands/m = 0.04. Note that if this function is negative, we predict that MDL will prefer
d = d0 (overcoding), and if it is positive, we predict that MDL will preferd = s. For
s/m = 0.01, we see that the function is positive for small noise rates and negative for
larger noise rates. Thus, make the intuitively reasonable prediction that for this value of
the ratios/m, increasing the noise rate can only degrade the behavior, by forcing the re-
versal of the global minimum fromd = s to d = d0. Curiously, however, the difference
exhibits nonmonotonic behavior as a function ofs/m. For the cases/m = 0.04, this non-
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monotonicity has a subtle but dramatic effect, since it causes the difference to move from
negative to positive at smallη. Thus we predict that for very small values ofη (less than
0.015), by increasingthe noise rate slightly (that is, by adding a small amount of additional
classification noise), we can actually cause the global minimum to shift fromd = d0 to
d = s, and consequently improve the resulting generalization error. These predictions are
in fact confirmed by experiments we conducted.

In Figures 19, 20, and 21, we give plots of the total GRM penalty for the same three
sample sizes and noise rate. Here the behavior is much more controlled — for each sample
size, the total penalty has the same single-minimum bowl shape, with the minimum starting
to the left ofd = 100 (the minimum occurs at roughlyd = 40 form = 500), and gradually
moving overd = 100 and sharpening for largem.

A natural question to pose after examining these experiments is the following: is there
a penalty-based algorithm that enjoys the best properties of both GRM and MDL? By this
we would mean an algorithm that approaches the “correct”d value (whatever it may be
for the problem in hand) more rapidly than GRM, but does so without suffering the long,
uncontrolled “overcoding” period of MDL. An obvious candidate for such an algorithm
is simply a modified version of GRM or MDL, in which we reason (for example) that
perhaps the GRM penalty for complexity is too large for this problem (resulting in the
initial reluctance to code), and we thus multiply the complexity penalty term in the GRM
rule (the second term inside theargmin{·}) in Equation (9) by a constant less than 1 (or
analogously, multiply the MDL complexity penalty term by a constant greater than 1 to
reduce overcoding). The results of an experiment on such a modified version of GRM
are shown in Figures 22 and 23, where the original GRM performance is compared to a
modified version in which the complexity penalty is multiplied by 0.5. Interestingly and
perhaps unfortunately, we see that there is no free lunch: while the modified version does
indeed code more rapidly and thus reduce the smallm generalization error, this comes at the
cost of a subsequent overcoding regime with a corresponding degradation in generalization
error (and in fact a considerably slower return tod = 100 than MDL under the same
conditions)9. The reverse phenomenon (reluctance to code) is experienced for MDL with
an increased complexity penalty multiplier, as demonstrated by Figures 24 and 25. This
observation seems to echo recent results (Schaffer, 1994; Wolpert, 1992) which essentially
prove that no learning algorithm can perform well on all problems. However, while these
results show that for any given learning algorithmthere existlearning problems (typically
in which the target function is chosen randomly from a large and complex space) on which
the performance is poor, here we have given anexplicit and very simple learning problem
on which no simple variant of GRM and MDL can perform well for all sample sizes.

Let us summarize the key points demonstrated by these experiments. First, none of
the three algorithms dominates the others for all sample sizes. Second, the two penalty-
based algorithms seem to have a bias either towards or against coding that is overcome
by the inherent properties of the data asymptotically, but that can have a large effect on
generalization error for small to moderate sample sizes. Third, this bias cannot be overcome
simply by adjusting the relative weight of error and complexity penalties, without reversing
the bias of the resulting rule and suffering increased generalization error for some range of
m. Fourth, while CV is not the best of the algorithms for any value ofm, it does manage to
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fairly closely track the best penalty-based algorithm for each value ofm, and considerably
beats both GRM and MDL in their regimes of weakness. We now turn our attention to our
formal results, where each of these key points will be developed further.

5. A Bound on the Error for Penalty-Based Algorithms

We begin our formal results with a bound on the generalization error for penalty-based
algorithms that enjoys three features. First, it is general: it applies to practically any
penalty-based algorithm, and holds for any model selection problem (of course, there is a
price to pay for such generality, as discussed below). Second, for certain algorithms and
certain problems the bound can give rapid rates of convergence to small error. Third, the
form of the bound is suggestive of some of the behavior seen in the experimental results.
Our search for a bound of this type was inspired by work of Barron and Cover (1991),
Barron and Cover give bounds of a similar form (which they call theindex of resolution)
on the generalization error of MDL in the context of density estimation.

For a given penalty-based algorithm, letG be the function that determines the algorithm
as defined in Equation (12). In Theorem 1 we give a bound on the generalization error of
such an algorithm, where the only restriction made on the algorithm is thatG be continuous
and increasing in both its arguments. The bound we give consists of two terms. The
first term, denoted byRG(m), is a function of the sample size,m, and asm → ∞ it
approaches the minimum generalization error achievable inany of the classesFd. This
minimum value, by definition, is a lower bound on the generalization error achieved by
any possible method. Since the bound we give applies to quite a wide range of model
selection algorithms, we are not able to provide a general statement concerning therateof
convergence ofRG(m) to the optimal error, and this rate strongly depends on the properties
of G. The general form ofRG(m) (as a function ofG as well asm) is described in the
proof of Theorem 1. Following the proof we discuss what properties mustG have in
order thatRG(m) converge at a reasonable rate to the optimal error. We also give several
examples of the application of the theorem in which the exact form ofRG(m) and hence its
convergence rate become explicit. The second term in the bound is a function ofm as well,
and it decreases very rapidly asm increases. However, it is also an increasing function of
the complexity chosen by the penalty-based algorithm, and thus, similarly to the first term,
is dependent on the properties ofG. We return to discuss this bound following the formal
theorem statement below. We state the bound for the special but natural case in which the
underlying learning algorithmL is training error minimization. Towards the end of this
section we present a straightforward analogue for more generalL (Theorem 2). In addition,
we give a generalization of Theorem 1 to the noisy case (Theorem 3). In both theorems
the bound given on the generalization error has a very similar form to the bound given in
Theorem 1.

Theorem 1 Let ({Fd}, f,D, L) be an instance of the model selection problem in which
L performs training error minimization, and whered is the VC dimension ofFd. Let
G : <×< → <be a function that is continuous and increasing in both its arguments, and let
εG(m) denote the random variable whose value is the generalization error of the hypothesis
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chosen by the penalty-based model selection algorithmd̃ = argmind{G(ε̂(d), d/m)} on a
training sample of sizem. Then for any givenδ > 0, with probability at least1− δ

εG(m) ≤ RG(m) + β(d̃,m, δ) , (17)

whereRG(m) approachesmind{εopt(d)} asm → ∞, and whereβ(·, ·, ·) is defined as
follows: ford < m,

β(d,m, δ) def= 2

√
d ln 2em

d + ln 9m
δ

m
(18)

and ford ≥ m, β(d,m, δ) def= 1.

Before proving Theorem 1, let us further discuss the form of the bound given in the
theorem. The first term,RG(m), approaches the optimal generalization error within

⋃
Fd

in the limit of largem, and the second term directly penalizes large complexity. If we want
thesumof the two terms in the bound to be meaningful, then we should be able to give a
bound onβ(d̃,m, δ) that decays to 0 withm, preferably as rapidly as possible. In other
words,we must be able to argue that the complexity of the hypothesis chosen is limited.
If we can do so, then combined with the bound on the first term we have a proof of the
method’sstatistical consistency(that is, approach to the optimal error in the large sample
limit), and may even have a nice rate of approach to the optimal error. If we cannot do so,
then we are forced to consider the possibility that our method is simply fitting the sample,
and incurring large error because as a result. Such a possibility was clearly realized in the
experimental results for MDL, where a long period of unbounded hypothesis complexity
directly caused a long period of essentially constant generalization error as a function of
m. We return to this issue after the proof of Theorem 1.

In order to prove Theorem 1, we shall need to following uniform convergence bound
which is due to Vapnik (1982).

Uniform Convergence Bound LetFd be a hypothesis class with VC dimensiond < m.
Then, for everym > 4 and for any givenδ > 0, with probability at least1− δ,

|ε(h)− ε̂(h)| < 2

√
d
(
ln 2m

d + 1
)

+ ln 9
δ

m
(19)

for everyh ∈ Fd. If the sample is noisy, then the same bound holds forεη(h)10.

Proof of Theorem 1: Sinced̃ is chosen to minimizeG(ε̂(d), d/m), we have that for every
d

G
(
ε̂(d̃), d̃/m

)
≤ G (ε̂(d), d/m) . (20)

Using the uniform convergence bound stated above we have that for any givend < m, with
probability at least1− δ/m,

|ε(h)− ε̂(h)| < 2

√
d ln 2em

d + ln 9m
δ

m
(21)
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for all h ∈ Fd. Thus, with probability at least1 − δ, the above holds for alld < m. For
d ≥ mwe can use the trivial bound that for everyh, |ε(h)− ε̂(h)| ≤ 1, and together we have
that with probability at least1−δ, for everyd, and for allh ∈ Fd, |ε(h)−ε̂(h)| < β(d,m, δ),
whereβ(·, ·, ·) was defined in the statement of Theorem 1. If we now use the fact thatG(·, ·)
is increasing in its first argument, we can replace the occurrence ofε̂(d̃) on the left-hand
side of Equation (20) byε(d̃) − β(d̃,m, δ) to obtain a smaller quantity. Similarly, since

ε̂(d) ≤ ε̂(hd) (recall thathd
def= argminh∈Fd{ε(h)}), andε̂(hd) ≤ ε(hd) + β(d,m, δ) =

εopt(d) + β(d,m, δ), we can replace the occurrence ofε̂(d) on the right-hand side by
εopt(d) + β(d,m, δ) to obtain a larger quantity. This gives

G
(
ε(d̃)− β(d̃,m, δ), d̃/m

)
≤ G (εopt(d) + β(d,m, δ), d/m) . (22)

Now becauseG(·, ·) is an increasing function of its second argument, we can further weaken
Equation (22) to obtain

G
(
ε(d̃)− β(d̃,m, δ), 0

)
≤ G (εopt(d) + β(d,m, δ), d/m) . (23)

If we defineG0(x) = G(x, 0), then sinceG(·, ·) is increasing in its first argument,G−1
0 (·)

is well-defined, and we may write

ε(d̃) ≤ G−1
0 (G (εopt(d) + β(d,m, δ), d/m)) + β(d̃,m, δ). (24)

Now fix any small valueτ > 0. For thisτ , letd′ be the smallest value satisfyingεopt(d′) ≤
mind{εopt(d)} + τ — thus,d′ is sufficient complexity to almost match the approxima-
tive power of arbitrarily large complexity. Examining the behavior ofG−1

0 (G(εopt(d′) +
β(d′,m, δ), d′/m)) asm→∞, we see that the arguments approach the point(εopt(d′), 0),
and so

G−1
0 (G(εopt(d′) + β(d′,m, δ), d′/m)) −→ G−1

0 (G(εopt(d′), 0)) (25)

= εopt(d′) ≤ min{εopt(d)}+ τ (26)

by continuity ofG(·, ·), as desired. By defining

RG(m) def= min
d

{
G−1

0 (G (εopt(d) + β(d,m, δ), d/m))
}

(27)

we obtain the statement of the theorem.
Given the definition ofRG(m) in Equation (27), we can now examine the two terms

RG(m) andβ(d̃,m, δ) more carefully and observe that they may be thought of as competing.
In order forRG(m) to approachmind{εopt(d)} rapidly and not just asymptotically (that
is, in order to have a fastrate of convergence),G(·, ·) should not penalize complexity too
strongly, which is obviously at odds with the optimization of the termβ(d̃,m, δ). For
example, considerG(ε̂(d), d/m) = ε̂(d) + (d/m)α for some powerα > 0. Assuming
d ≤ m, this rule is conservative (large penalty for complexity) for smallα, and liberal
(small penalty for complexity) for largeα. Thus, to makeβ(d̃,m, δ) small we would likeα
to be small, to prevent the choice of larged̃. However, by definition ofRG(m) we have that
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for the functionG in questionRG(m) = mind{εopt(d) + β(d,m, δ) + (d/m)α}, which
increases asα decreases, thus encouraging largeα (liberal coding).

Ideally, we might wantG(·, ·) to balance the two terms of the bound, which implicitly
involves finding an appropriatelycontrolled but sufficientlyrapid rate of increase iñd.
The tension between these two criteria in the bound echoes the same tension that was seen
experimentally: for MDL, there was a long period of essentially uncontrolled growth ofd̃
(linear inm), and this uncontrolled growth prevented any significant decay of generalization
error (Figures 3 and 411). GRM had controlled growth of̃d, and thus would incur negligible
error from our second term — but perhaps this growth wastoo controlled, as it results in
the initially slow (smallm) decrease in generalization error.

To examine these issues further, we now apply the bound of Theorem 1 to several penalty-
based algorithms. In some cases the final form of the bound given in the theorem statement,
while easy to interpret, is unnecessarily coarse, and better rates of convergence can be
obtained by directly appealing to the proof of the theorem.

We begin with asimplifiedGRM variant (SGRM), defined byG(ε̂(d), d,m) = ε̂(d) +
β(d,m, δ). Note that SGRM does not have the exact form required in Theorem 1. However,
as we shall show below, its generalization error can be bounded easily using the same
techniques applied in the proof of Theorem 1. We first observe that we can avoid weakening

Equation (22) to Equation (23), because hereG
(
ε(d̃)− β(d̃,m, δ), d̃,m

)
= ε(d̃). Thus

the dependence oñd in the bound disappears entirely, resulting in the following bound in
εsgrm(m): With probability at least1− δ,

εsgrm(m) ≤ min
d
{εopt(d) + 2β(d,m, δ)} . (28)

This is not so mysterious, since SGRM penalizes strongly for complexity (even more so
than GRM). This bound expresses the generalization error as the minimum of the sum of
the best possible error within each classFd and a penalty for complexity. Such a bound
seems entirely reasonable, given that it is essentially the expected value of the empirical
quantity we minimized to choosẽd in the first place. Furthermore, ifεopt(d) + β(d,m, δ)
approximatesε(d) well, then such a bound is about the best we could hope for. However,
there is no reason in general to expect this to be the case.

As an example of the application of Theorem 1 to MDL we can derive the following
bound onεmdl(m) (where for anyx > 1 we defineH(x) to be1): With probability at least
1− δ,

εmdl(m) ≤ min
d

{
H−1 (H (εopt(d) + β(d,m, δ)) +H(d/m))

}
+ β(d̃mdl,m, δ) (29)

≤ min
d
{H (εopt(d) + β(d,m, δ)) +H(d/m)}+ β(d̃mdl,m, δ) (30)

≤ min
d
{H(εopt(d)) +H(β(d,m, δ)) +H(d/m)}+ β(d̃mdl,m, δ) (31)

≤ min
d
{H(εopt(d)) + 2H(β(d,m, δ))}+ β(d̃mdl,m, δ) (32)

where we have usedH−1(y) ≤ y to get Equation (30) andH(x + y) ≤ H(x) +H(y) to
get Equation (31). Again, we emphasize that the bound given by Equation (32) is vacuous
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without a bound oñdmdl, which we know from the experiments can be of orderm. However,
by combining this bound with an analysis of the behavior ofd̃mdl for the intervals problem
as discussed in Section 4 (see Equation (14) and the discussion following it), it is possible
to give an accurate theoretical explanation for the experimental findings for MDL.

As a final example, we apply Theorem 1 to avariant of MDL in which the penalty for
coding is increased over the original, namelyG(ε̂(d), d/m) = H(ε̂(d)) + 1/λ2H(d/m)
whereλ is a parameter that may depend ond andm. Assuming that we never choosẽd
whose total penalty is larger than 1 (which holds if we simply add the “fair coin hypothesis”
to F1), we have thatH(d̃/m) ≤ λ2. SinceH(x) ≥ x, for all 0 ≤ x ≤ 1/2, it follows that√
d̃/m ≤ λ. For anyδ ≥ exp(−λ2m) we then have that

β(d̃,m, δ) < 2

√
d̃ ln(2em) +mλ2 lnm

m
= O(λ

√
lnm) . (33)

If λ is some decreasing function ofm (say,m−α for some0 < α < 1), then the bound on
ε(d̃) given by Theorem 1 decreases at a reasonable rate.

We conclude this section with two generalizations of Theorem 1. The first is for the case in
which the penalty-based algorithm uses a learning algorithmL which does not necessarily
minimize the training error, and the second is for the case in which the sample is corrupted
by noise.

For Theorem 2 we need the following definition. We say that a learning algorithmL is
adequateif it has the following property. There exists a functionµL : N ×N × [0, 1]→
[0, 1], such that for every givenδ, with probability at least1 − δ, |ε̂L(d) − ε̂opt(d)| ≤
µL(d,m, δ) for all d, wherêεopt

def= minh∈Fd{ε̂(h)}. That is,̂εopt is the minimum training
error (on the sampleS) achievable inFd. Furthermore, asm → ∞, µL(d,m, δ) → µ̄L,
whereµ̄L is some constant which depends onL. Thus, if µ̄L is not very large, then in
the limit of largem, L does not perform much worse than the training error minimization
algorithm. We would like to note that many other definitions of adequacy are appropriate,
and can lead to statements similar to the one in Theorem 2 below.

Theorem 2 Let ({Fd}, f,D, L) be an instance of the model selection problem in which
L is an adequate learning algorithm, and whered is the VC dimension ofFd. LetG :
< × < → < be a function that is continuous and increasing in both its arguments, and let
εG(m) denote the random variable whose value is the generalization error of the hypothesis
chosen by the penalty-based model selection algorithmd̃ = argmind{G(ε̂(d), d/m)} on a
training sample of sizem. Then

εG(m) ≤ RG(m) + β(d̃,m, δ/2) (34)

whereRG(m) approachesmind{εopt(d)}+ µ̄L asm→∞, and is defined as follows:

RG(m) def= min
d

{
G−1

0 (G (εopt(d) + µL(d,m, δ/2) + β(d,m, δ/2)) , d/m)
}

(35)

whereG0(·) def= G(·, 0).
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Proof Sketch: The proof is very similar to the proof of Theorem 1 and hence we need
only point out the differences. As in the proof of Theorem 1 we have that for any value of

d G
(
ε̂(d̃), d̃/m

)
≤ G (ε̂(d), d/m). It is still true that with probability at least1 − δ/2,

ε̂(d̃) is bounded from below byε(d̃) + β(d̃,m, δ/2), however, we cannot bound̂ε(d)
by εopt(d) + β(d,m, δ/2) since it is not true any longer thatε̂(d) is the minimal error
achievable inFd. Instead we have that with probability at least1 − δ/2, for everyd,
ε̂(d) ≤ ε̂opt(d) +µ(d,m, δ/2), and hence with probability at least1− δ, ε̂(d) ≤ εopt(d) +
µ(d,m, δ/2) + β(d,m, δ/2). The rest of the proof follows as in Theorem 1 where we get
that for everyd

ε(d̃) ≤ G−1
0 (G (εopt(d) + µ(d,m, δ/2) + β(d,m, δ/2), d/m)) + β(d̃,m, δ/2).

(36)

Using our assumption on the adequacy ofL we have that asm→∞,

min
d

{
G−1

0 (G (εopt(d) + µ(d,m, δ/2) + β(d,m, δ/2), d/m))
}
→ min{εopt(d)}+ µ̄L,

(37)

as required.

Theorem 3 Let ({Fd}, f,D, L) be an instance of the model selection problem in which
L performs training error minimization, and whered is the VC dimension ofFd. Let
G : <×< → <be a function that is continuous and increasing in both its arguments, and let
εG(m) denote the random variable whose value is the generalization error of the hypothesis
output by the penalty-based model selection algorithmd̃ = argmind{G(ε̂(d), d/m)} on a
training sample of sizem, and in the presence of noise at rateη. Then

εG(m) ≤ RG(m, η) +
1

1− 2η
β(d̃,m, δ) (38)

whereRG(m, η) approachesmind{εopt(d)} asm→∞, and is defined as follows:

RG(m, η) def=
1

1− 2η
min
d

{
G−1

0 (G ((1− 2η)εopt(d) + η + β(d,m, δ)) , d/m)
}
− η

(39)

whereG0(·) def= G(·, 0).

Proof Sketch: The proof of Theorem 3 follows the same sequence of inequalities as
the proof of Theorem 1, except that each occurrence ofε(·) should be exchanged with
εη(·), and each occurrence ofεopt(·) should be exchanged withεηopt(·). Thus, similarly to
Equation (24), we have that

εη(d̃) ≤ G−1
0

(
G
(
εηopt(d) + β(d,m, δ), d/m

))
+ β(d̃,m, δ). (40)

If we now apply the equalityεη(h) = (1− 2η)ε(h) + η we get that for everyd
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ε(d̃) ≤ 1
1− 2η

[
G−1

0 (G ((1− 2η)εopt(d) + η + β(d,m, δ), d/m)) + β(d̃,m, δ)
]
− η.

(41)

Again, similarly to the proof of Theorem 1, we have that asm→∞,

min
d

{
G−1

0 (G ((1− 2η)εopt(d) + η + β(d,m, δ), d/m))
}
→ (1− 2η) min{εopt(d)}+ η,

(42)

and thus we get the desired bound. Note that the rate of convergence of ofRG(m, η) to
the optimal error depends now on the size ofη as well as onG. The same is true for the
penalty complexity term in the bound. It is not very surprising, that asη approaches1/2,
the bound worsens.

6. A Bound on the Additional Error of CV

In this section we state a general theorem bounding the additional generalization error
suffered by cross validation compared to anypolynomial complexitymodel selection algo-
rithmM . By this we mean that given a sample of sizem, algorithmM will never choose
a value ofd̃ larger thanmk for some fixed exponentk > 1. We emphasize that this is a
mild condition that is met in practically every realistic model selection problem: although
there are many documented circumstances in which we may wish to choose a model whose
complexity is on the order of the sample size, we do not imagine wanting to choose, for
instance, a neural network with a number of nodesexponentialin the sample size. For the
next theorem, recall that the parameterγ ∈ [0, 1] denotes the fraction of examples withheld
for testing by the CV algorithm, and that we assume thatγm is an integer.

Theorem 4 Let M be any polynomial complexity model selection algorithm, and let
({Fd}, f,D, L) be any instance of model selection. Letεm(m) and εcv(m) denote the
generalization error of the hypotheses chosen byM and CV respectively. Then for any
givenδ > 0, with probability at least1− δ:

εcv(m) ≤ εm((1− γ)m) +O

(√
ln(m/δ)
γm

)
. (43)

In other words, the generalization error of CV onm examples is at most the generalization
error ofM on (1− γ)m examples, plus the “test penalty term”O(

√
ln(m/δ)/(γm)).

Proof: Let S = (S′, S′′) be a random sample ofm examples, where|S′| = (1 − γ)m
and |S′′| = γm. Let dmax = ((1 − γ)m)k be the polynomial bound on the complexity
selected byM , and leth̃′1 ∈ F1, . . . , h̃

′
dmax

∈ Fdmax be determined bỹh′d = L(S′, d).
By definition of CV,d̃ is chosen according tõd = argmind{ε̂S′′(h̃′d)}. For a giveñh′d, we
know by Hoeffding’s Inequality (Hoeffding, 1963) that for anyα > 0,

Pr
[∣∣∣ε(h̃′d)− ε̂S′′(h̃′d)∣∣∣ > α

]
< 2 exp(−2α2γm). (44)
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The probability that somẽh′d deviates by more thanα from its expected value is therefore
bounded by2mk exp(−2α2γm). It follows that for any givenδ, with probability at least
1− δ over the draw ofS′′,

|ε(h̃′d)− ε̂S′′(h̃′d)| = O

(√
ln(m/δ)
γm

)
(45)

for all d ≤ dmax . Therefore with probability at least1− δ

εcv = min
d
{ε(h̃′d)}+O

(√
ln(m/δ)
γm

)
. (46)

But as we have previously observed, the generalization error ofanymodel selection algo-
rithm (includingM ) on inputS′ is lower bounded bymind{ε(h̃′d)}, and our claim directly
follows.

Note that the bound of Theorem 4 doesnotclaimεcv(m) ≤ εm(m) for all m (which would
mean that cross validation is an optimal model selection algorithm). The bound given is
weaker than this ideal in two important ways. First, and perhaps most importantly,εm((1−
γ)m) may be considerably larger thanεm(m). This could either be due to properties of the
underlying learning algorithmL, or due to inherentphase transitions(sudden decreases)
in the optimal information-theoretic learning curve (Seung, Sampolinsky, & Tishby, 1992,
Haussler, Kearns, Seung, & Sampolinsky, 1994) — thus, in an extreme case, it could be
that the generalization error that can be achieved within some classFd by training onm
examples is close to 0, but that the optimal generalization error that can be achieved inFd
by training on a slightly smaller sample is near1/2. This is intuitively the worst case for
cross validation — when the small fraction of the sample saved for testing was critically
needed for training in order to achieve nontrivial performance — and is reflected in the first
term of our bound. Obviously the risk of “missing” phase transitions can be minimized by
decreasing the test fractionγ, but only at the expense of increasing the test penalty term,
which is the second way in which our bound falls short of the ideal. However, unlike the
potentially unbounded differenceεm((1 − γ)m) − εm(m), our bound on the test penalty
can be decreased without any problem-specific knowledge by simplyincreasingthe test
fractionγ.

Despite these two competing sources of additional CV error, the bound has some strengths
that are worth discussing. First of all, the bound does not simply compare the worst-case
error of CV to the worst-case error ofM over a wide class of model selection problems; the
bound holds foranyfixed model selection problem instance({Fd}, f,D, L). We believe
that giving similarly general bounds for any penalty-based algorithm would be extremely
difficult, if not impossible. The reason for this belief arises from the diversity of learning
curve behavior documented by the statistical mechanics approach (Seung, Sampolinsky, &
Tishby, 1992, Haussler, Kearns, Seung, & Sampolinsky, 1994), among other sources. In the
same way that there is no universal learning curve behavior, there is no universal behavior
for the relationship between the functionsε̂(d) andε(d) — the relationship between these
quantities may depend critically on the target function and the input distribution (this point
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is made more formally in Section 7). CV is sensitive to this dependence by virtue of its
target function-dependent and distribution-dependent estimate ofε(d). In contrast, by their
very nature, penalty-based algorithms propose auniversalpenalty to be assigned to the
observation of error̂ε(h) for a hypothesish of complexityd.

A more technical feature of Theorem 4 is that it can be combined with bounds derived for
penalty-based algorithms using Theorem 1 to suggest how the parameterγ should be tuned.
For example, lettingM be the SGRM algorithm described in Section 5, and combining
Equation (28) with Theorem 4 yields

εcv(m) ≤ εsgrm((1− γ)m) +
√

ln(2dmax(m)/δ)/2γm (47)

≤ min
d
{εopt(d) + 2β(d, (1− γ)m, δ)}+

√
ln(2dmax(m)/δ)

2γm
(48)

If we knew the form ofεopt(d) (or even had bounds on it), then in principle we could
minimize the bound of Equation (48) as a function ofγ to derive a recommended training/test
split. Such a program is feasible for many specific problems (such as the intervals problem),
or by investigating general but plausible bounds on the approximation rateεopt(d), such
asεopt(d) ≤ c0/d for some constantc0 > 0. For a detailed study of this line of inquiry,
see Kearns (Kearns,1995). Here we simply note that Equation (48) tells us that in cases
for which the power law decay of generalization error within eachFd holds approximately,
the performance of CV will be competitive with GRM or any other algorithm. This makes
perfect sense in light of the preceding analysis of the two sources for additional CV error:
in problems with power law learning curve behavior, we have a power law bound on
εm((1 − γ)m) − εm(m), and thus CV “tracks” any other algorithm closely in terms of
generalization error. This is exactly the behavior observed in the experiments described in
Section 4, for which the power law is known to hold approximately.

We conclude this section with a noisy version of Theorem 4, whose correctness directly
follows from the proof of Theorem 4, together with the equalityεη(h) = (1− 2η)ε(h) + η.

Theorem 5 Let M be any polynomial complexity model selection algorithm, and let
({Fd}, f,D, L) be any instance of model selection. Letεm(m) and εcv(m) denote the
expected generalization error of the hypotheses chosen byM and CV respectively when the
sample is corrupted by noise at rateη. Then for any givenδ > 0, with probability at least
1− δ

εcv(m) ≤ εm((1− γ)m) +O

(
1

1− 2η

√
ln(m/δ)/(γm)

)
. (49)

7. Limitations on Penalty-Based Algorithms

Recall that our experimental findings suggested that it may sometimes be fair to think of
penalty-based algorithms as being either conservative or liberal in the amount of coding
they are willing to allow in their hypothesis, and that bias in either direction can result in
suboptimal generalization that is not easily overcome by slight adjustments to the form of the
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rule. In this section we develop this intuition more formally, giving a theorem demonstrating
some fundamental limitations on the diversity of problems that can be effectively handled
by any fixed penalty-based algorithm. Briefly, we show that there are (at least) two very
different forms that the relationship betweenε̂(d) andε(d) can assume, and that any penalty-
based algorithm can perform well on only one of these. Furthermore, for the problems we
choose, CV can in fact succeed on both. Thus we are doing more than simply demonstrating
that no model selection algorithm can succeed universally for all target functions, a statement
that is intuitively obvious. We are in fact identifying a weakness that isspecialto penalty-
based algorithms. However, as we have discussed previously, the use of CV is not without
pitfalls of its own. We therefore conclude the paper in Section 8 with a summary of the
different risks involved with each type of algorithm.

Theorem 6 For any sample sizem, there are model selection problem instances
({F d1 }, f1, D1, L) and ({F d2 }, f2, D2, L) (where the algorithmL performs empirical er-
ror minimization for the respective function classes in both instances) and a constantλ
(independent ofm) such that for any penalty-based model selection algorithmG, either

εG1 (m) ≥ min
d
{ε1(d)}+ λ

or

εG2 (m) ≥ min
d
{ε2(d)}+ λ.

Hereεi(d) is the generalization errorε(d) for instancei ∈ {1, 2}, andεGi (m) is the expected
generalization error of algorithmG for instancei. Thus, on at least one of the two model
selection problems, the generalization error ofG is lower bounded away from the optimal
valuemind{εi(d)} by a constant independent ofm.

Proof: For ease of exposition (and deviating from our conventions in the rest of the paper),
in the proof we usêεi(d) andεi(d) (i ∈ {1, 2}) to refer to the expected values. Thus,ε̂i(d)
is the expected training error of the function inF di that minimizes the training error, and
εi(d) is the expected generalization error of this same function.

We start with a rough description of the properties of the two problems (see Figure 26).
In Problem 1, the “right” choice ofd is 0, and any additional coding directly results in larger
generalization error; but the training error,ε̂1(d), decays steadily withd. The idea is that
even though the training error suggests that we make progress towards approximating the
unknown target by increasing the complexity of our hypothesis, in reality we are best off
by choosing the simplest possible hypothesis.

In Problem 2, a large amount of coding is required to achieve nontrivial generalization
error; but the training error remains large asd increases (untild = m/2, when the training
error drops rapidly). The idea here is that the training error suggests that we make little or
no progress towards approximating the unknown target by increasing the complexity of our
hypothesis, even though that is exactly what we should do for optimal generalization.

Thus in both problems, the training error is a misleading indicator of generalization. The
proof exploits the fact that if a penalty-based algorithm manages to compensate for the
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misleading behavior of the training error in one problem, it cannot do so in the other (since
the relationship between training and generalization error in the two problems is reversed).

More precisely, we will arrange things so that Problem 1 has the following properties:

1. The expected training errorε̂1(d) lies above the linear functionf(d) = η1(1 − η1) −
d/(2m), whosey-intercept isη1(1−η1), and whosex-intercept is2η1(1−η1)m ≤ m/2;

2. The expected generalization errorε1(d) is minimized atd = 0, and furthermore, for
any constantc we haveε1(cm) ≥ c/2.

Hereη1 will be the rate at which classification noise corrupts the examples for Problem 1.
We will next arrange that Problem 2 will obey:

1. The expected training error̂ε2(d) = a1 for 0 ≤ d ≤ 2η1(1 − η1)m ≤ m/2, where
η1(1− η1) > a1;

2. The expected generalization errorε2(d) is lower bounded bya1 for 0 ≤ d < m/2, but
ε2(m/2) = 0.

In Figure 26 we illustrate the conditions on̂ε(d) for the two problems, and also include
hypothetical instances of̂ε1(d) andε̂2(d) that are consistent with these conditions (and are
furthermore representative of the “true” behavior of theε̂(d) functions actually obtained for
the two problems we define in a moment).

We can now give the underlying logic of the proof using the hypotheticalε̂1(d) andε̂2(d).
Let d̃1 denote the complexity chosen byG for Problem 1, and let̃d2 be defined similarly.
First consider the behavior ofG on Problem 2. In this problem we know by our assumptions
on ε2(d) that if G fails to choosed̃2 ≥ m/2, εG2 ≥ a1, already giving a constant lower
bound onεG2 for this problem. This is the easier case; thus let us assume thatd̃2 ≥ m/2,
and consider the behavior ofG on Problem 1. Let us defined0 by ε̂1(d0) = a1. Referring
to Figure 26, we see that for0 ≤ d ≤ d0 we havêε1(d) ≥ ε̂2(d), and thus

For0 ≤ d ≤ d0, G(ε̂1(d), d/m) ≥ G(ε̂2(d), d/m) (50)

(because penalty-based algorithms assign greater penalties for greater training error or
greater complexity). Since we have assumed thatd̃2 ≥ m/2, we know that

Ford < m/2, G(ε̂2(d), d/m) ≥ G(ε̂2(d̃), d̃2/m) (51)

and in particular, this inequality holds for0 ≤ d ≤ d0. On the other hand, by our choice of
ε̂1(d), ε̂1(d̃2) = 0 (and thuŝε2(d̃2) ≥ ε̂1(d̃2)). Therefore,

G(ε̂2(d̃2), d̃2/m) ≥ G(ε̂1(d̃2), d̃2/m) . (52)

Combining the three inequalities above (Equations (50), (51) and (52)), we have that

For0 ≤ d ≤ d0, G(ε̂1(d), d/m) ≥ G(ε̂1(d̃2), d̃2/m) (53)

from which it directly follows that in Problem 1,G cannotchoose0 ≤ d̃1 ≤ d0. From the
definition off(d) in our first condition on Problem 1, it follows thatd0 ≥ 2(η1(1− η1)−
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a1) m. Using the second condition on Problem 1 we get thatεG1 ≥ ε1(d0) ≥ η1(1−η1)−a1,
and thus we have a constant lower bound onεG1 .

Now we describe the two problems used in the proof, and briefly argue why they have
the desired properties. We are in fact already familiar with the first problem: the class
F d1 is simply the class of alld-alternation functions over[0, 1], the target function is the
0-alternation function that classifies all examples as negative, the input distributionD1 is
uniform over[0, 1], and we may choose any constant noise rateη1. Now clearly under
these settings we haveεopt

1 (0) = ε1(0) = 0 (where we letεopt
i (d) denoteεopt(d) for

problemi), andε1(d) > 0 for anyd > 0 (because the noise in the sample will cause us
to code “false alternations”). Furthermore, each additional false interval that is coded will
result in an additionalΘ(1/m) generalization error, thus resulting in the desired property
ε1(cm) ≥ c/2. Finally, we obviously expect̂ε1(0) = η1, and using the same argument
applied in the explanation of Equation (14) (where in our cases = 0), we have that the
expected number of label alternations required to achieve training error 0 is2η1(1− η1)m.
Furthermore, for everyd < 2η1(1 − η1)m, ε̂1(d + 2) ≤ ε̂1(d) − 1/m (since by adding
two switch points, at least one additional sample point can be labeled consistently). Hence,
ε̂1(d) must lie above the linear function whose slope is−1/(2m) and whosex-intercept is
2η1(1− η1)m, as required.

For the second problem, let us begin with the input space{0, 1}N for some valueN >>
m. The function classF d2 consists of all parity functions in which only the variables
x1, . . . , xd are permitted to appear, the target functionf ∈ Fm/22 isf(~x) = x1⊕· · ·⊕xm/2,
and the input distributionD2 is uniform over{0, 1}N . The noise rateη2 = 0 (larger values
will work as well). Under these settings, it holds (since the probability of disagreement
between every two different parity functions is1/2) that εopt

2 (d) = 1/2 for 0 ≤ d <

m/2, thus implying thatε2(d) ≥ 1/2 in the same range. Furthermore, sincef ∈ Fm/22 ,
εopt
2 (m/2) = 0 and with high probability (for a large enough sample)ε2(m/2) = 0 and
ε̂2(d) ≈ 1/2 for 0 ≤ d < m/2. Note that we have almost satisfied the desired conditions
on Problem 2, using the valuea1 = 1/2; however, the conditions on Problem 2 and the
lower bound argument given above require further thatη1(1 − η1) > a1. We can easily
arrange this final condition by simply scaling downa1, by adding a “special” point to the
domain on which all functions inF d2 agree (details are omitted). Referring to Figure 26,
notice that the “optimal” setting ofa1 is determined by the trade-off betweena1 (which
lower bounds the error of algorithms failing on Problem 2) andd0/m (which lower bounds
the error of algorithms failing on Problem 1). This concludes the proof of Theorem 6.

There are a number of limitations to Theorem 6, including the fact that the two problems
must be “tuned” for a particular sample sizem, and the fact that Problem 2 relies on the
dramatic properties of the parity learning curve, which one might argue are atypical of
learning curves found in practice. However, we believe that the essential message of the
theorem remains relevant:

• There is no universal (that is, holding for all target functions, distribution, and hypothesis
classes) relationship between training and generalization error.
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• By their very nature, penalty-based algorithms implicitly assume a particular relation-
ship between training and generalization error.

• If the assumed relationship is not accurate for the problem under consideration, gener-
alization error may suffer, possibly severely.

8. Conclusions

Based on both our experimental and theoretical results, we offer the following conclusions:

Model selection algorithms that attempt to reconstruct the curveε(d) solely by examining
the curvêε(d) often have a tendency to overcode or undercode in their hypothesis for
small sample sizes, which is exactly the sample size regime in which model selection
is an issue. Such tendencies are not easily eliminated without suffering the reverse
tendency.

There exist model selection problems in which a hypothesis whose complexity is close
to the sample size should be chosen, and in which a hypothesis whose complexity is
close to 0 should be chosen, but that generateε̂(d) curves with insufficient information
to distinguish which is the case. The penalty-based algorithms cannot succeed in both
cases, whereas CV can.

The error of CV can be bounded in terms of the error of any other algorithm. The only cases
in which the CV error may be dramatically worse are those in which phase transitions
occur in the underlying learning curves at a sample size larger than that held out for
training by CV.

Thus we see that both types of algorithms considered have their own Achilles’ Heel. For
penalty-based algorithms, it is an inability to distinguish two types of problems that call for
drastically different hypothesis complexities. For CV, it is phase transitions that unluckily
fall between(1− γ)m examples andm examples.

Finally, we wish to remark that although we have limited our attention here to the case
of supervised learning of boolean functions, we believe that many of the principles uncov-
ered (such as the limitations of penalty-based algorithms, and the tracking abilities of cross
validation) will be applicable to practically any learning setting in which there is a model
minimizing an expected loss (generalization error) must be derived from independent ob-
servations from a source. A prime example for further investigation would be distribution
learning with respect to the Kullback-Liebler divergence (log loss), whereεopt -based upper
bounds for MDL-like rules are already known (Barron & Cover, 1991), yet there also exist
phase transitions for natural problems (Haussler, Kearns, Seung, & Sampolinsky, 1994).
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Appendix: Experimental Details

All experimental results described in this paper are obtained for the intervals model selection
problem. Recall that in this problem, the function classFd consists of all boolean functions
over the domain[0, 1] which have at mostd alternations of label. There are two main
reasons for choosing this problem for our investigation. The first is that the complexity of
the hypothesis functions is unlimited; in particular, it is not hard to show that the Vapnik-
Chervonenkis dimension ofFd is d, and thus asd increases we allow arbitrarily complex
functions. The second reason is that this is one of the few cases in which training error
minimization is feasible12. (A number of papers provide evidence for the intractability of
training error minimization for a variety of natural function classes (Pitt & Valiant, 1988,
Blum & Rivest, 1989, Kearns, Schapire, & Sellie, 1992).)

More precisely, there is an algorithm that on input anarbitrary sampleS = {〈xi, bi〉}
(wherexi ∈ [0, 1] andbi ∈ {0, 1}) and complexity valued, outputs a function inVSS(d).
The algorithm is based on dynamic programming, and a straightforward implementation
yields a running time that isO(dm2). However, we have developed a more sophisticated
implementation, described below that yields a running time ofO(m logm). The algorithm
was implemented in the C++ programming language on an SGI Challenge XL with 8 150
MHz processors and 1 gigabyte of RAM. This implementation allowed execution of the
training error minimization algorithm on samples of size up tom ≈ 15000 in only a few
seconds of real time.

The fast training error minimization code was the heart of a more elaborate experimental
tool that offered the following features:

• The user specifies a target intervals function over[0, 1] in a file that indicates the values
at which the function changes label. Thus, a file containing the values 0.15, 0.40,
0.75 specifies the boolean function that is 1 on the interval[0, 0.15), 0 on the region
[0.15, 0.40), 1 on the region[0.40, 0.75) and 0 on the region[0.75, 1.0].

• The user specifies the sample sizem, and the noise rateη with which the labels in
the sample will be corrupted with noise. The user also specifies one or more model
selection algorithms, such as GRM, MDL or CV.

• A random sampleS of sizem of the specified target function corrupted by the specified
noise rate is then generated by the program (inputs are drawn according to the uniform
distribution). For each value ofd from0 tom,S andd are then given to the training error
minimization code. This code returns a functionh̃d ∈ VSS(d). If VSS(d) contains
functions giving different labelings toS, the code chooses the least in a lexicographic
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ordering. The hypothesis selected fromVSS(d) always has its label alternation points
exactly midway between sample inputs.

• For each̃hd, the true generalization errorε(h̃d) is computed with respect to the specified
target function, thus allowing exact computation of the curveε(d).

• For each̃hd, the total penalty assigned tõhd by the chosen model selection algorithm is
computed from̃hd, S andd. Minimization of this total penalty with respect tod is then
performed by the code, resulting in the hypothesish̃d̃ chosen by the specified model
selection algorithm. The error of this hypothesis can then be compared with that of
other model selection algorithms, as well as the optimal valuemind{ε(d)}.

The experiments given in the paper were all performed using a target function of 100
regions of equal width and alternating label. The code provides an option for repeated trials
at each sample size, which was used extensively in the experiments. The code produces plot
files that were averaged where appropriate. The postscript plots shown were generated by
reading the plot files generated by the code into the Xmaple system, which allows postscript
output.

An Efficient Training Error Minimization Algorithm

Let S = {(x1, b1), . . . , (xm, bm) be a labeled sample, wherexi ∈ [0, 1] andbi ∈ {+,−}.
Assume without loss of generality thatx1 < x2 < . . . < xm. We next show how to find a
hypothesishd with d intervals that has minimum training error onS. We represent such a
hypothesis by a partition of the (ordered) examples inS into d consecutive subsequences,
S1, . . . , Sd, whereSk = xik , xik+1, . . . , xik+1−1. With each subsequenceSk, the hypoth-
esis associates a label`(Sk) ∈ {+,−}, such that̀ (Sk) 6= `(Sk+1). The hypothesis can
be defined on[0, 1] by using(xik−1 + xik)/2, for every2 ≤ k ≤ d, as itsd − 1 switch
points, and labeling the intervals consistently with`(·). We say that a hypothesis havingi
intervals isoptimal if it has minimum training error among all hypotheses with (exactly)i
intervals. We next show how to transform any optimal hypothesis havingi intervals into
one havingi− 2 intervals. We later discuss how this transformation can be used in order to
find an optimal hypothesishd with d intervals, for every1 ≤ d ≤ t, wheret is the minimal
number of intervals of a hypothesis consistent with the sample.

Given an optimali–intervals hypothesishi, letS1, . . . , Si, be the partition of the sample
into subsequences associated withhi, and let`i(·) be the corresponding labeling of the
subsequences. With each subsequence we associate anadvantage, a(Sk), which is defined
to be the number of examples inSk whose label equals̀i(Sk), minus the number of examples
in Sk whose label differs from̀i(Sk). intuitively, the advantage of a subsequence measures
how advantageous it is to keep it labeled by its current label (or, equivalently, how damaging
it is to flip its label). In order to transformhi into an optimali − 2–intervals hypothesis,
hi−2, we do the following.

Let Sk, 1 < k < i, be a subsequence which has minimum advantage among all subse-
quences but the two external subsequences,S1 andSi. If a(Sk) ≤ a(S1) + a(Si) then
we flip the label ofSk. Namely, the newi − 2–intervals hypothesis,hi−2, is associated
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with the same partition and labeling of sample subsequences ashi, except, that it has a
single subsequence in place of the three subsequencesSk−1, Sk andSk+1, and the label
of this subsequence equals`i(Sk−1) (= `i(Sk+1). If a(S1) + a(Si) < a(Sk), thenhi−2

is obtained by flipping the labels of bothS1 andSi, again decreasing the number of subse-
quences (and intervals) by two. The reason for this seemingly less natural modification is
that by flipping the label of a single external subsequence, the number of intervals is only
reduced by only 1, while we want to maintain the parity of the number of intervals.

Lemma 1 For everyi, 3 ≤ i ≤ t, given an optimal hypothesishi which hasi–intervals,
hi−2 is an optimal hypothesis withi− 2 intervals.

Proof: Assume contrary to the claim that there exists a hypothesisgi−2 with i−2 intervals
which has strictly smaller training error thanhi−2. Thuŝε(gi−2) < ε̂(hi−2) = ε̂(hi)+amin,
whereamin is the advantage of the subsequence(s) flipped when transforminghi intohi−1.
We shall show that if such a hypothesisgi−2 exists then we could obtain a hypothesisgi
with i intervals which has strictly smaller error thanhi, contradicting the optimality of
hi. Let T1, . . . , Ti−2 be the sample subsequences associated withgi−2, and for eachTj ,
1 ≤ j ≤ i−2, let`g(Tj) be the labelgi−2 assigns toTj . Assume, without loss of generality,
thatgi−2 cannot be improved by local changes. Namely, that the examples at the beginning
and the end of each subsequence (except perhaps forx1 andxm) have the same label as
the subsequence. Note that this must be true forhi due to its optimality. Sincegi−2 has
two intervals less thanhi, some of its subsequences must contain subsequences ofhi, and
furthermore, there must be disagreements in their labeling. More precisely, we consider
the following two cases:

1. SomeTj contains an internal subsequenceSk ofhi, such that̀g(Tj) 6= `i(Sk). Namely,
Tj is of the formRSkR′, whereR andR′ must be non-empty subsequences, since by
the optimality ofhi, Sk must begin and end with examples labeled`i(Sk), while the
opposite is true forTj . But we know thata(Sk) ≥ amin, and hence by breakingTj into
three subsequences,R, Sk andR′, and labelingSk by `i(Sk) we obtain ani–intervals
hypothesisgi such that

ε̂(gi) = ε̂(gi−2)− a(Sk) < ε̂(hi−2)− amin = ε̂(hi)

contradicting the optimality ofhi.

2. If Item 1 does not hold then it is not hard to verify by simple counting, that it must be
the case that both̀g(T1) 6= `i(S1), and`g(Ti−2) 6= `i(Si) in which case we create two
corresponding new intervals, resulting in a hypothesisgi such that̂ε(gi) < ε̂(hi).

Thus, in both cases we reach a contradiction to the optimality ofhi, and the lemma follows.

Given any1 ≤ d ≤ t, we find an optimal hypothesis which hasd intervals as follows. Let
S1, . . . , St be the minimal partition of the sample into single-labeled subsequences, and let
`t(Sk) be the label of the examples inSk. Clearly, a hypothesisht defined based on this
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partition and labeling, is consistent with the sample and is hence optimal. In cased has
the same parity ast, then starting from the optimalt–intervals hypothesisht, we obtain a
sequence of hypothesesht−2, . . . , hd, wherehi is an optimali–intervals hypotheses, by
applying the transformation described above(t− d)/2 times. In cased has parity opposite
to t, we need to start with an optimal hypothesis havingt − 1 intervals. It is not hard to
verify that such a hypothesis is very similar to the consistent one, except that one of the
external subsequences,S1 or St, is merged into a single subsequence with its neighboring
subsequenceS2 (respectively,St−1). The label of the resulting subsequence is the label of
the latter subsequence.

Finally, we address the question of the running time of the algorithm. Note that by setting
d = 1, we can getall optimal hypotheses with an odd number of intervals, and by setting
d = 0 we get all optimal hypotheses with an even number of intervals. In both cases
we performm/2 iterations (where in each iteration we transform an optimali–intervals
hypothesis into an optimali−2–intervals hypothesis). If we keep the subsequences both in
a doubly-linked list, and in a heap (according to their advantage), we can implement each
iteration inO(log(m)) time, resulting in anO(m logm)-time algorithm.

Notes

1. Except in circumstances where confusion may result, for brevity we shall adopt the notational convention of
leaving implicit the many dependencies of the various quantities we define. Thus, we suppress the obvious
dependence ofε(h) onf andD, the dependence of empirical quantities on the random sampleS, and so on.

2. Such a nested sequence is called astructureby Vapnik (1982), and is sometimes, but not always, the setting
in which model selection methods are examined.

3. We put the terms “bias” and “variance” in quotes in this paragraph to distinguish our informal use of them
from their related but more precise statistical counterparts.

4. A common way of informally expressing this behavior is to say that for smalld, the functions inVS(d)
“underfit” the sampleS, meaning thatFd is not sufficiently expressive to capture the underlying regularities
of f exposed byS, and for larged, the functions inVS(d) “overfit” the sampleS.

5. We stress that our goal here is simply to give one instantiation of MDL. Other coding schemes are obviously
possible, including perhaps some that would yield better performance on the ensuing experiments. Further-
more, since we will make use of certain approximations in the calculation of the code lengths, it is perhaps
more accurate to think of the resulting model selection rule as “MDL-inspired” rather than MDL in the strictest
sense of the term. Nevertheless, we feel that the experimental results are indicative of the type of behavior
that is possible for MDL-style rules, and furthermore, several of our formal results will hold for essentially all
MDL instantiations.

6. Notice that in this encoding, we are actually using the sample inputs to describeh. It is not difficult to see that
under the assumption that the inputs are uniformly distributed in[0, 1], this can be replaced by discretizing
[0, 1] using a grid of resolution1/p(m), for some polynomialp(·), and using the grid points to describe the
switches ofh.

7. With appropriately modified assumptions, all of the formal results in the paper hold for the more general form
G(ε̂(d), d,m), where we decouple the dependence ond andm. However, the simpler coupled form will
usually suffice for our purposes.

8. Similar results hold for a randomly chosen target function.

9. Similar results are obtained in experiments in which every occurrence ofd in the GRM rule is replaced by an
“effective dimension”c0d for any constantc0 < 1.

10. In fact, Vapnik (1982, page 160) gives a more general statement concerning the uniform estimation of proba-
bilities from their frequencies in a class of events of limited VC dimension.
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11. Note that the plots in the figures are based on noisy data, while Theorem 1 assumes there is no noise. However,
as can be observed from Theorem 3, the bound onεG(m) is the noisy case, is similar in structure to the bound
in the noise-free case.

12. This is important in light of our earlier assertion that a good model selection algorithm should at least perform
well when the underlying learning algorithm implements training error minimization, and we do not wish any
of our experimental results to be artifacts of the unknown properties of heuristics such as backpropagation or
ID3.
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Figure 1. Experimental plots of the functionsε(d) (lower curve with local minimum),εη(d) (upper
curve with local minimum) and̂ε(d) (monotonically decreasing curve) versus complexityd for a
target function of 100 alternating intervals, sample size 2000 and noise rateη = 0.2. Each data point
represents an average over 10 trials. The flattening ofε(d) andεη(d) occurs at the point where the
noisy sample can be realized with no training error. ; by convention, our algorithm never adds more
alternations of label than necessary to achieve zero training error. Note that the Vapnik model ofε(d)

as the sum of̂ε(d) plus a complexity penalty term of the approximate form
√
d/m is fairly accurate

here; see Figure 2.

Figure 2. Plot of εη(d)− ε̂(d) versus complexityd for the same experiments used to obtain Figure 1.
As function ofd/m it appears that̂ε(d)− εη(d) has an initial regime (ford << 100, or for thism,
d/m < 100/2000 = 0.05) with behavior that is approximatelyΘ(

√
d/m), and a later regime (for

d/m >> 0.05) in which the behavior is linear ind/m.
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Figure 3. Experimental plots of generalization errorsεmdl(m) (most rapid initial decrease),εcv(m)
(intermediate initial decrease) andεgrm(m) (least rapid initial decrease) versus sample sizem for
a target function of 100 alternating intervals and noise rateη = 0.20. Each data point represents an
average over 10 trials. Note that the “shelf” ofεmdl is approximately at the noise rateη = 0.20,
since MDL is coding all the noisy labels. Also, note by comparing the above plot to the plots in
Figures 9 and 11 that the performance of MDL relative to the other two methods is degrading as the
noise rate increases.

Figure 4. Experimental plots of hypothesis lengthsd̃mdl(m) (most rapid initial increase),̃dcv(m)
(intermediate initial increase) and̃dgrm(m) (least rapid initial increase) versus sample sizem for a
target function of 100 alternating intervals and noise rateη = 0.20. Each data point represents an
average over 10 trials.
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Figure 5.Experimental plots of generalization errorsεmdl (most rapid initial decrease),εcv (interme-
diate initial decrease) andεgrm (least rapid initial decrease) as a function of sample size for a target
function of 100 alternating intervals and noise rateη = 0.0. Each data point represents an average
over 10 trials. Note the similar performance for the three methods in this noise-free case, where there
is no danger of “overcoding”.

Figure 6. Experimental plots of hypothesis lengthsd̃mdl (most rapid initial increase),̃dcv (interme-
diate initial increase) and̃dgrm (least rapid initial increase) as a function of sample size for a target
function of 100 alternating intervals and noise rateη = 0.0. Each data point represents an average
over 10 trials. In this noise-free case, all three methods rapidly settle on the target length.
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Figure 7.Experimental plots of generalization errorsεmdl (most rapid initial decrease),εcv (interme-
diate initial decrease) andεgrm (least rapid initial decrease) as a function of sample size for a target
function of 100 alternating intervals and noise rateη = 0.10. Each data point represents an average
over 10 trials. Note the appearance of a second regime in the relative behavior of MDL and GRM
with the introduction of noise.

Figure 8. Experimental plots of hypothesis lengthsd̃mdl (most rapid initial increase),̃dcv (interme-
diate initial increase) and̃dgrm (least rapid initial increase) as a function of sample size for a target
function of 100 alternating intervals and noise rateη = 0.10. Each data point represents an average
over 10 trials. Note the correspondence between MDL’s rapid decay inεmdl shortly afterm = 2000
and the rapid drop of̃dmdl to the target value of 100.
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Figure 9. Experimental plots of generalization errorsεmdl (most rapid initial decrease),εcv (inter-
mediate initial decrease) andεgrm (least rapid initial decrease) as a function of sample size for a
target function of 100 alternating intervals and noise rateη = 0.30. Each data point represents an
average over 10 trials. Notice the increasing variance of CV performance as the noise rate increases;
this variance disappears asymptotically, but shows clearly at small sample sizes.

Figure 10.Experimental plots of hypothesis lengthsd̃mdl (most rapid initial increase),̃dcv (interme-
diate initial increase) and̃dgrm (least rapid initial increase) as a function of sample size for a target
function of 100 alternating intervals and noise rateη = 0.30. Each data point represents an average
over 10 trials. In this and the other plots, the apparent quantization ofd̃mdl during its transition
down to the target value of 100 is an artifact of the averaging; on any given run, the method will
choose between one of the two competing local minima atd = 100 and the point of consistency with
the sample. The 11 quantized values ford̃mdl observed during this transition simply represent the
number of times (0, . . . , 10) that one of the minima can be visited out of 10 trials.



42 M. KEARNS, ET AL.

Figure 11. Experimental plots of generalization errorsεmdl (top plot), εcv (intermediate plot) and
εgrm (bottom plot) as a function of sample size for a target function of 100 alternating intervals and
noise rateη = 0.40. Each data point represents an average over 10 trials. At this large noise rate,
εmdl fails to transition from its shelf atη even bym = 15000.

Figure 12. Experimental plots of hypothesis lengths̃dmdl (top plot), d̃cv (intermediate plot) and
d̃grm (bottom plot) as a function of sample size for a target function of 100 alternating intervals and
noise rateη = 0.40. Each data point represents an average over 10 trials.
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Figure 13. MDL penalty as a function of complexityd for a single run on 500 examples of a target
function of 100 alternating intervals and noise rateη = 0.20. Notice the appearance of a local
minimum near the target length of 100.

Figure 14. MDL total penaltyH(ε̂(d)) + H(d/m) versus complexityd for a single run on 2000
examples of a target function of 100 alternating intervals and noise rateη = 0.20. There is a local
minimum at approximatelyd = 100, and the global minimum at the point of consistency with the
noisy sample.
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Figure 15. MDL total penaltyH(ε̂(d)) + H(d/m) versus complexityd for a single run on 4000
examples of a target function of 100 alternating intervals and noise rateη = 0.20. The global
minimum has now switched from the point of consistency to the target value of 100.

Figure 16. Plot of the functionH(2η(1 − η) + (s/m)(1 − 2η)2) −H(η) −H(s/m) as a function
of η for s/m = 0.01. Positive values predict that MDL will choose the “correct” complexityd = s,
while negative values predict that MDL will “overcode” by choosingd = d0. For this value ofs/m,
increasing the noise rate can only cause degradation of performance. However, note the nonmonotonic
behavior.
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Figure 17. Plot of the functionH(2η(1 − η) + (s/m)(1 − 2η)2) −H(η) −H(s/m) as a function
of η for s/m = 0.04. Note the behavior near 0, and see Figure 18.

Figure 18.Detail of Figure 17 for smallη. Here the nonmonotonic behavior has an interesting effect:
increasing the noiserate may actually cause the value ofd chosen by MDL to move fromd = d0 to
the superiord = s.
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Figure 19. GRM penalty as a function of complexityd for a single run on 500 examples of a target
function of 100 alternating intervals and noise rateη = 0.20.

Figure 20. GRM total penaltŷε(d) + (d/m)(1 +
√

1 + ε̂(d)m/d) versus complexityd for a single
run on 2000 examples of a target function of 100 alternating intervals and noise rateη = 0.20.
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Figure 21. GRM penalty as a function of complexityd for a single run on 4000 examples of a target
function of 100 alternating intervals and noise rateη = 0.20.

Figure 22.Experimental plots of generalization errorεgrm(m) using complexity penalty multipliers
1.0 (slow initial decrease) and 0.5 (rapid initial decrease) on the complexity penalty term(d/m)(1 +√

1 + ε̂(d)m/d) versus sample sizemon a target of 100 alternating intervals and noise rateη = 0.20.
Each data point represents an average over 10 trials.
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Figure 23. Experimental plots of hypothesis length̃dgrm(m) using complexity penalty multipliers
1.0 (slow initial increase) and 0.5 (rapid initial increase) on the complexity penalty term(d/m)(1 +√

1 + ε̂(d)m/d) versus sample sizemon a target of 100 alternating intervals and noise rateη = 0.20.
Each data point represents an average over 10 trials.

Figure 24. Experimental plots of generalization errorεmdl using complexity penalty multipliers 1.0
(rapid initial decrease) and 1.25 (slow initial decrease) as a function of sample size on a target of 100
alternating intervals and noise rateη = 0.20. Each data point represents an average over 10 trials.
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Figure 25. Experimental plots of hypothesis length̃dmdl using complexity penalty multipliers 1.0
(rapid initial increase) and 1.25 (slow initial increase) as a function of sample size on a target of 100
alternating intervals and noise rateη = 0.20. Each data point represents an average over 10 trials.
The adjustment to the rule here seems only to have caused damage, since the only effect is to keep
d̃grm at 0 (undercoding) untilm is close to 2000, and then to rapidly approach 100 from below,
whereas in the unmodified (constant penalty multiplier 1.0) ruled̃grm approached 100 from above
at approximately the sample sample size, but achieved nontrivial generalization error in the initial
overcoding region. Some simple calculations indicate that even if the constant is increased only to the
value1.0000001, the approach to 100 from below will still not commence untilm > 2000. Larger
values for the constant will of course only perform even more poorly.
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Figure 26. Figure illustrating the proof of Theorem 6. The dark lines indicate typical behavior for
the two training error curveŝε1(d) andε̂2(d), and the dashed lines indicate the provable bounds on
ε̂1(d). We use the notation d0 to indicate the intersection pointd0 of the proof.
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