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Abstract

We study probabilistic inference in large, layered Bayesian net-
works represented as directed acyclic graphs. We show that the
intractability of exact inference in such networks does not preclude
their e�ective use. We give algorithms for approximate probabilis-
tic inference that exploit averaging phenomena occurring at nodes
with large numbers of parents. We show that these algorithms
compute rigorous lower and upper bounds on marginal probabili-
ties of interest, prove that these bounds become exact in the limit
of large networks, and provide rates of convergence.

1 Introduction

The promise of neural computation lies in exploiting the information processing
abilities of simple computing elements organized into large networks. Arguably one
of the most important types of information processing is the capacity for proba-
bilistic reasoning.

The properties of undirected probabilistic models represented as symmetric networks
have been studied extensively using methods from statistical mechanics (Hertz et
al, 1991). Detailed analyses of these models are possible by exploiting averaging
phenomena that occur in the thermodynamic limit of large networks.

In this paper, we analyze the limit of large, multilayer networks for probabilistic
models represented as directed acyclic graphs. These models are known as Bayesian
networks (Pearl, 1988; Neal, 1992), and they have di�erent probabilistic semantics
than symmetric neural networks (such as Hop�eld models or Boltzmann machines).
We show that the intractability of exact inference in multilayer Bayesian networks



does not preclude their e�ective use. Our work builds on earlier studies of varia-
tional methods (Jordan et al, 1997). We give algorithms for approximate proba-
bilistic inference that exploit averaging phenomena occurring at nodes with N � 1
parents. We show that these algorithms compute rigorous lower and upper bounds
on marginal probabilities of interest, prove that these bounds become exact in the
limit N !1, and provide rates of convergence.

2 De�nitions and Preliminaries

A Bayesian network is a directed graphical probabilistic model, in which the nodes
represent random variables, and the links represent causal dependencies. The joint
distribution of this model is obtained by composing the local conditional probability
distributions (or tables), Pr[childjparents], speci�ed at each node in the network.
For networks of binary random variables, so-called transfer functions provide a
convenient way to parameterize conditional probability tables (CPTs). A transfer
function is a mapping f : [�1;1] ! [0; 1] that is everywhere di�erentiable and
satis�es f 0(x) � 0 for all x (thus, f is nondecreasing). If f 0(x) � � for all x, we say
that f has slope �. Common examples of transfer functions of bounded slope include

the sigmoid f(x) = 1=(1 + e�x), the cumulative gaussian f(x) =
R x
�1

dt e�t
2

=
p
�,

and the noisy-OR f(x) = 1 � e�x. Because the value of a transfer function f
is bounded between 0 and 1, it can be interpreted as the conditional probability
that a binary random variable takes on a particular value. One use of transfer
functions is to endow multilayer networks of soft-thresholding computing elements
with probabilistic semantics. This motivates the following de�nition:

De�nition 1 For a transfer function f , a layered probabilistic f-network has:

� Nodes representing binary variables fX`
i g, ` = 1; : : : ; L and i = 1; : : : ; N .

Thus, L is the number of layers, and each layer contains N nodes.

� For every pair of nodes X`�1
j and X`

i in adjacent layers, a real-valued weight

�`�1ij from X`�1
j to X`

i .

� For every node X1
i in the �rst layer, a bias pi.

We will sometimes refer to nodes in layer 1 as inputs, and to nodes in layer L as
outputs. A layered probabilistic f-network de�nes a joint probability distribution
over all of the variables fX`

i g as follows: each input node X1
i is independently set

to 1 with probability pi, and to 0 with probability 1 � pi. Inductively, given binary

values X`�1
j = x`�1j 2 f0; 1g for all of the nodes in layer ` � 1, the node X`

i is set

to 1 with probability f(
PN

j=1 �
`�1
ij x`�1j ).

Among other uses, multilayer networks of this form have been studied as hierarchi-
cal generative models of sensory data (Hinton et al, 1995). In such applications,
the fundamental computational problem (known as inference) is that of estimating
the marginal probability of evidence at some number of output nodes, say the �rst
K � N . (The computation of conditional probabilities, such as diagnostic queries,
can be reduced to marginals via Bayes rule.) More precisely, one wishes to estimate
Pr[XL

1 = x1; : : : ; X
L
K = xK ] (where xi 2 f0; 1g), a quantity whose exact computa-

tion involves an exponential sum over all the possible settings of the uninstantiated
nodes in layers 1 through L � 1, and is known to be computationally intractable
(Cooper, 1990).



3 Large Deviation and Union Bounds

One of our main weapons will be the theory of large deviations. As a �rst illustration
of this theory, consider the input nodes fX1

j g (which are independently set to 0 or 1

according to their biases pj) and the weighted sum
PN

j=1 �
1
ijX

1
j that feeds into the

ith node X2
i in the second layer. A typical large deviation bound (Kearns & Saul,

1997) states that for all � > 0, Pr[jPN
j=1 �

1
ij(X

1
j � pj)j > �] � 2e�2�

2=(N�2) where
� is the largest weight in the network. If we make the scaling assumption that
each weight �1ij is bounded by �=N for some constant � (thus, � � �=N ), then we
see that the probability of large (order 1) deviations of this weighted sum from its
mean decays exponentially with N . (Our methods can also provide results under
the weaker assumption that all weights are bounded by O(N�a) for a > 1=2.)

How can we apply this observation to the problem of inference? Suppose we are
interested in the marginal probability Pr[X2

i = 1]. Then the large deviation bound

tells us that with probability at least 1� � (where we de�ne � = 2e�2N�2=�2 ), the

weighted sum at node X2
i will be within � of its mean value �i =

PN
j=1 �

1
ijpj . Thus,

with probability at least 1� �, we are assured that Pr[X2
i = 1] is at least f(�i � �)

and at most f(�i + �). Of course, the ip side of the large deviation bound is that
with probability at most �, the weighted sum may fall more than � away from �i.
In this case we can make no guarantees on Pr[X2

i = 1] aside from the trivial lower
and upper bounds of 0 and 1. Combining both eventualities, however, we obtain
the overall bounds:

(1� �)f(�i � �) � Pr[X2
i = 1] � (1� �)f(�i + �) + �: (1)

Equation (1) is based on a simple two-point approximation to the distribution over

the weighted sum of inputs,
PN

j=1 �
1
ijX

1
j . This approximation places one point,

with weight 1 � �, at either � above or below the mean �i (depending on whether
we are deriving the upper or lower bound); and the other point, with weight �, at
either �1 or +1. The value of � depends on the choice of �: in particular, as �
becomes smaller, we give more weight to the �1 point, with the trade-o� governed
by the large deviation bound. We regard the weight given to the �1 point as a
throw-away probability, since with this weight we resort to the trivial bounds of 0
or 1 on the marginal probability Pr[X2

i = 1].

Note that the very simple bounds in Equation (1) already exhibit an interesting
trade-o�, governed by the choice of the parameter �|namely, as � becomes smaller,
the throw-away probability � becomes larger, while the terms f(�i � �) converge to
the same value. Since the overall bounds involve products of f(�i � �) and 1 � �,
the optimal value of � is the one that balances this competition between probable
explanations of the evidence and improbable deviations from the mean. This trade-
o� is reminiscent of that encountered between energy and entropy in mean-�eld
approximations for symmetric networks (Hertz et al, 1991).

So far we have considered the marginal probability involving a single node in the
second layer. We can also compute bounds on the marginal probabilities involving
K > 1 nodes in this layer (which without loss of generality we take to be the nodes
X2
1 through X2

K ). This is done by considering the probability that one or more
of the weighted sums entering these K nodes in the second layer deviate by more
than � from their means. We can upper bound this probability by K� by appealing
to the so-called union bound, which simply states that the probability of a union of
events is bounded by the sum of their individual probabilities. The union bound
allows us to bound marginal probabilities involving multiple variables. For example,



consider the marginal probability Pr[X2
1 = 1; : : : ; X2

K = 1]. Combining the large
deviation and union bounds, we �nd:

(1�K�)
KY
i=1

f(�i��) � Pr[X2
1 = 1; : : : ; X2

K = 1] � (1�K�)
KY
i=1

f(�i+�)+K�: (2)

A number of observations are in order here. First, Equation (2) directly leads to
e�cient algorithms for computing the upper and lower bounds. Second, although
for simplicity we have considered �{deviations of the same size at each node in the
second layer, the same methods apply to di�erent choices of �i (and therefore �i)
at each node. Indeed, variations in �i can lead to signi�cantly tighter bounds, and
thus we exploit the freedom to choose di�erent �i in the rest of the paper. This
results, for example, in bounds of the form: 
1�

KX
i=1

�i

!
KY
i=1

f(�i � �i) � Pr[X2
1 = 1; : : : ; X2

K = 1]; where �i = 2e�2N�2i=�
2

:

(3)
The reader is invited to study the small but important di�erences between this
lower bound and the one in Equation (2). Third, the arguments leading to bounds
on the marginal probability Pr[X2

1 = 1; : : : ; X2
K = 1] generalize in a straightfor-

ward manner to other patterns of evidence besides all 1's. For instance, again just
considering the lower bound, we have: 

1�
KX
i=1

�i

! Y
xi=0

[1�f(�i+�i)]
Y
xi=1

f(�i��i) � Pr[X2
1 = x1; : : : ; X

2
K = xK ] (4)

where xi 2 f0; 1g are arbitrary binary values. Thus together the large deviation
and union bounds provide the means to compute upper and lower bounds on the
marginal probabilities over nodes in the second layer. Further details and conse-
quences of these bounds for the special case of two-layer networks are given in a
companion paper (Kearns & Saul, 1997); our interest here, however, is in the more
challenging generalization to multilayer networks.

4 Multilayer Networks: Inference via Induction

In extending the ideas of the previous section to multilayer networks, we face the
problem that the nodes in the second layer, unlike those in the �rst, are not inde-
pendent. But we can still adopt an inductive strategy to derive bounds on marginal
probabilities. The crucial observation is that conditioned on the values of the incom-
ing weighted sums at the nodes in the second layer, the variables fX2

i g do become
independent. More generally, conditioned on these weighted sums all falling \near"
their means | an event whose probability we quanti�ed in the last section | the
nodes fX2

i g become \almost" independent. It is exactly this near-independence
that we now formalize and exploit inductively to compute bounds for multilayer
networks. The �rst tool we require is an appropriate generalization of the large
deviation bound, which does not rely on precise knowledge of the means of the
random variables being summed.

Theorem 1 For all 1 � j � N , let Xj 2 f0; 1g denote independent binary random
variables, and let j�jj � � . Suppose that the means are bounded by jE[Xj ]�pjj � �j,

where 0 < �j � pj � 1��j. Then for all � > 1
N

PN
j=1 j�jj�j:

Pr

2
4
������
1

N

NX
j=1

�j(Xj � pj)

������ > �

3
5 � 2e

� 2N

�2

�
�� 1

N

P
N

j=1
j�j j�j

�
2

: (5)



The proof of this result is omitted due to space considerations. Now for induction,
consider the nodes in the `th layer of the network. Suppose we are told that for

every i, the weighted sum
PN

j=1 �
`�1
ij X`�1

j entering into the node X`
i lies in the

interval [�`i � �`i ; �
`
i + �`i ], for some choice of the �`i and the �`i. Then the mean of

node X`
i is constrained to lie in the interval [p`i ��`

i ; p
`
i +�`

i ], where

p`i =
1

2

�
f(�`i � �`i) + f(�`i + �`i)

�
(6)

�`
i =

1

2

�
f(�`i + �`i)� f(�`i � �`i)

�
: (7)

Here we have simply run the leftmost and rightmost allowed values for the incoming
weighted sums through the transfer function, and de�ned the interval around the
mean of unit X`

i to be centered around p`i . Thus we have translated uncertainties
on the incoming weighted sums to layer ` into conditional uncertainties on the
means of the nodes X`

i in layer `. To complete the cycle, we now translate these
into conditional uncertainties on the incoming weighted sums to layer ` + 1. In
particular, conditioned on the original intervals [�`i��`i ; �

`
i+�`i ], what is probability

that for each i,
PN

j=1 �
`
ijX

`
j lies inside some new interval [�`+1i � �`+1i ; �`+1i + �`+1i ]?

In order to make some guarantee on this probability, we set �`+1i =
PN

j=1 �
`
ijp

`
j

and assume that �`+1i >
PN

j=1 j�`ijj�`
j. These conditions su�ce to ensure that

the new intervals contain the (conditional) expected values of the weighted sumsPN
j=1 �

`
ijX

`
j , and that the new intervals are large enough to encompass the incoming

uncertainties. Because these conditions are a minimal requirement for establishing
any probabilistic guarantees, we shall say that the [�`i � �`i ; �

`
i + �`i ] de�ne a valid

set of �-intervals if they meet these conditions for all 1 � i � N . Given a valid set
of �-intervals at the (`+ 1)th layer, it follows from Theorem 1 and the union bound
that the weighted sums entering nodes in layer `+ 1 obey

Pr

2
4
������
NX
j=1

�`ijX
`
j � �`+1i

������ > �`+1i for some 1 � i � N

3
5 �

NX
i=1

�`+1i (8)

where

�`+1i = 2e
� 2N

�2

�
�`+1
i

�
P

N

j=1
j�`ijj�

`
j

�2
: (9)

In what follows, we shall frequently make use of the fact that the weighted sumsPN
j=1 �

`
ijX

`
i are bounded by intervals [�`+1i � �`+1i ; �`+1i + �`+1i ]. This motivates the

following de�nitions.

De�nition 2 Given a valid set of �-intervals and binary values fX`
i = x`ig for the

nodes in the `th layer, we say that the (` + 1)st layer of the network satis�es its

�-intervals if
���PN

j=1 �
`
ijx

`
j � �`+1i

��� < �`+1 for all 1 � i � N . Otherwise, we say that

the (` + 1)st layer violates its �-intervals.

Suppose that we are given a valid set of �-intervals and that we sample from the joint
distribution de�ned by the probabilistic f-network. The right hand side of Equation
(8) provides an upper bound on the conditional probability that the (`+ 1)st layer
violates its �-intervals, given that the `th layer did not. This upper bound may be
vacuous (that is, larger than 1), so let us denote by �`+1 whichever is smaller | the

right hand side of Equation (8), or 1; in other words, �`+1 = min
nPN

i=1 �
`+1
i ; 1

o
.

Since at the `th layer, the probability of violating the �-intervals is at most �` we



are guaranteed that with probability at least
Q

`>1[1 � �`], all the layers satisfy
their �-intervals. Conversely, we are guaranteed that the probability that any layer
violates its �-intervals is at most 1 �Q`>1[1 � �`]. Treating this as a throw-away
probability, we can now compute upper and lower bounds on marginal probabilities
involving nodes at the Lth layer exactly as in the case of nodes at the second layer.
This yields the following theorem.

Theorem 2 For any subset fXL
1 ; : : : ; X

L
Kg of the outputs of a probabilistic f-

network, for any setting x1; : : : ; xK, and for any valid set of �-intervals, the marginal
probability of partial evidence in the output layer obeys:Y

`>1

�
1� �`

� Y
xi=1

f(�Li � �Li )
Y
xi=0

�
1� f(�Li + �Li )

�
(10)

� Pr[XL
1 = x1; : : : ; X

L
K = xK]

�
Y
`>1

�
1� �`

� Y
xi=1

f(�Li + �Li )
Y
xi=0

�
1� f(�Li � �Li )

�
+

 
1�

Y
`>1

�
1� �`

�!
(11)

Theorem 2 generalizes our earlier results for marginal probabilities over nodes in the
second layer; for example, compare Equation (10) to Equation (4). Again, the upper
and lower bounds can be e�ciently computed for all common transfer functions.

5 Rates of Convergence

To demonstrate the power of Theorem 2, we consider how the gap (or additive
di�erence) between these upper and lower bounds on Pr[XL

1 = x1; : : : ; X
L
K = xK]

behaves for some crude (but informed) choices of the f�`ig. Our goal is to derive
the rate at which these upper and lower bounds converge to the same value as we
examine larger and larger networks. Suppose we choose the �-intervals inductively
by de�ning �1

i = 0 and setting

�`+1i =
NX
j=1

j�`ijj�`
j +

r
�2 lnN

N
(12)

for some  > 1. From Equations (8) and (9), this choice gives �`+1 � 2N1�2 as
an upper bound on the probability that the (` + 1)th layer violates its �-intervals.
Moreover, denoting the gap between the upper and lower bounds in Theorem 2 by
G, it can be shown that:

G � 2�

r
�2 lnN

N

�
1� (�� )L

1� ��

� KX
i=1

Y
vj = 1
j 6= i

f(�Lj +�
L
j )

Y
vj = 0
j 6= i

�
1� f(�Lj � �Lj )

�
+

2L

N2�1
:

(13)

Let us briey recall the de�nitions of the parameters on the right hand side of this
equation: � is the maximal slope of the transfer function f , N is the number of
nodes in each layer, K is the number of nodes with evidence, � = N� is N times the
largest weight in the network, L is the number of layers, and  > 1 is a parameter
at our disposal. The �rst term of this bound essentially has a 1=

p
N dependence on

N , but is multiplied by a damping factor that we might typically expect to decay
exponentially with the number K of outputs examined. To see this, simply notice
that each of the factors f(�j +�j) and [1�f(�j��j)] is bounded by 1; furthermore,



since all the means �j are bounded, if N is large compared to  then the �i are
small, and each of these factors is in fact bounded by some value � < 1. Thus
the �rst term in Equation (13) is bounded by a constant times �K�1K

p
ln(N )=N .

Since it is natural to expect the marginal probability of interest itself to decrease
exponentially with K, this is desirable and natural behavior.

Of course, in the case of large K, the behavior of the resulting overall bound can
be dominated by the second term 2L=N2�1 of Equation (13). In such situations,
however, we can consider larger values of , possibly even of order K; indeed, for
su�ciently large , the �rst term (which scales like

p
) must necessarily overtake

the second one. Thus there is a clear trade-o� between the two terms, as well as
optimal value of  that sets them to be (roughly) the same magnitude. Generally
speaking, for �xed K and large N , we observe that the di�erence between our upper

and lower bounds on Pr[XL
1 = x1; : : : ; X

L
K = xK ] vanishes as O

�p
ln(N )=N

�
.

6 An Algorithm for Fixed Multilayer Networks

We conclude by noting that the speci�c choices made for the parameters �i in
Section 5 to derive rates of convergence may be far from the optimal choices for a
�xed network of interest. However, Theorem 2 directly suggests a natural algorithm
for approximate probabilistic inference. In particular, regarding the upper and lower
bounds on Pr[XL

1 = x1; : : : ; X
L
K = xK ] as functions of f�`ig, we can optimize these

bounds by standard numerical methods. For the upper bound, we may perform
gradient descent in the f�`ig to �nd a local minimum, while for the lower bound, we
may perform gradient ascent to �nd a local maximum. The components of these
gradients in both cases are easily computable for all the commonly studied transfer
functions. Moreover, the constraint of maintaining valid �-intervals can be enforced
by maintaininga oor on the �-intervals in one layer in terms of those at the previous
one. The practical application of this algorithm to interesting Bayesian networks
will be studied in future work.
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