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1 Introduction

In the model selection problem, we must balance the com-
plexity of a statistical model with its goodness of fit to the
training data. This problem arises repeatedly in statistical es-
timation, machine learning, and scientific inquiry in general.
Instances of the model selection problem include choosing
the best number of hidden nodes in a neural network, de-
termining the right amount of pruning to be performed on
a decision tree, and choosing the degree of a polynomial fit
to a set of points. In each of these cases, the goal is not to
minimize the error on the training data, but to minimize the
resulting generalization error.

Many model selection algorithms have been proposed in the
literature of several different research communities, too many
to productively survey here. (A more detailed history of the
problem will be given in the full paper.) Perhaps surprisingly,
despite the many proposed solutions for model selection and
the diverse methods of analysis, direct comparisons between
the different proposals (either experimental or theoretical)
are rare.

The goal of this paper is to provide such a comparison,
and more importantly, to describe the general conclusions to
which it has led. Relying on evidence that is divided between
controlled experimental results and related formal analysis,
we compare three well-known model selection algorithms.
We attempt to identify their relative and absolute strengths
and weaknesses, and we provide some general methods for
analyzing the behavior and performance of model selection
algorithms. Our hope is that these results may aid the in-
formed practitioner in making an educated choice of model
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selection algorithm (perhaps based in part on some known
properties of the model selection problem being confronted).

The summary of the paper follows. In Section 2, we provide a
formalization of the model selection problem. In this formal-
ization, we isolate the problem of choosing the appropriate
complexity for a hypothesis or model. We also introduce the
specific model selection problem that will be the basis for
our experimental results, and describe an initial experiment
demonstrating that the problem is nontrivial. In Section 3, we
introduce the three model selection algorithms we examine
in the experiments: Vapnik’s Guaranteed Risk Minimization
(GRM) [11], an instantiation of Rissanen’s Minimum De-
scription Length Principle (MDL) [7], and Cross Validation
(CV).

Section 4 describes our controlled experimental comparison
of the three algorithms. Using artificially generated data from
a known target function allows us to plot complete learning
curves for the three algorithms over a wide range of sample
sizes, and to directly compare the resulting generalization er-
ror to the hypothesis complexity selected by each algorithm.
It also allows us to investigate the effects of varying other nat-
ural parameters of the problem, such as the amount of noise in
the data. These experiments support the followingassertions:
the behavior of the algorithms examined can be complex and
incomparable, even on simple problems, and there are fun-
damental difficulties in identifying a “best” algorithm; there
is a strong connection between hypothesis complexity and
generalization error; and it may be impossible to uniformly
improve the performance of the algorithms by slight mod-
ifications (such as introducing constant multipliers on the
complexity penalty terms).

In Sections 5, 6 and 7 we turn our efforts to formal results
providing explanation and support for the experimental find-
ings. We begin in Section 5 by upper bounding the error of
any model selection algorithm falling intoa wide class (called
penalty-based algorithms) that includes both GRM and MDL
(but not cross validation). The form of this bound highlights
the competing desires for powerful hypotheses and controlled
complexity. In Section 6, we upper bound the additional er-
ror suffered by cross validation compared to any other model
selection algorithm. This quality of this bound depends on
the extent to which the function classes have learning curves
obeying a classical power law. Finally, in Section 7, we give
an impossibility result demonstrating a fundamental handi-



cap suffered by the entire class of penalty-based algorithms
that does not afflict cross validation. In Section 8, we weigh
the evidence and find that it provides concrete arguments fa-
voring the use of cross validation (or at least cause for caution
in using any penalty-based algorithm).

2 Definitions

Throughout the paper we assume that a fixed boolean target
function f is used to label inputs drawn randomly accord-
ing to a fixed distribution D. For any boolean function
h, we define the generalization error �(h) = �f;D(h) �
Prx2D [h(x) 6= f(x)]. We use S to denote the random vari-
ableS = hx1; b1i; : : : ; hxm; bmi, wherem is the sample size,
each xi is drawn randomly and independently according to
D, and bi = f(xi) � ci, where the noise bit ci 2 f0; 1g is 1
with probability �; we call � 2 [0; 1=2) the noise rate. In the
case that � 6= 0, we will sometimes wish to discuss the gen-
eralization error of h with respect to the noisy examples, so
we define ��(h) � Prx2D;c[h(x) 6= f(x)�c], where c is the
noise bit. Note that �(h) and ��(h) are related by the equality
��(h) = (1� �)�(h)+ �(1� �(h)) = (1� 2�)�(h)+ �. For
simplicity, we will use the expression “with high probability”
to mean with probability 1 � � over the draw of S, at a cost
of a factor of log(1=�) in the bounds — thus, our bounds
all contain “hidden” logarithmic factors, but our handling
of confidence is entirely standard and will be spelled out in
the full paper.

We assume a nested sequence of hypothesis classes (or mod-
els) F1 � � � � � Fd � � � �. The target function f may or
may not be contained in any of these classes, so we define
hd � argminh2Fdf�(h)g and �opt(d) � �(hd) (similarly,
��opt(d) � ��(hd)). Thus, hd is the best approximation to
f (with respect to D) in the class Fd, and �opt(d) measures
the quality of this approximation. Note that �opt(d) is a non-
increasing function of d since the hypothesis function classes
are nested. Thus, larger values of d can only improve the
potential approximative power of the hypothesis class. Of
course, the difficulty is to realize this potential on the basis
of a small sample.

With this notation, the model selection problem can be stated
informally: on the basis of a random sample S of a fixed size
m, the goal is to choose a hypothesis complexity d̃, and a hy-
pothesis h̃ 2 Fd̃, such that the resulting generalization error
�(h̃) is minimized. In many treatments of model selection,
including ours, it is explicitly or implicitly assumed that the
model selection algorithm has control only over the choice
of the complexity d̃, but not over the choice of the final hy-
pothesis h̃ 2 Fd̃. It is assumed that there is a fixed algorithm
that chooses a set of candidate hypotheses, one from each
hypothesis class. Given this set of candidate hypotheses, the
model selection algorithm then chooses one of the candidates
as the final hypothesis.

To make these ideas more precise, we define the training
error �̂(h) = �̂S(h) � jfhxi; bii 2 S : h(xi) 6= bigj=m, and
the version space VS (d) = VSS(d) � fh 2 Fd : �̂(h) =
minh02Fdf�̂(h

0)gg. Note thatVS (d) � Fd may contain more
than one function in Fd — several functions may minimize

the training error. If we are lucky, we have in our possession
a (possibly randomized) learning algorithm L that takes as
input any sample S and any complexity value d, and outputs
a member h̃d of VS (d) (using some unspecified criterion to
break ties if jVS (d)j > 1). More generally, it may be the
case that finding any function in VS (d) is intractable, and
that L is simply a heuristic (such as backpropagation or ID3)
that does the best job it can at finding h̃d 2 Fd with small
training error on input S and d. In either case, we define
h̃d = L(S; d) and �̂(d) = �̂L;S(d) � �̂(h̃d). Note that we
expect �̂(d), like �opt(d), to be a non-increasing function of
d — by going to a larger complexity, we can only reduce our
training error.

We can now give a precise statement of the model selec-
tion problem. First of all, an instance of the model se-
lection problem consists of a tuple (fFdg; f;D; L), where
fFdg is the hypothesis function class sequence, f is the tar-
get function, D is the input distribution, and L is the un-
derlying learning algorithm. The model selection problem
is then: Given the sample S, and the sequence of func-
tions h̃1 = L(S; 1); : : : ; h̃d = L(S; d); : : : determined by
the learning algorithm L, select a complexity value d̃ such
that h̃d̃ minimizes the resulting generalization error. Thus, a
model selection algorithm is given both the sample S and the
sequence of (increasingly complex) hypotheses derived by L
from S, and must choose one of these hypotheses.

The current formalization suffices to motivate a key definition
and a discussion of the fundamental issues in model selection.
We define �(d) = �L;S(d) � �(h̃d). Thus, �(d) is a random
variable (determined by the random variable S) that gives
the true generalization error of the function h̃d chosen by L
from the class Fd. Of course, �(d) is not directly accessible
to a model selection algorithm; it can only be estimated or
guessed in various ways from the sample S. A simple but
important observation is that no model selection algorithm
can achieve generalization error less than mindf�(d)g. Thus
the behavior of the function �(d) — especially the location
and value of its minimum — is in some sense the essential
quantity of interest in model selection.

The prevailing folk wisdom in several research communities
posits that �(d) will typically have a global minimum that is
nontrivial — that is, at an “intermediate” value of d away
from the extremes d = 0 and d � m. As a demonstration
of the validity of this view, and as an introduction to a par-
ticular model selection problem that we will examine in our
experiments, we call the reader’s attention to Figure 1. In
this model selection problem (which we shall refer to as the
intervals model selection problem), the input domain is sim-
ply the real line segment [0; 1], and the hypothesis class Fd is
simply the class of all boolean functions over [0; 1] in which
we allow at most d alternations of label; thusFd is the class of
all binary step functions with at most d=2 steps. For the ex-
periments, the underlying learning algorithm L that we have
implemented performs training error minimization. This is a
rare case where efficient minimization is possible; we have
developed an algorithm based on dynamic programming that
runs in linear time, thus making experiments on large sam-
ples feasible. The sample S was generated using the target
function in F100 that divides [0; 1] into 100 segments of equal



width 1=100 and alternating label. In Figure 1 we plot �(d)
(which we can calculate exactly, since we have chosen the
target function) when S consists of m = 2000 random ex-
amples (drawn from the uniform input distribution)corrupted
by noise at the rate � = 0:2. For our current discussion it
suffices to note that �(d) does indeed experience a nontrivial
minimum. Not surprisingly, this minimum occurs near (but
not exactly at) the target complexity of 100.

3 Three Algorithms for Model Selection
The first two model selection algorithms we consider are
members of a general class that we shall informally refer to as
penalty-based algorithms (and shall formally define shortly).
The common theme behind these algorithms is their attempt
to construct an approximation to �(d) solely on the basis of
the training error �̂(d) and the complexity d, often by trying
to “correct” �̂(d) by the amount that it underestimates �(d)
through the addition of a “complexity penalty” term.

In Vapnik’s Guaranteed Risk Minimization (GRM) [11], d̃ is
chosen according to the rule 1

d̃ = argmindf�̂(d) + (d=m)(1 +
p

1 + �̂(d)m=d)g (1)

where for convenience but without loss of generality we have
assumed that d is the Vapnik-Chervonenkis dimension [11,
12] of the class Fd; this assumption holds in the intervals
model selection problem. The origin of this rule can be
summarized as follows: it has been shown [11] (ignoring
logarithmic factors) that for every d and for every h 2 Fd,p
d=m is an upper bound on j�̂(h)� �(h)j and hence j�̂(d)�

�(d)j �
p
d=m. Thus, by simply adding

p
d=m to �̂(d), we

ensure that the resulting sum upper bounds �(d), and if we
are optimistic we might further hope that the sum is in fact
a close approximation to �(d), and that its minimization is
therefore tantamount to the minimization of �(d). The actual
rule given in Equation (1) is slightly more complex than this,
and reflects a refined bound on j�̂(d)� �(d)j that varies from
d=m for �̂(d) close to 0 to

p
d=m otherwise.

The next algorithm we consider, the Minimum Description
Length Principle (MDL) [5, 6, 7, 1, 4] has rather different ori-
gins than GRM. MDL is actually a broad class of algorithms
with a common information-theoretic motivation, each algo-
rithm determined by the choice of a specific coding scheme
for both functions and their training errors; this two-part code
is then used to describe the training sample S. To illustrate
the method, we give a coding scheme for the intervals model
selection problem 2. Let h be a function with exactly d alter-
nations of label (thus, h 2 Fd). To describe the behavior of
h on the sample S = fhxi; biig, we can simply specify the
d inputs where h switches value (that is, the indices i such

1Vapnik’s original GRM actually multiplies the second term
inside the argminf�g above by a logarithmic factor intended to guard
against worst-case choices from VS (d). Since this factor renders
GRM uncompetitive on the ensuing experiments, we consider this
modified and quite competitive rule whose spirit is the same.

2Our goal here is simply to give one reasonable instantiation
of MDL. Other coding schemes are obviously possible; however,
several of our formal results will hold for essentially all MDL
instantiations.

that h(xi) 6= h(xi+1)) 3. This takes log
�
m

d

�
bits; dividing by

m to normalize, we obtain (1=m) log
�
m

d

�
� H(d=m) [2],

where H(�) is the binary entropy function. Now given h,
the labels in S can be described simply by coding the mis-
takes of h (that is, those indices i where h(xi) 6= f(xi)),
at a normalized cost of H(�̂(h)). Technically, in the coding
scheme just described we also need to specify the values of
d and �̂(h) �m, but the cost of these is negligible. Thus, the
version of MDL that we shall examine for the intervals model
selection problem dictates the following choice of d̃:

d̃ = argmindfH(�̂(d)) +H(d=m)g: (2)

In the context of model selection, GRM and MDL can both be
interpreted as attempts to model �(d) by transforming �̂(d)
and d. More formally, a model selection algorithm of the
form

d̃ = argmindfG(�̂(d); d=m)g (3)

shall be called a penalty-based algorithm 4. Notice that an
ideal penalty-based algorithm would obey G(�̂(d); d=m) �
�(d) (or at least G(�̂(d); d=m) and �(d) would be minimized
by the same value of d).

The third model selection algorithm that we examine has a
different spirit than the penalty-based algorithms. In cross
validation (CV) [9, 10], we use only a fraction (1 � ) of
the examples in S to obtain the hypothesis sequence h̃1 2
F1; : : : ; h̃d 2 Fd; : : :— that is, h̃d is now L(S0; d), where S0

consists of the first (1� )m examples in S. Here  2 [0; 1]
is a parameter of the CV algorithm whose tuning we discuss
briefly later. CV chooses d̃ according to the rule

d̃ = argmindf�̂S00(h̃d)g (4)

where �̂S00(h̃d) is the error of h̃d onS00, the last m examples
ofS that were withheld in selecting h̃d. Notice that for CV, we
expect the quantity �(d) = �(h̃d) to be (perhaps considerably)
larger than in the case of GRM and MDL, because now h̃d
was chosen on the basis of only (1 � )m examples rather
than allm examples. For this reason we wish to introduce the
more general notation � (d) � �(h̃d) to indicate the fraction
of the sample withheld from training. CV settles for � (d)
instead of �0(d) in order to have an independent test set with
which to directly estimate �  (d).

4 A Controlled Experimental Comparison
Our results begin with a comparison of the performance and
properties of the three model selection algorithms in a care-
fully controlled experimental setting — namely, the intervals
model selection problem. Among the advantages of such
controlled experiments, at least in comparison to empirical
results on data of unknown origin, are our ability to exactly
measure generalization error (since we know the target func-
tion and the distribution generating the data), and our ability

3In the full paper we justify our use of the sample points to
describe h; it is quite similar to representing h using a grid of
resolution 1=p(m) for some polynomial p(�).

4With appropriately modified assumptions, all of the formal re-
sults in the paper hold for the more general form G(�̂(d); d;m),
where we decouple the dependence on d and m. However, the
simpler coupled form will suffice for our purposes.



to precisely study the effects of varying parameters of the data
(such as noise rate, target function complexity, and sample
size), on the performance of model selection algorithms. The
experimental behavior we observe foreshadows a number of
important themes that we shall revisit in our formal results.

We begin with Figure 2. To obtain this figure, a training sam-
ple was generated from the uniform input distribution and
labeled according to an intervals function over [0; 1] consist-
ing of 100 intervals of alternating label and equal width 5; the
sample was corrupted with noise at rate � = 0:2. In Figure 2,
we have plotted the true generalization errors (measured with
respect to the noise-free source of examples) �GRM, �MDL and
�CV (using test fraction  = 0:1 for CV) of the hypotheses
selected from the sequence h̃1; : : : ; h̃d; : : : by each the three
algorithms as a function of sample size m, which ranged
from 1 to 3000 examples. As described in Section 2, the hy-
potheses h̃d were obtained by minimizing the training error
within each class Fd. Details of the code used to perform
these experiments will be provided in the full paper.

Figure 2 demonstrates the subtlety involved in comparing
the three algorithms: in particular, we see that none of the
three algorithms outperforms the others for all sample sizes.
Thus we can immediately dismiss the notion that one of
the algorithms examined can be said to be optimal for this
problem in any standard sense. Getting into the details, we
see that there is an initial regime (form from 1 to slightly less
than 1000) in which �MDL is the lowest of the three errors,
sometimes outperforming �GRM by a considerable margin.
Then there is a second regime (for m about 1000 to about
2500) where an interesting reversal of relative performance
occurs, since now �GRM is the lowest error, considerably
outperforming �MDL, which has temporarily leveled off. In
both of these first two regimes, �CV remains the intermediate
performer. In the third and final regime, �MDL decreases
rapidly to match �GRM and the slightly larger �CV, and the
performance of all three algorithms remains quite similar for
all larger sample sizes.

Insight into the causes of Figure 2 is given by Figure 3,
where for the same runs used to obtain Figure 2, we instead
plot the quantities d̃GRM, d̃MDL and d̃CV, the value of d̃ cho-
sen by GRM, MDL and CV respectively (thus, the “correct”
value, in the sense of simply having the same number of
intervals as the target function, is 100). Here we see that
for small sample sizes, corresponding to the first regime dis-
cussed for Figure 2 above, d̃GRM is slowly approaching 100
from below, reaching and remaining at the target value for
about m = 1500. Although we have not shown it explic-
itly, GRM is incurring nonzero training error throughout the
entire range of m. In comparison, for a long initial period
(corresponding to the first two regimes ofm), MDL is simply
choosing the shortest hypothesis that incurs no training error
(and thus encodes both “legitimate” intervals and noise), and
consequently d̃MDL grows in an uncontrolled fashion. More
precisely, it can be shown that during this period d̃MDL is
obeying d̃MDL � d0 � 2�(1 � �)m + (1 � 2�)2s, where
s is the number of (equally spaced) intervals in the target
function and � is the noise rate (so for the current experiment

5Similar results hold for a randomly chosen target function.

s = 100 and � = 0:2). This “overcoding” behavior of MDL
is actually preferable, in terms of generalization error, to the
initial “undercoding” behavior of GRM, as verified by Fig-
ure 2. Once d̃GRM approaches 100, however, the overcoding
of MDL is a relative liability, resulting in the second regime.
Figure 3 clearly shows that the transition from the second
to the third regime (where approximate parity is achieved)
is the direct result of a dramatic correction to d̃MDL from
d0 (defined above) to the target value of 100. Finally, d̃CV
makes a more rapid but noisier approach to 100 than d̃GRM,
and in fact also overshoots 100, but much less dramatically
than d̃MDL. This more rapid initial increase again results in
superior generalization error compared to GRM for small m,
but the inability of d̃CV to settle at 100 results in slightly
higher error for larger m. In the full paper, we examine the
same plots of generalization error and hypothesis complexity
for different values of the noise rate; here it must suffice to
say that for � = 0, all three algorithms have comparable per-
formance for all sample sizes, and as � increases so do the
qualitative effects discussed here for the � = 0:2 case (for
instance, the duration of the second regime, where MDL is
vastly inferior, increases with the noise rate).

The behavior d̃GRM and d̃MDL in Figure 3 can be traced to the
form of the total penalty functions for the two algorithms.
For instance, in Figures 4, and 5, we plot the total MDL
penalty H(�̂(d)) +H(d=m) as a function of d for the fixed
sample sizes m = 2000 and 4000 respectively, again using
noise rate � = 0:20. At m = 2000, we see that the total
penalty has its global minimum at approximately 650, which
is roughly the zero training error value d0 discussed above
(we are still in the MDL overcoding regime at this sample
size; see Figures 2 and 3). However, by this sample size,
a significant local minimum has developed near the target
value of d = 100. At m = 4000, this local minimum
at d = 100 has become the global minimum. The rapid
transition of d̃MDL that marks the start of the final regime
of generalization error is thus explained by the switching
of the global total penalty minimum from d0 to 100. In
Figures 6, we plot the total GRM penalty, just for the sample
size m = 2000. The behavior of the GRM penalty is much
more controlled — for each sample size, the total penalty
has a single-minimum bowl shape, with the minimum lying
to the left of d = 100 for small sample sizes and gradually
moving over d = 100 and sharpening there for large m; as
Figure 6 shows, the minimum already lies at d = 100 by
m = 2000, as confirmed by Figure 3.

A natural question to pose after examining Figures 2 and 3
is the following: is there a penalty-based algorithm that en-
joys the best properties of both GRM and MDL? By this
we would mean an algorithm that approaches the “correct”
d value (whatever it may be for the problem in hand) more
rapidly than GRM, but does so without suffering the long,
uncontrolled “overcoding” period of MDL. An obvious can-
didate for such an algorithm is simply a modified version of
GRM or MDL, in which we reason (for example) that per-
haps the GRM penalty for complexity is too large for this
problem (resulting in the initial reluctance to code), and we
thus multiply the complexity penalty term in the GRM rule
(the second term inside the argminf�g) in Equation (1) by a



constant less than 1 (or analogously, multiply the MDL com-
plexity penalty term by a constant greater than 1 to reduce
overcoding). The results of an experiment on such a mod-
ified version of GRM are shown in Figures 7 and 8, where
the original GRM performance is compared to a modified
version in which the complexity penalty is multiplied by 0.5.
Interestingly and perhaps unfortunately, we see that there is
no free lunch: while the modified version does indeed code
more rapidly and thus reduce the small m generalization er-
ror, this comes at the cost of a subsequent overcoding regime
with a corresponding degradation in generalization error (and
in fact a considerably slower return to d = 100 than MDL
under the same conditions) 6. The reverse phenomenon (re-
luctance to code) is experienced for MDL with an increased
complexity penalty multiplier (details in the full paper).

Let us summarize the key points demonstrated by these ex-
periments. First, none of the three algorithms dominates the
others for all sample sizes. Second, the two penalty-based
algorithms seem to have a bias either towards or against cod-
ing that is overcome by the inherent properties of the data
asymptotically, but that can have a large effect on generaliza-
tion error for small to moderate sample sizes. Third, this bias
cannot be overcome simply by adjusting the relative weight
of error and complexity penalties, without reversing the bias
of the resulting rule and suffering increased generalization
error for some range of m. Fourth, while CV is not the best
of the algorithms for any value of m, it does manage to fairly
closely track the best penalty-based algorithm for each value
of m, and considerably beats both GRM and MDL in their
regimes of weakness. We now turn our attention to our for-
mal results, where each of these key points will be developed
further.

5 A Bound on Generalization Error for
Penalty-Based Algorithms

We begin our formal results with a bound on the general-
ization error for penalty-based algorithms that enjoys three
features. First, it is general: it applies to practically any
penalty-based algorithm, and holds for any model selection
problem (of course, there is a price to pay for such generality,
as discussed below). Second, for certain algorithms and cer-
tain problems the bound can give rapid rates of convergence
to small error. Third, the form of the bound is suggestive
of some of the behavior seen in the experimental results.
We state the bound for the special but natural case in which
the underlying learning algorithm L is training error mini-
mization; in the full paper, we will present a straightforward
analogue for more general L. Both this theorem and Theo-
rem 2 in the following section are stated for the noise-free
case; but again, straightforward generalizations to the noisy
case will be included in the full paper.

Theorem 1 Let (fFdg; f;D; L) be an instance of the model
selection problem in which L performs training error mini-
mization, and assume for convenience thatd is the VC dimen-

6Similar results are obtained in experiments in which every oc-
currence of d in the GRM rule is replaced by an “effective dimen-
sion” c0d for any constant c0 < 1.

sion of Fd. Let G : [0; 1]�< ! < be a function that is con-
tinuous and increasing in both its arguments, and let �G(m)
denote the expected generalizationerror of the penalty-based
model selection algorithm d̃ = argmindfG(�̂(d); d=m)g on
a training sample of size m. Then 7

�G(m) � RG(m) +

q
d̃=m (5)

where RG(m) approaches mindf�opt(d)g (which is the best
generalization error achievable in any of the classes Fd) as
m!1. The rate of this approach will depend on properties
of G.

Proof: For any value of d, we have the inequality

G
�
�̂(d̃); d̃=m

�
� G

�
�̂(d); d=m

�
: (6)

because d̃ is chosen to minimize G(�̂(d); d=m). Using the
uniform convergence bound j�(h) � �̂(h)j �

p
d=m for all

h 2 Fd and the fact that G(�; �) is increasing in its first
argument, we can replace the occurrence of �̂(d̃) on the left-

hand side of Equation (6) by �(d̃)�
q
d̃=m to obtain a smaller

quantity, and we can replace the occurrence of �̂(d) on the
right-hand side by �opt(d)+

p
d=m to obtain a larger quantity.

This gives

G

�
�(d̃)�

q
d̃=m; d̃=m

�
� G

�
�opt(d) +

p
d=m; d=m

�
:

(7)
Now because G(�; �) is an increasing function of its second
argument, we can further weaken Equation (7) to obtain

G

�
�(d̃) �

q
d̃=m; 0

�
� G

�
�opt(d) +

p
d=m; d=m

�
:

(8)
If we defineG0(x) = G(x; 0), then sinceG(�; �) is increasing
in its first argument,G�1

0 (�) is well-defined, and we may write

�(d̃) � G�1
0

�
G
�
�opt(d) +

p
d=m; d=m

��
+
q
d̃=m: (9)

Now fix any small value � > 0. For this � , let d0 be the
smallest value satisfying �opt(d0) � mindf�opt(d)g + � —
thus, d0 is sufficient complexity to almost match the ap-
proximative power of arbitrarily large complexity. Exam-
ining the behavior of G�1

0 (G(�opt(d
0) +

p
d0=m; d0=m)) as

m ! 1, we see that the arguments approach the point
(�opt(d

0); 0), and so G�1
0 (G(�opt(d

0) +
p
d0=m; d0=m)) ap-

proachesG�1
0 (G(�opt(d0); 0)) = �opt(d0) � minf�opt(d)g+

� by continuity of G(�; �), as desired. By defining

RG(m) � min
d

n
G�1

0

�
G
�
�opt(d) +

p
d=m; d=m

��o
(10)

we obtain the statement of the theorem.

Let us now discuss the form of the bound given in Theorem 1.
The first term RG(m) approaches the optimal generalization
error within

S
Fd in the limit of large m, and the second

term directly penalizes large complexity. These terms may
be thought of as competing. In order forRG(m) to approach

7We remind the reader that our bounds contain hidden logarith-
mic factors that we specify in the full paper.



mindf�opt(d)g rapidly and not just asymptotically (that is,
in order to have a fast rate of convergence), G(�; �) should
not penalize complexity too strongly, which is obviously at

odds with the optimization of the term
q
d̃=m. For example,

consider G(�̂(d); d=m) = �̂(d) + (d=m)� for some power
� > 0. Assuming d � m, this rule is conservative (large
penalty for complexity) for small�, and liberal (small penalty

for complexity) for large �. Thus, to make the term
q
d̃=m

small we would like � to be small, to prevent the choice
of large d̃. However, RG(m) = mindf�opt(d) +

p
d=m +

(d=m)�g, which increases as � decreases, thus encouraging
large � (liberal coding).

Ideally, we might want G(�; �) to balance the two terms of
the bound, which implicitly involves finding an appropri-
ately controlled but sufficiently rapid rate of increase in d̃.
The tension between these two criteria in the bound echoes
the same tension that was seen experimentally: for MDL,
there was a long period of essentially uncontrolled growth of
d̃ (linear in m), and this uncontrolled growth prevented any
significant decay of generalization error (Figures 2 and 3).
GRM had controlled growth of d̃, and thus would incur neg-
ligible error from our second term — but perhaps this growth
was too controlled, as it results in the initially slow (smallm)
decrease in generalization error.

To examine these issues further, we now apply the bound
of Theorem 1 to several penalty-based algorithms. In some
cases the final form of the bound given in the theorem state-
ment, while easy to interpret, is unnecessarily coarse, and
better rates of convergence can be obtained by directly ap-
pealing to the proof of the theorem.

We begin with a simplified GRM variant (SGRM), defined by
G(�̂(d); d=m) = �̂(d) +

p
d=m. For this algorithm, we ob-

serve that we can avoid weakening Equation (7) to Equation

(8), because here G(�(d̃)�
q
d̃=m; d̃=m) = �(d̃). Thus the

dependence on d̃ in the bound disappears entirely, resulting
in

�SGRM(m) � min
d

n
�opt(d) + 2

p
d=m

o
: (11)

This is not so mysterious, since SGRM penalizes strongly for
complexity (even more so than GRM). This bound expresses
the generalization error as the minimum of the sum of the best
possible error within each class Fd and a penalty for com-
plexity. Such a bound seems entirely reasonable, given that
it is essentially the expected value of the empirical quantity
we minimized to choose d̃ in the first place. Furthermore, if
�opt(d)+

p
d=m approximates �(d) well, then such a bound

is about the best we could hope for. However, there is no
reason in general to expect this to be the case. Bounds of this
type were first given by Barron and Cover [1] in the context
of density estimation.

As an example of the application of Theorem 1 to MDL we
can derive the following bound on �MDL(m):

�MDL(m) � min
d
fH�1(H(�opt(d) +

p
d=m)

+H(d=m))g +
q
d̃MDL=m (12)

� min
d
fH(�opt(d)) + 2H(

p
d=m)g

+
q
d̃MDL=m (13)

where we have used H�1(y) � y and H(x + y) � H(x) +
H(y). Again, we emphasize that the bound given by Equa-
tion (13) is vacuous without a bound on d̃MDL, which we
know from the experiments can be of order m. However,
by combining this bound with an analysis of the behavior of
d̃MDL for the intervals problem, we can give an accurate the-
oretical explanation for the experimental findings for MDL
(details in the full paper).

As a final example, we apply Theorem 1 to a variant of MDL
in which the penalty for coding is increased over the original,
namely G(�̂(d); d=m) = H(�̂(d)) + 1=�2H(d=m) where �
is a parameter that may depend on d and m. Assuming that
we never choose d̃whose total penalty is larger than 1 (which
holds if we simply add the “fair coin hypothesis” to F1), we
have that H(d=m) � �2. Since H(x) � x, for all x, it

follows that
q
d̃=m � �. If � is some decreasing function

of m (say, m� for some 0 < � < 1), then the bound on �(d̃)
given by Theorem 1 decreases at a reasonable rate.

6 A Bound on the Additional Error of CV
In this section we state a general theorem bounding the addi-
tional generalization error suffered by cross validation com-
pared to any polynomial complexity model selection algo-
rithm M . By this we mean that given a sample of size m,
algorithm M will never choose a value of d̃ larger than mk

for some fixed exponent k > 1. We emphasize that this is a
mild condition that is met in practically every realistic model
selection problem: although there are many documented cir-
cumstances in which we may wish to choose a model whose
complexity is on the order of the sample size, we do not
imagine wanting to choose, for instance, a neural network
with a number of nodes exponential in the sample size. In
any case, more general but more complicated assumptions
may be substituted for the notion of polynomial complexity,
and we discuss these in the full paper.

Theorem 2 Let M be any polynomial complexity model se-
lection algorithm, and let (fFdg; f;D; L) be any instance of
model selection. Let �M(m) and �CV(m) denote the expected
generalization error of the hypotheses chosen by M and CV
respectively. Then

�CV(m) � �M((1� )m) + O(
p

log(m)=m): (14)

In other words, the generalization error of CV onm examples
is at most the generalization error M on (1�)m examples,
plus the “test penalty term” O(

p
log(m)=m).

Proof Sketch: Let S = (S0; S00) be a random sample of
m examples, where jS0j = (1 � )m and jS00j = m.
Let dmax = ((1 � )m)k be the polynomial bound on the
complexity selected by M , and let h̃01 2 F1; : : : ; h̃

0
dmax

2

Fdmax be determined by h̃0d = L(S0; d). By definition
of CV, d̃ is chosen according to d̃ = argmindf�̂S00(h̃0d)g.



By standard uniform convergence arguments we have that
j�(h̃0d) � �̂S00(h̃0d)j = O(

p
log(m)=m) for all d � dmax

with high probability over the draw of S00. Therefore with
high probability

�CV = min
d
f�(h̃0d)g+O(

p
log(m)=m): (15)

But as we have previously observed, the generalization error
of any model selection algorithm (includingM ) on input S0

is lower bounded by mindf�(h̃0d)g, and our claim directly
follows.

Note that the bound of Theorem 2 does not claim �CV(m) �
�M(m) for all M (which would mean that cross validation
is an optimal model selection algorithm). The bound given
is weaker than this ideal in two important ways. First, and
perhaps most importantly,�M((1�)m)may be considerably
larger than �M(m). This could either be due to properties of
the underlying learning algorithmL, or due to inherent phase
transitions (sudden decreases) in the optimal information-
theoretic learning curve [8, 3] — thus, in an extreme case,
it could be that the generalization error that can be achieved
within some class Fd by training onm examples is close to 0,
but that the optimal generalization error that can be achieved
in Fd by training on a slightly smaller sample is near 1=2.
This is intuitively the worst case for cross validation — when
the small fraction of the sample saved for testing was critically
needed for training in order to achieve nontrivial performance
— and is reflected in the first term of our bound. Obviously
the risk of “missing” phase transitions can be minimized by
decreasing the test fraction , but only at the expense of
increasing the test penalty term, which is the second way in
which our bound falls short of the ideal. However, unlike the
potentially unbounded difference �M((1 � )m) � �M(m),
our bound on the test penalty can be decreased without any
problem-specific knowledge by simply increasing the test
fraction .

Despite these two competing sources of additional CV er-
ror, the bound has some strengths that are worth discussing.
First of all, the bound holds for any model selection problem
instance (fFdg; f;D; L). We believe that giving similarly
general bounds for any penalty-based algorithm would be
extremely difficult, if not impossible. The reason for this be-
lief arises from the diversity of learning curve behavior doc-
umented by the statistical mechanics approach [8, 3], among
other sources. In the same way that there is no universal
learning curve behavior, there is no universal behavior for
the relationship between the functions �̂(d) and �(d) — the
relationship between these quantities may depend critically
on the target function and the input distribution (this point
is made more formally in Section 7). CV is sensitive to this
dependence by virtue of its target function-dependent and
distribution-dependent estimate of �(d). In contrast, by their
very nature, penalty-based algorithms propose a universal
penalty to be assigned to the observation of error �̂(h) for a
hypothesis h of complexity d.

A more technical feature of Theorem 2 is that it can be
combined with bounds derived for penalty-based algorithms
using Theorem 1 to suggest how the parameter  should
be tuned. For example, letting M be the SGRM algorithm
described in Section 5, and combining Equation (11) with

Theorem 2 yields
�CV(m) � �SGRM((1� )m)

+
p

logdMAX(m)=m (16)

� min
d

n
�opt(d) + 2

p
d=(1� )m

o

+
p

logdMAX(m)=m (17)

If we knew the form of �opt(d) (or even had bounds on it),
then in principle we could minimize the bound of Equation
(17) as a function of  to derive a recommended training/test
split. Such a program is feasible for many specific problems
(such as the intervals problem), or by investigating general
but plausible bounds on the approximation rate �opt(d), such
as �opt(d) � c0=d for some constant c0 > 0. We pursue
this line of inquiry in some detail in the full paper. For now,
we simply note that Equation (17) tells us that in cases for
which the power law decay of generalization error within
each Fd holds approximately, the performance of CV will be
competitive with GRM or any other algorithm. This makes
perfect sense in light of the preceding analysis of the two
sources for additional CV error: in problems with power
law learning curve behavior, we have a power law bound
on �M((1� )m) � �M(m), and thus CV “tracks” any other
algorithm closely in terms of generalization error. This is
exactly the behavior observed in the experiments described
in Section 4, for which the power law is known to hold
approximately.

7 Limitations on Penalty-Based Algorithms
Recall that our experimental findings suggested that it may
sometimes be fair to think of penalty-based algorithms as
being either conservative or liberal in the amount of coding
they are willing to allow in their hypothesis, and that bias in
either direction can result in suboptimal generalization that is
not easily overcome by tinkering with the form of the rule. In
this section we treat this intuition more formally, by giving a
theorem demonstrating some fundamental limitations on the
diversity of problems that can be effectively handled by any
fixed penalty-based algorithm. Briefly, we show that there
are (at least) two very different forms that the relationship be-
tween �̂(d) and �(d) can assume, and that any penalty-based
algorithm can perform well on only one of these. Further-
more, for the problems we choose, CV can in fact succeed
on both. Thus we are doing more than simply demonstrating
that no model selection algorithm can succeed universally
for all target functions, a statement that is intuitively obvi-
ous. We are in fact identifying a weakness that is special to
penalty-based algorithms. However, as we have discussed
previously, the use of CV is not without pitfalls of its own.
We therefore conclude the paper in Section 8 with a summary
of the different risks involved with each type of algorithm,
and a discussion of our belief that in the absence of detailed
problem-specific knowledge, our overall analysis favors the
use of CV.

Theorem 3 For any sample sizem, there are model selection
problem instances (fF 1

dg; f1; D1; L) and (fF 2
dg; f2; D2; L)

(where L performs empirical error minimization in both
instances) and a constant  independent of m such that



for any penalty-based model selection algorithm G, either
�1
G(m) � mindf�1(d)g +  or �2

G(m) � mindf�2(d)g + .
Here �i(d) is the function �(d) for instance i 2 f1; 2g, and
�iG(m) is the expected generalization error of algorithm G
for instance i. Thus, on at least one of the two model selec-
tion problems, the generalizationerror ofG is lower bounded
away from the optimal value mindf�i(d)g by a constant in-
dependent of m.

Proof Sketch: For notational convenience, in the proof we
use �̂i(d) and �i(d) (i 2 f1; 2g) to refer to the expected values
of these functions. We start with a rough description of the
properties of the two problems (see Figure 9): in Problem
1, the “right” choice of d is 0, any additional coding directly
results in larger generalization error, and the training error,
�̂1(d), decays gradually with d. In Problem 2, a large amount
of coding is required to achieve nontrivial generalization er-
ror, and the training error remains large as d increases until
d = m=2, where the training error drops rapidly.

More precisely, we will arrange things so that the first model
selection problem (Problem 1) has the following proper-
ties (1) The function �̂1(d) lies between two linear func-
tions with y-intercepts �1 and �1(1 � �1) and common x-
intercept 2�1(1 � �1)m � m=2; and (2) �1(d) is mini-
mized at d = 0, and furthermore, for any constant c we
have �1(cm) � c=2. We will next arrange that the second
model selection problem (Problem 2) will obey: (1) The
function �̂2(d) = a1 for 0 � d � 2�1(1 � �1)m � m=2,
where �1(1 � �1) > a1; and (2) The function �2(d) is lower
bounded by a1 for 0 � d < m=2, but �2(m=2) = 0. In
Figure 9 we illustrate the conditions on �̂(d) for the two
problems, and also include hypothetical instances of �̂1(d)
and �̂2(d) that are consistent with these conditions (and are
furthermore representative of the “true” behavior of the �̂(d)
functions actually obtained for the two problems we define
momentarily).

We can now give the underlying logic of the proof using the
hypothetical �̂1(d) and �̂2(d). Let d̃1 denote the complexity
chosen by G for Problem 1, and let d̃2 be defined similarly.
First consider the behavior of G on Problem 2. In this prob-
lem we know by our assumptions on �2(d) that if G fails
to choose d̃2 � m=2, �G � a1, already giving a constant
lower bound on �G for this problem. This is the easier case;
thus let us assume that d̃2 � m=2, and consider the behavior
of G on Problem 1. Referring to Figure 9, we see that for
0 � d � D0, �̂1(d) � �̂2(d), and thus

For 0 � d � D0; G(�̂1(d); d=m) � G(�̂2(d); d=m) (18)

(because penalty-based algorithms assign greater penalties
for greater training error or greater complexity). Since we
have assumed that d̃2 � m=2, we know that

For d < m=2; G(�̂2(d); d=m) � G(�̂2(d̃); d̃=m) (19)

and in particular, this inequality holds for 0 � d � D0. On
the other hand, by our choice of �̂1(d) and �̂2(d), �̂1(d̃2) =
�̂2(d̃2) = 0. Therefore,

G(�̂1(d̃2); d̃2=m) = G(�̂2(d̃2); d̃2=m) : (20)

Combining the two inequalities above (Equation 18 and Equa-
tion 19) with Equation 20, we have that

For 0 � d � D0; G(�̂1(d); d=m) � G(�̂1(d̃2); d̃2=m)
(21)

from which it directly follows that in Problem 1, G cannot
choose 0 � d̃1 � D0. By the second condition on Problem
1 above, this implies that �G � �(D0); if we arrange that
D0 = cm for some constant c, then we have a constant lower
bound on �G for Problem 1.

Due to space limitations, we defer the precise descriptions of
Problems 1 and 2 for the full paper. However, in Problem
1 the classes Fd are essentially those for the intervals model
selection problem, and in Problem 2 the Fd are based on
parity functions.

We note that although Theorem 3 was designed to create two
model selection problems with the most disparate behavior
possible, the proof technique can be used to give lower bounds
on the generalization error of penalty-based algorithms under
more general settings. In the full paper we will also argue
that for the two problems considered, the generalization error
of CV is in fact close to mindf�i(d)g (that is, within a small
additive term that decreases rapidly with m) for both prob-
lems. Finally, we remark that Theorem 3 can be strengthened
to hold for a single model selection problem (that is, a single
function class sequence and distribution), with only the target
function changing to obtain the two different behaviors. This
rules out the salvation of the penalty-based algorithms via
problem-specific parameters to be tuned, such as “effective
dimension”.

8 Conclusions
Based on both our experimental and theoretical results, we
offer the following conclusions:

Model selection algorithms that attempt to reconstruct the
curve �(d) solely by examining the curve �̂(d) often have
a tendency to overcode or undercode in their hypothesis
for small sample sizes, which is exactly the sample size
regime in which model selection is an issue. Such ten-
dencies are not easily eliminated without suffering the
reverse tendency.

There exist model selection problems in which a hypothesis
whose complexity is close to the sample size should be
chosen, and in which a hypothesis whose complexity is
close to 0 shouldbe chosen, but that generate �̂(d) curves
with insufficient information to distinguish which is the
case. The penalty-based algorithms cannot succeed in
both cases, whereas CV can.

The error of CV can be bounded in terms of the error of any
other algorithm. The only cases in which the CV error
may be dramatically worse are those in which phase
transitions occur in the underlying learning curves at a
sample size larger than that held out for training by CV.

Thus we see that both types of algorithms considered have
their own Achilles’ Heel. For penalty-based algorithms, it
is an inability to distinguish two types of problems that call
for drastically different hypothesis complexities. For CV,
it is phase transitions that unluckily fall between (1 � )m
examples and m examples. On balance, we feel that the ev-



idence we have gathered favors use of CV in most common
circumstances. Perhaps the best way of stating our posi-
tion is as follows: given the general upper bound on CV
error we have obtained, and the limited applicability of any
fixed penalty-based rule demonstrated by Theorem 3 and the
experimental results, the burden of proof lies with the prac-
titioner who favors an penalty-based algorithm over CV. In
other words, such a practitioner should have concrete evi-
dence (experimental or theoretical) that their algorithm will
outperform CV on the problem of interest. Such evidence
must arise from detailed problem-specific knowledge, since
we have demonstrated here the diversity of behavior that is
possible in natural model selection problems.
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Figure 1: Experimental plots of the functions �(d) (lower curve
with local minimum), ��(d) (upper curve with local minimum) and
�̂(d) (monotonically decreasing curve) versus complexity d for a
target function of 100 alternating intervals, sample size 2000 and
noise rate � = 0:2. Each data point represents an average over 10
trials. The flattening of �(d) and ��(d) occurs at the point where
the noisy sample can be realized with no training error.
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Figure 2: Experimental plots of generalization errors �MDL(m)
(most rapid initial decrease), �CV(m) (intermediate initial decrease)
and �GRM(m) (least rapid initial decrease) versus sample sizem for
a target function of 100 alternating intervals and noise rate � = 0:20.
Each data point represents an average over 10 trials.
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Figure 3: Experimental plots of hypothesis lengths d̃MDL(m)
(most rapid initial increase), d̃CV(m) (intermediate initial increase)
and d̃GRM(m) (least rapid initial increase) versus sample sizem for
a target function of 100 alternating intervals and noise rate � = 0:20.
Each data point represents an average over 10 trials.
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Figure 4: MDL total penalty H(�̂(d)) + H(d=m) versus com-
plexity d for a single run on 2000 examples of a target function of
100 alternating intervals and noise rate � = 0:20. There is a local
minimum at approximately d = 100, and the global minimum at
the point of consistency with the noisy sample.
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Figure 5: MDL total penaltyH(�̂(d))+H(d=m) versus complex-
ity d for a single run on 4000 examples of a target function of 100
alternating intervals and noise rate � = 0:20. The global minimum
has now switched from the point of consistency to the target value
of 100.
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Figure 6: GRM total penalty �̂(d) + (d=m)(1+
p

1 + �̂(d)m=d)
versus complexity d for a single run on 2000 examples of a target
function of 100 alternating intervals and noise rate � = 0:20.
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Figure 7: Experimental plots of generalization error �GRM(m)
using complexity penalty multipliers 1.0 (slow initial decrease)
and 0.5 (rapid initial decrease) on the complexity penalty term
(d=m)(1 +

p
1 + �̂(d)m=d) versus sample size m on a target of

100 alternating intervals and noise rate � = 0:20. Each data point
represents an average over 10 trials.
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Figure 8: Experimental plots of hypothesis length d̃GRM(m) using
complexity penalty multipliers 1.0 (slow initial increase) and 0.5
(rapid initial increase) on the complexity penalty term (d=m)(1 +p

1 + �̂(d)m=d) versus sample sizem on a target of 100 alternating
intervals and noise rate � = 0:20. Each data point represents an
average over 10 trials.
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Figure 9: Figure illustrating the proof of Theorem 3. The dark lines
indicate typical behavior for the two training error curves �̂1(d) and
�̂2(d), and the dashed lines indicate the provable bounds on �̂1(d).


