
A Polynomial-time Algorithm for Learning

k-variable Pattern Languages from Examples

(extended abstract)

Michael Kearns∗

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts

Leonard Pitt†

Department of Computer Science
University of Illinois

Urbana, Illinois

1 Introduction

In this paper we give, for each constant k, a polynomial-time algorithm for learning the class of
k-variable pattern languages in the learning model introduced by Valiant [?]. A pattern is a string
of constant and variable symbols, for instance the 3-variable pattern p = 10x1x2x21x300x1. The
associated language L(p) is obtained by substituting for each variable in the pattern any constant
string. Thus, the string 1011011011110110011 is contained in L(p), since it can be obtained from
p by the substitutions x1 = 11, x2 = 011, x3 = 1011.

For any constant k, our algorithm learns a k-variable target pattern p by producing a polynomial-
sized disjunction of patterns, each of between 0 and k variables. (See below for a discussion of the
potential difficulty of learning general patterns — where the number of variables is not bounded
by a constant.) We assume the algorithm has access to a random source of negative examples,
generated according to an arbitrary distribution, and a random source of positive examples of the
target pattern p in which the k-tuple of substitution strings (which entirely determines the positive
example generated) is drawn not from an arbitrary distribution, but from any product distribution
D = D1 × · · · ×Dk, where each Di is an arbitrary distribution on substitution strings for variable
xi. This appears to be a natural and very general class of distributions.

Our algorithm runs in time polynomial in parameters |Σ|, n, s, 1ε , and 1
δ (and in time doubly

exponential in the constant k), where Σ is the alphabet of constant symbols, n is the length of
the target pattern, s is the maximum length substitution string for any variable, and ε and δ are
“accuracy” and “confidence” parameters. The algorithm outputs a disjunction of patterns, each
over k or fewer variables, that with probability at least 1− δ, has accuracy of classification at least
1− ε on future positive and negative examples generated randomly from the distributions on which
the algorithm was run. Thus the algorithm PAC-learns (Probably Approximately Correctly learns)
the class of k-variable patterns in terms of the class of disjunctions of k or fewer variable patterns.

∗Supported by an A.T. & T. Bell Laboratories Ph.D. Scholarship, ONR grant N00014-85-K-0445, and by a grant
from the Siemens Corporation.
†Supported in part by NSF grant IRI-8809570, and by the Department of Computer Science, University of Illinois

at Urbana-Champaign.

1

The algorithm presented here is a positive result in a model that has recently seen a number
of strongly negative results. In particular, the work of [?, ?] suggests that for language classes in
the Chomsky hierarchy (e.g., regular languages), distribution-free learning is too ambitious a goal
to be accomplished in polynomial time. For this reason it is heartening to discover a natural and
general class of languages that is learnable in polynomial time under a wide class of distributions.
The pattern languages are particularly interesting in light of the results in [?, ?], since they are
incomparable to the classes discussed there. For example, it is shown in [?] that learning regular
languages is hard under certain cryptographic assumptions. However, Angluin [?] shows that
pattern languages and context-free languages are incomparable. Thus, our results suggest that
perhaps there are large classes of languages that are efficiently learnable from examples, but that
these classes constitute a “cut” of the complexity hierarchy other than the standard Chomsky
classification.

It should be noted that our algorithm works when the empty string λ is allowed as a substitution
for a variable; thus each variable may be viewed as a “placeholder” for a substitution that may
or may not be present in any given positive example of p. Previous results on pattern languages
(discussed below) typically do not allow λ-substitutions.

We can also extend our techniques to learn a wider class of patterns, where restricted ho-
momorphisms of the original variables may also appear in the target pattern. In particular, let
t = t(n, s, |Σ|) be any polynomial, and h1, . . . , ht a collection of bijective maps hi : Σ → Σ such
that for each 1 ≤ i ≤ t, hi(a) 6= a. Extend hi to strings in the usual way: If a = a1 · · · al, then
hi(a) = hi(a1) · · ·hi(al). An example of such a homomorphism (over Σ = {0, 1}) is h(0) = 1, and
h(1) = 0. Thus h(a) = a, the complement of a. A target pattern including such homomorphisms
might be x110x2h2(x1)0h1(x2)110, and positive examples are obtained by substituting constant
strings for the variables x1 and x2, and applying the homomorphisms as indicated.

Given our initial requirement that the positive distribution be a product distribution, the al-
lowance of the maps hi(xj) in the target pattern is important in that it reintroduces a natural
form of dependence within the example strings. While we still require that the substitution for
variable x1 is drawn independent of the substitution for x2, we may regard the transformations
h1(x1), . . . , ht(x1) as a polynomial-sized collection of “variables” whose substitution is strongly de-
pendent on the substitution for x1. The additional running time is a small polynomial increase
depending on t, in particular, there is no increase in the exponent of the running time. Thus in some
sense, the algorithm can handle a polynomial number of variables, as long as all but a constant
number k are highly dependent, and the remaining k variables are independent. In this extended
abstract, we will restrict our attention to basic patterns (without homomorphisms). The modified
algorithm and analysis for the homomorphisms described above will be given in the full paper.

A brief comment on the potential difficulty of learning general patterns from examples is now in
order. Previous algorithms for learning patterns either limit their attention to a constant number of
variables, place strong restrictions on the order of the appearance of the variables, or allow various
types of queries. While the problem of learning general patterns from examples by some hypothesis
space in polynomial time remains open, there appear to be significant obstacles to overcome in
this direction. First, Angluin [?] showed that for general patterns, deciding membership in the
corresponding language is NP -complete. This suggests difficulties in the design of an algorithm
that learns k-variable patterns in time polynomial in k. In particular, such an algorithm would not
be able to use a general membership test to determine the consistency of a candidate pattern with
a set of examples, a tool commonly used in the PAC-learning model. Second, it has recently been

2

shown by Ko, Marron and Tzeng [?] that the problem of finding any pattern consistent with a set
of positive and negative examples is NP -hard; the results of [?] (see also [?]) can be applied to
show that the problem of learning general patterns by an algorithm outputting a single pattern in
the PAC-learning model is NP -hard.

Our work in this area was motivated by the results of Angluin [?], Marron and Ko [?], and
Marron [?]. Angluin’s main result is a polynomial-time algorithm for finding a descriptive pattern
for a positive sample S of an unknown 1-variable target pattern: a pattern p such that S ⊆ L(p),
and for any 1-variable pattern p′, L(p′) 6⊂ L(p). Angluin’s algorithm has no obvious application to
the PAC-learning model, and there appear to be significant obstacles in extending her approach to
finding descriptive k-variable patterns for constant k > 1 [?, ?]. Shinohara [?, ?] gives a polynomial-
time algorithm for finding a descriptive pattern when there is at most one occurrence of each
variable, and when λ-substitutions are allowed as well. He also gives an algorithm for patterns
where all occurrences of variable xi appear before any occurrence of xi+1. These results also do not
have obvious applications in the PAC-learning model, where negative examples are present as well
as positive, and the source of examples is an arbitrary distribution.

Ibarra and Jiang [?] give a polynomial-time algorithm for exact identification of general patterns
in a model where the algorithm may conjecture an hypothesis pattern, and is provided with a
shortest counterexample to the equivalence of the conjectured pattern and the target pattern (or
is told they are equivalent). Angluin [?] shows that if each equivalence query may be answered by
an arbitrary counterexample, but the algorithm is also provided with membership queries (access
to an oracle deciding membership in the target pattern language) and subset queries (access to
an oracle deciding if an hypothesis pattern accepts a subset of the target pattern language), exact
identification must take exponential time. Again, these query results have no clear application to
learning pattern languages in the PAC-learning model.

Marron and Ko [?] considered necessary and sufficient conditions on a finite positive initial sam-
ple that would allow exact identification of a target k-variable pattern from the initial sample and
from polynomially many membership queries. Subsequently, Marron [?] considered the learnability
of k-variable patterns in the same model, but where the initial sample consisted of only a single
positive example of the target pattern. In both of these papers, a greedy learning algorithm (used
as a subroutine here) was proposed. For the case of 1-variable and 2-variable patterns, Marron
gave a careful analysis of the structural properties of initial examples that can cause this algorithm
to fail. He also showed that only a small fraction of strings possess these properties.

We study the learnability of pattern languages in a model where the examples are generated
randomly according to an unknown product distribution. Thus, the fact that the number of strings
causing the greedy algorithm to fail is small compared to the total number of strings is no guarantee
of success, since the underlying distribution may give large weight to these bad strings. We tackle
this problem with a careful probabilistic analysis of the failures of the greedy algorithm together
with a new algorithm that avoids these pitfalls with high probability. More precisely, we show that
the “bad” portion of the target distribution that causes the greedy algorithm to fail in learning
the k-variable target pattern can in fact be covered (within any ε) by a polynomial number of
k − 1 variable patterns (the exact number depending on ε, and the probability of the bad portion
of the distribution). However, the greedy algorithm may of course also fail to learn these covering
patterns, and some of them may cover a fraction of the distribution that is too small to notice in
polynomial time.

Our algorithm works by repeatedly running the greedy algorithm in an attempt, for each 0 ≤

3

d ≤ k, to learn all patterns of d variables that cover a significant portion of the positive distribution.
The main tool introduced in the analysis is a data structure called an event tree. The event tree
has depth at most k, and its nodes consist of subsets of possible k-tuples of substitution strings
(any such subset is called an event.) Thus each node represents a set of positive examples of the
target pattern. The root of the tree represents the set of all positive examples, and the children of
any node represent disjoint subevents of the parent.

The correctness of our algorithm essentially hinges on a proof that the algorithm will learn the
leaves of the event tree with high probability. To ensure that our algorithm runs in polynomial
time, we define the event tree so as to simultaneously provide an upper bound on the branching
factor at any node, and a lower bound on the probability associated with the node. We then show
that the leaves of the event tree represent disjoint subevents of the root covering an overwhelming
fraction of the positive distribution. Furthermore, for each leaf at depth d, 0 ≤ d ≤ k, there
is a corresponding pattern over at most d variables that is a subpattern of the target pattern,
obtained by replacing k − d of the variables with particular constant substitutions, and whose
positive examples include all positive examples of the target pattern that can be obtained from
substitution k-tuples corresponding to the leaf.

These leaf patterns are shown to be contained in a larger pool of patterns constructed by
repeated application of the greedy algorithm. Our main algorithm then eliminates patterns in this
pool whose inclusion would incur too much error on the negative distribution. It then applies an
approximation algorithm for the partial set cover problem [?] to find a disjunction of the remaining
patterns, whose size exceeds the number of leaves in the event tree by at most a logarithmic factor.
This disjunction is shown to be small enough to be a (1 − ε)-accurate hypothesis by applying a
generalization of the technique known as Occam’s Razor [?, ?].

2 Definitions and Notation

Let Σ be a finite alphabet. A k-variable pattern is an element of (Σ ∪ {x1, . . . , xk})∗. For any
k-variable pattern p, and any set of k strings u1, . . . , uk ∈ Σ∗, let p[x1 :u1, . . . , xk :uk] denote the
string w ∈ Σ∗ obtained by substituting ui for each occurrence of xi in the pattern p. The language
generated by p is defined by L(p) = {p[x1 :u1, . . . , xk :uk] : u1 . . . uk ∈ Σ∗}. Let Pk consist of all
k-variable patterns.

For this abstract, we will assume that all substitution strings for variables have maximum
length s, where s will typically be polynomially related to the length n of the target pattern to be
learned. See [?] for the justification and motivation of such an assumption. Also, without loss of
generality [?, ?] we assume that n and s are given as input to the learning algorithm. Let Σ[s]

denote strings of any length between 0 and s. Call any such string a substitution string.
A binding is a list xi1 :u1, . . . , xid :ud, where 1 ≤ d ≤ k, the xij ’s are distinct variables, and each

ui is a substitution string. The pattern p[xi1 :u1, . . . , xid :ud] is the pattern p with strings u1, . . . ud
substituted in for variables xi1 , . . . xid , respectively. Thus p[xi1 :u1, . . . , xid :ud] is a k − d variable
pattern over variable set {x1, . . . , xk} − {xi1 , . . . xid}. Such a pattern is called a subpattern of p.
Note that if d = k then a binding of (all k) variables produces a “subpattern” that is a constant
string.

For any string w, let w(i, j) denote the substring of w beginning at position i, and having length
j.

4

For each variable xi (1 ≤ i ≤ k), we assume an arbitrary probability distribution Di on
substitution strings. Let Pr : (Σ[s])k → [0, 1] be the product distribution D1 × · · · × Dk, thus
Pr(〈u1, . . . , uk〉) = Πk

i=1Di(ui). Positive examples of the target pattern are generated according to
distribution Pr. That is, the k-tuple 〈u1, . . . , uk〉 is generated with probability Pr(〈u1, . . . , uk〉),
and for each i, the string ui is substituted in place of variable xi in p to obtain an example string
p[x1 :u1, . . . , xk :uk]. Let the distribution on positive examples of p induced by probability measure
Pr be denoted by D+

s .
We assume an arbitrary probability distribution D−s on negative examples of target pattern p

of length at most ns. Note that a positive example has length at most ns, since each substitution
string has length at most s.

Definition 1 The class Pk of k-variable patterns is PAC-learnable (with respect to a positive prod-
uct distribution and an arbitrary negative distribution) in terms of hypothesis space H iff there
exists an algorithm A such that on input of any parameters n, s, ε, and δ, for any pattern p of Pk
of length at most n, and for any product distribution D+

s on positive examples of p, and any distri-
bution D−s on negative examples of p, if A has access to D+

s and D−s , then A produces an element
h ∈ H such that, with probability at least 1− δ,

∑
h(w)=0D

+
s (w) ≤ ε and

∑
h(w)=1D

−
s (w) ≤ ε. The

run time of A is required to be polynomial in n, s, 1ε ,
1
δ , and |Σ|.

Let SUB = (Σ[s])k, the set of all possible k-tuples of substitution strings. An event E is a subset
of SUB . For any event E, let E[xi1 :u1, . . . , xid :ud] be the subset of elements of E where the ijth
component is the string uj , for 1 ≤ j ≤ d.

A variable xi is bound in event E if there exists a substitution string u such that E = E[xi : u]. In
this case, we say that xi is bound to u. (There can be at most one such u.) Define bound(E) = {i :
1 ≤ i ≤ k and xi is bound in E}. Define free(E) = {1, 2, . . . , k}− bound(E). Define bindings(E) to
be the list of bindings for each bound variable of E. That is, if bound(E) = {i1, . . . , id}, and for each
j, 1 ≤ j ≤ d, variable xij is bound to substitution string uj , then bindings(E) = xi1 :u1, . . . , xid :ud.
Given an event E, there is a subpattern of the target pattern p that is induced by the bound
variables of E. This induced subpattern is the pattern p[bindings(E)], hereafter written pE . Notice
that if bound(E) = {1, 2, . . . , k} (i.e., all variables are bound), then pE is a string of Σ+, which is
also interpreted as a 0-variable pattern.

The key property of pE that we will exploit is that for any event E, and for any 〈u1, . . . , uk〉 ∈ E,
p[x1 :u1, . . . , xk :uk] ∈ L(pE). In other words, the pattern pE “covers” the portion of the language
L(p) when we consider only substitution k-tuples 〈u1, . . . , uk〉 drawn from the set E.

3 The Algorithm COVER

We describe an algorithm COVER, that PAC-learns (with respect to an arbitrary product dis-
tribution on positive examples, and an arbitrary distribution on negative examples) the class of
k-variable patterns in terms of the union of at most poly(n, s, 1ε ,

1
δ , |Σ|) of patterns over k or fewer

variables.
Before describing algorithm COVER, we describe a simple variant of a greedy algorithm that

was used in [?, ?]. GREEDY (Figure 1 – last page) takes a string w and a list of d variable bindings
of (1 ≤ d ≤ k). On input w and list xi1 :u1, . . . , xid :ud, GREEDY attempts to find, one symbol at a
time, a d-variable pattern pd (over variables {xi1 , xi2 , . . . , xid}) such that pd[xi1 :u1, . . . , xid :ud] = w.

5

Initially, GREEDY looks for the first match in w of any substitution string uj (breaking ties in
favor of shorter strings). If uj is the first match at some position of w, GREEDY assumes that all
prior characters of w are constants of pd, and that the substring uj found was generated by xij . It
outputs xij , and continues in this fashion, iteratively finding the next matching substitution that
does not overlap with the portion of the input string “parsed” so far.

Algorithm COVER uses GREEDY as a subroutine. COVER, on input parameters n, s, ε, δ,
and Σ, first computes the values mP = m1 +m2 and mN , described later, each bounded above by
a polynomial in the parameters n, s, 1

ε ,
1
δ , and |Σ|. Then COVER executes the code in Figure 2

(last page). Briefly, COVER takes the first m1 positive examples, and from each generates many
candidate patterns by guessing a binding (of d between 1 and k variables), and calling GREEDY to
produce a pattern (of d variables). The candidate set is then pruned so that all remaining candidate
patterns are consistent with all mN negative examples obtained, and finally, a small collection of
patterns from the remaining candidate set is produced that accepts most of the remaining m2

positive examples. This last step is achieved by using a greedy heuristic for the partial set cover
problem [?]. It is easily argued that COVER runs in polynomial time for constant k.

4 Good Things and Bad Things

The greedy algorithm takes as input a string w and a binding xi1 :u1, . . . , xid :ud of variables to
substrings of w, and outputs a pattern GREEDY (w, xi1 :u1, . . . , xid :ud). For any event E, the
event GOOD(E), will consist of k-tuples 〈u1, . . . , uk〉 ∈ E such that if the set POS contains w =
p[x1 :u1, . . . , xk :uk], then in step 3 of algorithm COVER, the pattern pE is produced by GREEDY
when supplied with the correct bindings.

Definition 2 Let E be any event with d free variables. If d = 0, then define GOOD(E) = E.
(Note that there exists at most one element 〈u1, . . . , uk〉 ∈ E if d = 0.) Otherwise, if xi1 , . . . xid are
the d free variables of E, then

GOOD(E) = {〈u1, . . . , uk〉 ∈ E : GREEDY(p[x1 :u1, . . . , xk :uk], xi1 :ui1 , . . . , xid :uid) = pE}.

Let BAD(E) = E−GOOD(E). Suppose for some event E, a GOOD thing does not happen for
the k-tuple 〈u1, . . . , uk〉 of E. That is, the positive example string induced by the k-tuple does not
result in the pattern pE being included in C during the run of COVER. It can be argued that there
are at most a polynomial number of reasons that 〈u1, . . . , uk〉 ∈ BAD(E). For example, suppose
that GREEDY is called with example string p[x1 :u1, . . . , xk :uk], and binding x1 :u1, . . . , xd :ud
(i.e., the bindings given to GREEDY are correct). If the pattern begins with xj , but in fact the
supplied substitution string ui is a proper prefix of uj , then GREEDY will incorrectly output xi
as the first symbol of the pattern. Thus, substitution tuples 〈u1, . . . , uk〉 such that for some i and
j, ui is a prefix of uj , may cause GREEDY to fail to output the correct pattern when given the
correct bindings. Thus if for all i, j, we define

B(E, i, j) = {〈u1, . . . , uk〉 : 〈u1, . . . , uk〉 ∈ E and ui is a prefix of uj},

we obtain at most k2 subevents of E that cover part of BAD(E). For our purposes, we can define
the events B(E, i, j) to be disjoint.

6

A careful analysis of all additional ways that the GREEDY algorithm might fail when given a
string and the correct bindings that produced that string yields a collection of at most 3k2 + 3k
reasons for failure, and corresponding subevents Bl(E) (after appropriate renaming — e.g., each
event B(E, i, j) above is renamed as some Bl(E) for a subscript l based on i and j). We can then
prove that these subevents satisfy the following lemma, whose statement is implicit in [?]:

Lemma 1 For any event E, there are at most c = 3k2 + 3k sets {Bl(E)}cl=1 such that the sets
Bl(E) are pairwise disjoint, each is a subset of E, and such that BAD(E) ⊆

⋃c
l=1Bl(E).

We next show that for each of these bad subevents Bl(E) of any event E, we can restrict one of
the variables of free(E) to polynomially many substitution strings, and still cover most of the bad
event Bl(E). The size of the restricted set of substitution strings depends inversely on Pr(Bl(E));
for this reason in the subsequent analysis it will be necessary to avoid events E such that Pr(Bl(E))
is too small. As an example, consider the bad event B(E, i, j) above, consisting of k-tuples of E
such that the substitution string ui is a prefix of uj . In this case, we have the following lemma:

Lemma 2 Let E ⊆ SUB be an event, and let i, j ∈ free(E). Let q = Pr(B(E, i, j)). Then for any
0 < γ < 1 there is a set of strings Ui of size at most s

γq such that

Pr({〈u1, . . . , uk〉 : 〈u1, . . . , uk〉 ∈ B(E, i, j) and ui 6∈ Ui}) ≤ γq.

Proof: The set Ui will be given as a union of recursively defined subsets U ri . Let U0
i = ∅. Then

for t ≥ 1, let

B(E, i, j)t = {〈u1, . . . , uk〉 : 〈u1, . . . , uk〉 ∈ B(E, i, j) and ui 6∈
t−1⋃
r=0

U ri }.

Thus B(E, i, j)t is the set of all k-tuples 〈u1, . . . , uk〉 in the set B(E, i, j) whose coordinate ui is
not already contained in one of the previous U ri . Let

qt = Pr(B(E, i, j)t).

Note that B(E, i, j)1 = B(E, i, j) and q1 = q. For any substitution string v, define the set

St(v) = {〈u1, . . . , uk〉 : ui is a prefix of v and ui 6∈
t−1⋃
r=0

U ri }.

This is the set of all k-tuples 〈u1, . . . , uk〉 with a coordinate ui that is a prefix of v and is not
contained in one of the previous U ri . Now

Pr({〈u1, . . . , uk〉 : ui is a prefix of uj and ui 6∈
t−1⋃
r=0

U ri }) ≥ Pr(B(E, i, j)t) = qt.

But we also have

Pr({〈u1, . . . , uk〉 : ui is a prefix of uj and ui 6∈
t−1⋃
r=0

U ri })

7

=
∑
v

Pr({〈u1, . . . , uk〉 : uj = v})Pr(St(v)).

Thus, for some fixed string vt we must have Pr(St(vt)) ≥ qt. We then let

U ti = {u : u is a prefix of vt}.

We now establish two claims we need to prove the lemma.
Claim 1. For all t ≥ 0, qt+1 ≤ qt. This follows from the fact that B(E, i, j)t ⊇ B(E, i, j)t+1.
Claim 2. For all t ≥ 1, qt ≤ 1

t . Suppose for contradiction that qt >
1
t . Then by Claim 1,

q1, . . . , qt−1 >
1
t . Thus, q1 + · · ·+ qt > 1. This implies that Pr(S1(v1)) + · · ·+ Pr(St(vt)) > 1. This

is a contradiction, since the sets Sr(vr) are disjoint (for r2 > r1, the definition of Sr2(vr2) explicitly
excludes all 〈u1, . . . , uk〉 whose component ui is a prefix of vr1 , and Sr1(vr1) contains only such
〈u1, . . . , uk〉). Thus we must have qt ≤ 1

t .
We now complete the proof of the lemma. Let

Ui =

1
γq⋃
t=0

U ti .

Since |U ri | ≤ s we have |Ui| ≤ s
γq . Furthermore,

Pr({〈u1, . . . , uk〉 : 〈u1, . . . , uk〉 ∈ B(E, i, j) and ui 6∈ Ui})

= Pr(B(E, i, j) 1
γq+1

) = q 1
γq+1

≤ γq

by Claim 2.
Similar lemmas corresponding to each of the sets Bj(E) can be proved. In the above example

lemma, we obtained the bound |Ui| ≤ s
γq . The upper bounds we obtain for the lemmas correspond-

ing to other sets Bj(E) is at worst |Ui| ≤ 2ns4

γq . Each such lemma implies that if we restrict the
pattern pE to one of a polynomial number of substitution strings for one of the free variables, then
the resulting patterns cover all but γ of the examples induced by k-tuples of Bj(E). This follows
because in all but γ of Bj(E), some particular (free) variable xi always receives a substitution ui
from a polynomially sized set Ui of possibilities. In particular, we have:

Lemma 3 For each j ≤ c, for any γ, 0 < γ < 1, and for all events E, if Bj(E) is nonempty,
then there exists an index ij between 1 and k such that ij ∈ free(E), and a set Uij of size at most

2ns4

γPr(Bj(E)) such that the events in the collection {Bj(E)[xij :u]}u∈Uij of subevents of E are disjoint,

and satisfy ∑
u∈Uij

Pr(Bj(E)[xij :u]) ≥ (1− γ)Pr(Bj(E)).

Proof: Omitted from this abstract.

8

5 The Event Tree

We define an event tree T with the following properties: (1) The root (depth 0) of T is the set
SUB of all possible k-tuples; (2) Each node in the tree will be an event, and the children of an
event/node will be disjoint subevents of the node; (3) If E′ is a child of event E in the tree, then
|bound(E′)| ≥ |bound(E)| + 1. Thus for any event E in the tree, |bound(E)| ≥ depth(E), and the
maximum depth will be k.

T will have other properties that we discuss later. T is defined inductively. Let the root be SUB ,
the set of all k-tuples. If E is an event/node at depth d ≤ k, then, inductively, |bound(E)| = l ≥ d.
Let bound(E) = {i1, . . . il}, and let bindings(E) = xi1 :u1, . . . , xil :ul. Let γ be a number (0 < γ < 1)
to be specified later. If Pr(GOOD(E)) ≥ γPr(E), then E is a leaf of the tree. Intuitively, if
Pr(GOOD(E)) is large enough, we’ll have a reasonable chance of including pE in the candidate set
C. However, if Pr(GOOD(E)) is small, then it may be ignored (since BAD(E) accounts for most
of the event E), and we will cover most of the event BAD(E) with a polynomial number of leaves.

Note that if d = k, then since bound(E) increases by at least one as the depth increases by one
(this is inductively implicit in our construction), we have GOOD(E) = E. Thus if d = k, E is a
leaf by the criterion just given. Thus all leaves are at depth k or less.

Otherwise, Pr(GOOD(E)) < γPr(E). Now by Lemma 1, the event BAD(E) is covered by
events B1(E), . . . Bc(E), where c = 3k2 + 3k. The children of event E will be chosen by obtaining,
from some of the events Bj(E), a polynomial number of subevents of Bj(E).

For each j between 1 and c, if Pr(Bj(E)) < γPr(E)
c , then ignore Bj(E) entirely, and obtain no

children from it.
For each j between 1 and c such that Pr(Bj(E)) ≥ γPr(E)

c , we obtain at most 2ns4

γPr(Bj(E)) ≤
2ns4c

γ2Pr(E)
subevents of Bj(E) that are children of the node/event E as follows. Let ij ∈ free(Bj(E)) ⊆

free(E) be such that the sets {Bj(E)[xij :u]}u∈Uij are disjoint subevents of Bj(E), as guaranteed
by Lemma 3, where ∑

u∈Uij

Pr(Bj(E)[xij : u]) ≥ (1− γ)Pr(Bj(E)),

and such that

|Uij | ≤
2ns4

γPr(Bj(E))
≤ 2ns4c

γ2Pr(E)
,

the latter inequality following from the lower bound on Pr(Bj(E)).
Further note that each event of the form Bj(E)[xij : u] is disjoint from any other event

Bj′(E)[xij′ : u′] for any j′ 6= j, and for any xij′ and u′, since Bj(E) and Bj′(E) are disjoint.
Now, for any u ∈ Uij , let Bj(E)[xij :u] be a child of E only if

Pr(Bj(E)[xij :u]) ≥ γ3(Pr(E))2

2ns4c2
.

Lemma 4 If event E in event tree T is not a leaf, then the children {Ei}ri=1 of E are disjoint
events, |bound(Ei)| > |bound(E)|, and Pr(

⋃r
i=1Ei) ≥ (1− 4γ)Pr(E).

Proof: That the children are disjoint, and that each child has at least one more bound variable
than its parent, follows immediately from the construction of the event tree.

We can categorize the portion of event E that is not covered by any child of E into the following
groups:

9

1. GOOD(E) is not covered, which has probability at most γ(Pr(E)).

2. If event Bj(E) is such that Pr(Bj(E)) < γPr(E)
c , then Bj(E) is ignored completely. There

are at most c sets Bj(E) (and hence at most as many ignored), thus the total fraction of E
that is uncovered due to the ignored events Bj(E) is at most γPr(E).

3. For each Bj(E) that was not ignored, the sets Bj(E)[xij : u] do not completely cover all of
the event Bj(E). But we do have the bound

Pr(
⋃

u∈Uij

Bj(E)[xij :u]) ≥ (1− γ)Pr(Bj(E)).

Since the sets Bj(E) are mutually disjoint, taking the union of each side over all unignored
sets Bj(E), we obtain

Pr

 ⋃
j:Bj(E) was not ignored

⋃
u∈Uij

Bj(E)[xij :u]

 ≥ (1− γ)Pr(
⋃

j:Bj(E) was not ignored

Bj(E)).

Thus the children induced by the sets Bj(E) cover all but at most γPr(∪Bj(E)) of the events
∪Bj(E). Thus the amount uncovered is at most γPr(E).

4. Finally, for any unignored Bj(E), some of the elements of {Bj(E)[xij : u]}u∈Uij are not
necessarily included as children of E. For each element not included, a subset of event E of

probability at most γ3(Pr(E))2

2ns4c2
is not covered. The number of such sets is at most the product

of the number of sets Bj(E) and the number of possible u’s in any set Uij . Thus we fail

to cover at most 2ns4c2

γ2Pr(E)
sets, each of probability at most γ3(Pr(E))2

2ns4c2
, a total loss of at most

γPr(E).

By the above analysis, the disjoint events consisting of the children of E have total probability at
least (1− 4γ)Pr(E).

For any event E in the tree, define leaves(E) to be the set of events that are leaves in the
subtree rooted at E. Note that if E is itself a leaf, then leaves(E) = {E}. Let the height of a node
in the tree be the length of the longest path from it to one of its leaves, and let the depth of a node
in the tree be the length of the path from the root to the node.

Lemma 5 If E is an event in T at height h, then
∑
L∈leaves(E) Pr(L) ≥ (1− 4γ)hPr(E).

Proof: The proof is by induction on h. If h = 0, then E is a leaf, and the lemma follows trivially.
Assume inductively that the lemma is true for events at a height h− 1 ≤ k − 1, and consider any
event E at height h ≤ k. By the construction of the event tree T , we know that if E1, . . . , Et are the
children of event E, then

∑t
i=1 Pr(Ei) ≥ (1 − 4γ)Pr(E). The children of E are mutually disjoint

events, and each is at height at most h − 1. Further, each leaf of the tree rooted at E must be a
leaf of a tree rooted at one of the children Ei of E. Then, applying the inductive hypothesis and
the above observations, we have

t∑
i=1

∑
L∈leaves(Ei)

Pr(L) ≥
t∑
i=1

(1− 4γ)h−1Pr(Ei) ≥ (1− 4γ)h−1
t∑
i=1

Pr(Ei) ≥ (1− 4γ)hPr(E).

10

Lemma 6 If E is an event in the tree at depth d ≥ 0 then

Pr(E) ≥
(

γ3

2ns4(3k2 + 3k)2

)2d−1

.

Proof: We prove the lemma by induction on d. If d = 0, then the event E is at the root,
and Pr(E) = 1, which satisfies the bound required by the lemma. Assume inductively that the
lemma holds for events E at depth d − 1 < k. Let E be an event at depth d in the tree. Let E′

be the parent of E in the tree, where E′ has depth d− 1. Then by construction, E would not have

been included as a child of E′ unless Pr(E) ≥ γ3(Pr(E′))2

2ns4(3k2=3k)2
. Applying the inductive hypothesis to

Pr(E′), we obtain

Pr(E) ≥ γ3

2ns4(3k2 + 3k)2

(γ3

2ns4(3k2 + 3k)2

)2d−1−1
2

≥
(

γ3

2ns4(3k2 + 3k)2

)2d−1

.

6 Putting it All Together

We have now defined the event tree T rooted at SUB , and obtained lower bounds on the probability
of events in T and the portion of the distribution they cover in terms of the unspecified parameter
γ. We now argue that for appropriate γ, T has polynomial size, and its leaves cover almost all of
the distribution.

Lemma 7 Let γ be such that (1− 4γ)k ≥ 1− ε
4 . Then

∑
E∈leaves(SUB) Pr(E) ≥ 1− ε

4 and

|leaves(SUB)| ≤ l =

(
2ns4(3k2 + 3k)2

γ3

)2k−1

.

Furthermore, for any E ∈ leaves(SUB), Pr(GOOD(E)) ≥ γ
l .

Proof: Follows from Lemmas 5, 6 and the disjointness of the leaf events. Note that 1
γ is polynomial

in 1
ε , and that l (and hence γ

l) is polynomial in the relevant parameters.
Thus, we have shown that the event tree T has a polynomial number of leaves, each of significant

probability. We now use these facts to argue that the set C of candidate patterns constructed by
COVER contains a subset whose disjunction has error at most ε

4 on distribution D+
s , and no error

on D−s .

Lemma 8 Let m1 ≥ d lγ ln 4l
δ e and C = {p1, . . . , pr} be the pool of candidate patterns constructed

by calls to GREEDY in step 3 of COVER. Then with probability at least 1− δ
4 there are l patterns

{pi1 , . . . , pil} ⊆ C satisfying

Pr(〈u1, . . . , uk〉 : p[x1 :u1, . . . , xk :uk] ∈ L(pi1) ∪ · · · ∪ L(pil)) ≥ 1− ε

4
(1)

L(pi1) ∪ · · · ∪ L(pil) ⊆ L(p). (2)

11

Proof: The l patterns are the patterns pE for each E ∈ leaves(SUB). If m1 ≥ d lγ ln 4l
δ e, then

with probability at least 1 − δ
4 a sample of m1 positive examples contains for each leaf E at least

one element of GOOD(E). This follows from the lower bound on Pr(GOOD(E)) given in Lemma 7
and Chernoff bounds. By definition of GOOD(E) we have that with probability at least 1− δ

4 , C
contains, for each leaf E, the pattern pE . By Lemma 7 and our choice of γ, the probability that
a random 〈u1, . . . , uk〉 ∈ SUB is contained in some leaf E is at least 1 − ε

4 . Thus the example
p[x1 :u1, . . . , xk :uk] is also a positive example of pE , proving Equation (1). Equation (2) follows
immediately from the fact that pE is a subpattern of p, and thus L(pE) ⊆ L(p). It can be shown
that the size r of the candidate set C satisfies r ≤ m1(ns

2)kkk+1, so r is bounded above by a
polynomial in n, s, 1

ε , and 1
δ .

In addition to the l patterns satisfying Equations (1) and (2), the pattern pool C may initially
contain some patterns pi such that L(pi) 6⊆ L(p). To eliminate the most offensive of these, in step
4 COVER discards any pattern pi ∈ C such that one of the mN negative examples is contained in
L(pi). There is a constant c1 such that if mN is chosen so that mN ≥ c1 rε ln r

δ , then with probability

at least 1 − δ
4 , any pi that has probability at least ε

r of accepting a negative example will in fact
accept one of the mN negative examples drawn. Thus any disjunction of patterns from C has
probability at most r εr = ε of accepting a negative example. In other words, with high probability
any disjunction of remaining patterns has error at most ε with respect to the negative distribution.
Without loss of generality, let C ′ = {p1, . . . , pr′} be the set of remaining patterns.

The goal of COVER in step 5 is to discover among the remaining patterns a good approximation
to the disjunction of l patterns satisfying Equations (1) and (2). Note that Equation (1) is a
probabilistic statement; in order to apply the partial cover algorithm of [?], we need the following:

Lemma 9 Let m2 ≥ c2
1
ε ln 1

δ for some constant c2. Let R be a multiset of m2 random positive

examples. Then for {pi1 , . . . , pil} satisfying Equation (1) above, with probability at least 1 − δ
4 we

have that
|R ∩ (L(pi1) ∪ · · · ∪ L(pil))| ≥ (1− ε

2)|R|, where the cardinalities are multiset cardinalities.

Proof: Follows from Equation (1) and application of Chernoff bounds.
For each pi ∈ C ′, let the multiset Si be defined by Si = L(pi) ∩ R. Then by Lemma 9, with

probability at least 1 − δ
4 , among the multisets S1, . . . , Sr′ there is a collection of l of the Si that

collectively cover a fraction 1− ε
2 of the multiset R.

The results of [?] give a polynomial-time algorithm that will find at most c3l lnm2 of the Si that
cover 1 − ε

2 of R for some constant c3. Without loss of generality, let Ccover = {p1, . . . , pc3l lnm2}
be the corresponding patterns obtained in step 5 of COVER. Then the hypothesis L(Ccover) =
L(p1)∪ · · · ∪L(pc3l lnm2) is consistent with a fraction 1− ε

2 of the positive sample R. We now argue
that with high probability, the error of this hypothesis is at most ε.

Theorem 10 Let Ccover = {p1, . . . , pc3l lnm2} be the the set of patterns output by algorithm COVER
in step 5. Then with probability at least 1− δ,

L(Ccover) = L(p1) ∪ · · · ∪ L(pc3l lnm2)

has error at most ε with respect to both the positive and negative distributions.

Proof: The probability that L(Ccover) has error greater than ε on the negative distribution D−s is
at most δ

4 ; this follows immediately from the removal of patterns from C in step 4 discussed above.

12

By Lemma 8, the probability that the collection C produced in step 3 of COVER fails to contain a
subcollection {pi1 , . . . , pil} satisfying equation (1) is at most δ

4 . By Lemma 9, the probability that

the set {pi1 , . . . , pil} fails to cover at least 1 − ε
2 of R is at most δ

4 . We invoke a generalization
of Occam’s Razor from [?] to argue that L(Ccover) in fact has error at most ε with respect to
the positive distribution. Note that the total number of symbols needed to represent the patterns
in Ccover is at most (c3l lnm2)ns; thus the effective hypothesis space H = H(n, s, ε, δ) satisfies
|H| ≤ (k+ |Σ|)(c3l lnm2)ns. (If A is a PAC-learning algorithm for Pk with hypothesis space H, then
the effective hypothesis space of A on target patterns of length n is denoted by H(n, s, ε, δ), and
consists of that subset of H that A might ever output when run with input parameters n, s, ε, δ.)
By the results of [?] there is a constant c4 such that if m2 ≥ c4(

1
ε ln 1

δ + 1
ε ln(k + |Σ|)(c3l lnm2)ns)

then with probability at least 1 − δ
4 , L(Ccover) has error at most ε with respect to the positive

distribution D+
s .

In summary, the probability that L(Ccover) has error greater than ε on the negative distribution
is at most δ

4 , and the probability that L(Ccover) has error greater than ε on the positive distribution

is at most δ
4 + δ

4 + δ
4 = 3δ

4 . Thus with probability at least 1−δ, L(Ccover) has error at most ε on both
positive and negative distributions. Note that the total number of positive examples mP = m1+m2

and the total number of negative examples mN are polynomial in n, s, 1ε ,
1
δ , and |Σ|.

7 Conclusions and Future Research

We have given a polynomial-time algorithm for learning the class of k-variable pattern languages
from positive and negative examples under a wide and natural class of distributions on the examples.
Our algorithm allows empty substitutions and can be extended to handle restricted homomorphisms
on the substitution strings, to be discussed in the full paper.

The algorithm and analysis presented here immediately suggest a number of interesting areas
for further research. Perhaps the most obvious of these is that of finding either positive or negative
results for learning k-variable patterns in the PAC-learning model under arbitrary distributions on
the positive examples (here we considered only product distributions).

It would also be nice to have results for learning general patterns in polynomial time. While
the results mentioned in the Introduction seem to suggest that this is computationally difficult,
the problem of learning general patterns by an hypothesis space other than single patterns in the
PAC-learning model in polynomial time remains open.

Another interesting question concerns the performance of the algorithm presented here. For
instance, it is possible that a tighter analysis of the event tree might yield considerably improved
sample and time complexity bounds for our algorithm. The algorithm may also demonstrate
performance better than the worst-case analysis on more restrictive classes of distributions. Finally,
extensions to our algorithm might be found by investigating larger classes of homomorphisms and
other operations on the substitution strings.

13

References

14

GREEDY(w, xi1 :u1, . . . , xid :ud):

1. a← 1. (Initialize pointer into string w.)

2. If a ≥ |w|+ 1 then HALT.

3. Let MATCH = {j : uj = w(a, |uj |)}. (MATCH contains indices of supplied substitution strings that
appear as substrings of w starting at the current position a of w.)

4. If MATCH = ∅ then (the next symbol of the pattern is a constant)

(a) Output w(a, 1). (Output the constant.)

(b) a← a+ 1. (Move the pointer.)

(c) Return to step 2.

5. (Else MATCH 6= ∅.) Choose an arbitrary element j of the set {j : j ∈MATCH and for all l ∈MATCH,
|uj | ≤ |ul|}. (Pick a shortest matching substring.)

6. Output xij . (Hopefully, xij is what produced uj .)

7. a← a+ |uj |. (Move the pointer to the next unparsed character of the input.)

8. Return to step 2.

Figure 1: Algorithm GREEDY

COVER(n, s, ε, δ,Σ):

1. From distributions D+
s and D−

s , obtain sets POS of mP = m1 + m2 positive examples, and NEG of
mN negative examples.

2. C ← ∅. (C will be a set of candidate patterns).

3. For each of the first m1 elements w of POS do:

(a) For each d between 1 and k, and for each list xi1 :u1, . . . , xid :ud of bindings of some subset of
d variables of {x1, . . . , xk} to d substrings u1, . . . , ud of w, each of length at most s, add the
pattern GREEDY(w, xi1 :u1, . . . , xid :ud) to C

(b) Add the (0-variable) pattern w to C

4. Eliminate from C any pattern q such that L(q) ∩NEG 6= ∅.

5. Run the greedy partial set cover algorithm of [?] to obtain, with high probability, a subcollection
Ccover of elements of C that are consistent with 1− ε

4 of the remaining m2 positive examples.

Figure 2: Algorithm COVER

