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Concepts* 

In this paper we investigate a new formal model of machine learning in which the concept 
(Boolean function) to be learned may exhibit uncertain or probabilistic behavior--thus, the 
same input may sometimes be classified as a positive example and sometimes as a negative 
example. Such probabilistic concepts (or p-concepts) may arise in situations such as weather 
prediction, where the measured variables and their accuracy are insufficient to determine the 
outcome with certainty. We adopt from the Valiant model of learining [28] the demands that 
learning algorithms be efficient and general in the sense that they perform well for a wide class 
of p-concepts and for any distribution over the domain. In addition to giving many efficient 
algorithms for learning natural classes of p-concepts, we study and develop in detail an 
underlying theory of learining p-concepts. © 1994 Academic Press, Inc. 

1. I N T R O D U C T I O N  

Cons ide r  the fol lowing scenarios:  

A meteoro log i s t  is a t t empt ing  to predic t  t o m o r r o w ' s  wea ther  as accura te ly  as 
possible.  He  measures  a small  n u m b e r  of  p r e sumab ly  re levant  parameters ,  such as 
the current  t empera ture ,  ba rome t r i c  pressure,  and  wind speed and  direct ion.  He  
then makes  a forecast  of the form "chances for ra in  t o m o r r o w  are 70%." The  next  
day  it e i ther  rains  or  it  does not  rain. 

A s ta t is t ic ian wishes to compi le  an  a p p r o x i m a t e  rule for pred ic t ing  when 
s tudents  will be admi t t ed  to  a pa r t i cu la r  college. There  are  some s tudents  whose  
records  are so s t rong they will be accepted  regardless  of which admiss ions  officer 
reviews their  files; similarly,  there are others  who  are ca tegor ica l ly  rejected. F o r  
m a n y  s tudents ,  however ,  their  admiss ion  m a y  be highly dependen t  on the pa r t i cu la r  
admiss ions  officer tha t  evaluates  their  appl ica t ions ;  thus the best  m o d e l  for the 
chances of these border l ine  s tudents  involves a p robab i l i t y  of acceptance.  However ,  
every s tudent  is ei ther  accepted or  rejected. 

A physicis t  is a t t empt ing  to de te rmine  the o r i en ta t ion  of spin for par t ic les  in 
a cer ta in  magne t ic  field. P resumably ,  the o r i en ta t ion  of spin is at  least  pa r t i a l ly  
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determined by a genuinely random process of Nature. The spin of any particle is 
always oriented either up or down. 

We wish to produce a good model for the recognition of common objects such 
as chairs. For  most objects in the world, there is nearly universal agreement as to 
whether that object is a chair or a non-chair. There do exist, however, a few objects 
that may provoke disagreement, such as stools and benches. This is due to the fact 
that the concept of "chair" is not absolute, and semantic boundaries of this concept 
may be exposed by both naturally occurring and artificially constructed objects. 
Most young children, however, are not explicitly told about such definitional 
shortcomings; they are simply told whether or not something is a chair. 

There are some obvious common themes in each of the above situations. First, 
in each there is uncertain or probabilistic behavior. This uncertainty may arise for 
rather different reasons. For example, in the case of the meteorologist, it could be 
that while the weather is in principle a deterministic process, the parameters 
measured by the meteorologist and the limited accuracy of these measurements 
are insufficient to determine this process. In the case of the physicist, the electron 
spin is believed to be governed to some degree by an ideal random process. In the 
case of the statistician, the uncertainty arises from the diversity of human behavior, 
and in the case of chair recognition, a probability may model the difficulties of 
providing a perfectly precise definition to an inherently uncertain or "fuzzy" 
concept. 

A second theme that is common to each of these settings is the fact that even 
though the best model may be a conditional probability c(x) that the event (rain, 
acceptance to the college, etc.) occurs given x (where x represents the measured 
weather variables or a student's application), the observer only witnesses whether 
or not the event occurs. Thus, examples are of the form (x, 0) or (x, l)--not 
(x, c(x))-- and the {0, 1 } label provided with x distributed according to the condi- 
tional probability c(x). Furthermore, we should not expect to be able to compute 
even an estimate of c(x) from the given {0, 1 }-labeled examples, since in general we 
are unlikely to ever see the same x twice (each day's weather is at least slightly 
different, as is each student's application). 

Finally, although there is uncertainty in each of these settings, there is also some 
structure to this uncertainty. For instance, days with nearly identical atmospheric 
conditions and students with very similar high school records can be expected to 
have nearly equal probabilities of rain and acceptance to the college, respectively. 
We also expect some inputs to be assigned conditional probabilities that are very 
near 0 or 1; for example, days on which the sky is cloudless, or students with 
straight A's. This structured behavior strongly distinguishes these learning scenarios 
from a "noisy" setting, such as the one considered by Angluin and Laird [3], 
Kearns and Li [17], and Sloan [27]. In a model of learning with noise, the noise 
is typically "white" (that is, all inputs have either an equal probability of corruption 
or a probability determined by an adversary), and the noise is regarded as some- 
thing an algorithm wishes to "filter out" in an attempt to uncover some underlying 
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deterministic concept. In the examples given above, the probabilistic behavior is 
both structured (possibly in a manner that can be exploited by a learning algo- 
rithm) and inherently part of the underlying phenomenon. Thus, whenever possible 
we do not wish to filter this probabilistic behavior out of the hypothesis, but rather 
to model it. 

In this paper we wish to study a model of learning in such uncertain environ- 
ments. We formalize these settings by introducing the notion of a probabilistic 
concept (or p-concept). A p-concept c over a domain set X is simply a mapping 
c : X ~  [0, 1]. For each x~X,  we interpret c(x) as the probability that x is a 
positive example of the p-concept c. Following the discussion above, a learning 
algorithm in this framework is attempting to infer something about the underlying 
target p-concept c solely on the basis of labeled examples (x, b), where b ~ {0, 1 } is 
a bit generated randomly according to the conditional probability c(x), i.e., b = 1 
with probability c(x). 

The value c(x) may be viewed as a measure of the degree to which x exemplifies 
some concept c. In this sense, p-concepts are quite similar to the related notion of 
a fuzzy set, a kind of "set" whose boundaries are fuzzy or unclear, and whose 
formal definition is nearly identical to that of a p-concept. An axiomatic theory of 
fuzzy sets was introduced by Zadeh [33], and they have since received much treat- 
ment by researchers in the field of pattern recognition. (See Kandel's book [15] for 
a good introduction.) 

We distinguish two possible goals for a learning algorithm in the p-concept 
model. The first and easier goal is that of label prediction: the algorithm wishes to 
output a hypothesis that maximizes the probability of correctly predicting the 
{0, 1 ) label generated by c on an input x. We call this kind of learning decision-rule 
learning, since we are not primarily concerned with actually modeling the under- 
lying uncertainty but instead wish to accurately predict the observable {0, 1} out- 
come of this uncertainty. We will see that the more difficult and more interesting 
goal is that of finding a good model of probability. Here the algorithm wishes to 
output a hypothesis p-concept h: X ~ [0, 1 ] that is a good real-valued approxima- 
tion to the target c; thus, we want ]c(x)-h(x)] to be small for most inputs x. 
Following the motivation given above, we are mainly concerned with this latter 
notion of learning. 

As mentioned above, the quantity c(x) is simply the conditional probability of 
the label 1 being assigned to a given instance x. Equivalently, in this setting, 
c(x) is the conditional expectation of the label b assigned to the given instance x. 
Thus, the problem of learning a model of probability can be described in statistical 
terms as that of modeling the conditional distribution of some random variable b 
(the label) given the value of some other random variable x (the instance). This 
problem, commonly known to statisticians as regression, has received much atten- 
tion in the statistics literature. (See, for instance, Dobson's book [8]). The 
problem of learning a model of probability is also equivalent (with slight restric- 
tions) to that of learning a stochastic rule as defined in the parallel work of 
Yamanishi [32]. 
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As noted above, we will typically assume that the probabilistic behavior exhibited 
by the target p-concept is, to some degree, structured. To model this structure, we 
study the learnability of classes of p-concepts that obey natural mathematical 
properties intended to model some realistic environments. As a simple example, in 
constructing a p-concept model of the subjective notion of "tall," it is reasonable to 
assume that x ~> y implies c(x) >>. c(y) (where x represents height)--the taller a per- 
son actually is, the higher the percentage of people who will agree he is tall (or the 
greater the "degree of tallness" we wish to assign). This motivates us to consider 
learning the class c~ of all non-decreasing p-concepts over the positive real line. In 
general, we wish to study the learnability of p-concept classes that are restricted in 
such a way as to plausibly capture some realistic situation, but are not so restricted 
as to make the learning problem trivial or uninteresting. 

We adopt from the Valiant model for learning deterministic concepts 1-28] the 
emphasis on learning algorithms that are both efficient (in the sense of polynomial 
time) and general (in the sense of working for the largest possible p-concept classes 
and against any probability distribution over the domain). After formalizing the 
learining model and the two possible goals for a learning algorithm (decision-rule 
learning and model-of-probability learning), we embark on a systematic study of 
techniques for designing efficient algorithms for learning p-concepts and the under- 
lying theory of the p-concept model. 

We begin by giving examples of efficient algorithms producing a good model of 
probability that employ what we call the direct approach; the analyses of these 
algorithms give first-principles arguments that the output hypothesis is good. These 
include algorithms for arbitrary non-decreasing functions motivated above, a 
probabilistic analog of Rivest's decision lists [25], and a class of "hidden-variable" 
p-concepts, motivated by settings such as weather prediction where the apparently 
probabilistic behavior may in part be due to the fact that some relevant quantities 
remain undiscovered. 

We then consider the problem of hypothesis testing in the p-concept model. 
Working in the same framework as Haussler [11, 12], we define a loss function that 
assigns a measure of goodness to any hypothesis p-concept on a {0, 1}-labeled 
sample. After observing that the quadratic loss measure has some well-studied 
mathematical properties that make it a convenient and appropriate choice for our 
setting, we next give an example of an efficient algorithm for finding a model of 
probability that first does some direct computation to narrow the search and then 
uses quadratic loss to choose the best hypothesis among a small remaining pool. 
This algorithm learns a class of p-concepts in which only a small number of 
variables are relevant, but the dependence on these variables may be arbitrary. 

Next we consider the related but more difficult issue of uniform convergence of a 
p-concept class. More precisely, how many {0, 1 }-labeled examples must be taken 
before we have high confidence that every p-concept in the class has an empirical 
quadratic loss that accurately reflects its true performance as a model of 
probability? In a more general formulation, this question has received extensive 
consideration in the statistical pattern recognition literature, and its importance to 
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learning has been demonstrated by many recent papers. We show that the sufficient 
sample size for uniform convergence is bounded above by the pseudo dimension of 
the p-concept class, a combinatorial measure discussed by Pollard [24], Haussler 
[12], and other authors. 

We then give efficient algorithms that apply the uniform convergence method 
(that is, take a large enough sample as dictated by the quadratic loss dimension, 
and find the hypothesis minimizing the empirical loss over the sample) in order to 
find a good model of probability. In particular, we prove the effectiveness of an 
algorithm for learning p-concepts represented by linear combinations of d given 
basis functions. We then show that the quadratic loss dimension, when finite, is also 
a lower bound on the required sample size for learning any p-concept class with a 
model of probability; thus the quadratic loss dimension, when finite, characterizes 
the sample complexity of p-concept learning with a model of probability in the 
same way that the Vapnik-Chervonenkis (VC) dimension characterizes sample 
complexity in Valiant's model. (See Blumer et al.'s paper [6] for a full discussion 
of the VC-dimension.) However, we show that p-concept classes of infinite 
quadratic loss dimension may sometimes be learned efficiently, in contrast to classes 
of infinite VC-dimension in the Valiant model, which are not learnable in any 
amount of time. (Technically, this is not always true if "dynamic" sampling is 
allowed; see Linial, Mansour, and Rivest's paper [20] for further details.) 

We conclude with an investigation of Occam's razor in the p-concept model. In 
the Valiant model, Blumer et al. [5] show that it suffices for learning to find a 
consistent hypothesis that is slightly shorter than the sample data. We look for 
analogies in our setting: namely, when does "data compression" imply a good 
model of probability? We formalize this question and argue briefly that several of 
our algorithms can be interpreted as implementing a form of data compression. 

The primary contribution of this research is that of providing initial positive 
results for efficient learnability in a natural and important extension to Valiant's 
model. This may be significant because the Valiant model has been criticized for its 
strong hardness results and drought of powerful positive results, as well as for the 
unrealistic deterministic and noise-free view it takes of the concepts to be learned. 

At first, it may seem paradoxical that we are able to simultaneously generalize 
the model and obtain several positive results; perhaps this can be intuitively 
explained by the fact that since we generalize the form of the representations being 
learned, there are more ways that concepts capturing some natural and realistic 
setting may be simply expressed. In contrast, since the Valiant model tends to 
emphasize concept classes based on standard circuit complexity, one is quickly led 
to study very powerful and apparently difficult classes such as disjunctive normal 
form Boolean expressions. 

Another contribution of this research is in demonstrating the feasibility and prac- 
ticality of the approach suggested by Haussler [ 11]. His work addressed the issue 
of sample complexity upper bounds in great generality, even encompassing the case 
where the input-output relation to be learned has no prescribed functional form. 
This generality prevents Haussler from obtaining either good sample size lower 
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bounds or efficient learning algorithms; indeed, he cites both of these as important 
areas for further research. Our results may be regarded as a first demonstration of 
applying some of Haussler's general principles to a specific and realistic model in 
which computation is of foremost significance. 

2. THE LEARNING MODEL 

Let X be a set called the domain (or instance space). A probabilistic concept (or 
p-concept) is a real-valued function c: X ~  [0, 1]. When learning the p-concept c, 
the value c(x) is interpreted as the probability that x exemplifies the concept being 
learned (i.e., the probability that x is a positive example). A p-concept class cg is a 
family of p-concepts. On any execution, a learning algorithm for cg is attempting to 
learn a distinguished target p-concept c ~ cg with respect to a fixed but unknown 
and arbitrary target distribution D over X. We think of D as modeling the natural 
distribution of objects in the domain, and c represents the probabilistic concept to 
be learned in this domain. (More formally, D is a probability measure on a 
a-algebra of measurable subsets of X. We assume implicitly that all of the 
p-concepts considered are measurable functions with respect to this a-algebra on X, 
and the Borel a-algebra on [0, 1].) 

The learning algorithm is given access to an oracle EX (short for "examples") 
that behaves as follows: EX first draws a point x s X  randomly according to 
the distribution D. Then with probability c(x), EX returns the labeled example 
(x, 1), and with probability 1 -  c(x) it returns (x, 0). Thus, c(x) is the conditional 
probability that example x is labeled 1. Further note that the learning algo- 
rithm never has direct access to these conditional probabilities c(x), but only to 
random examples whose labels are distributed according to these unknown 
probabilities. 

Let h be a function mapping X into {0, 1 }; we call such a function a decision rule. 
We define the predictive error of h on c with respect to D, denoted RD(c, h), as the 
probability that h will misclassify a randomly drawn point from EX. If h minimizes 
R~(c, • ), then we say that h is a best decision rule, or a Bayes optimal decision rule, 
for c. We say that h is an e-good decision rule for c if RD(c, h) <. RD(c, h) + ~, where 

is a best decision rule. Thus we ask that h be nearly as good as the best decision 
rule for c. 

The projection of the p-concept c is the function ~ c : X ~ { 0 ,  1} that is 1 if 
c(x) >~ 1/2 and 0 if c(x)< l/2. It is well known and easy to show that for any 
target p-concept c, its projection rc c is a Bayes optimal decision rule. 

In this paper we are primarily interested not in the problem of finding a good 
decision rule, but in that of producing an accurate real-valued approximation to the 
target p-concept itself. Thus, we wish to infer a good model of  probability with 
respect to the target distribution. We say that a p-concept h is an (e, 7)-good model 
of  probability of c with respect to D if we have Prx~o[[h(x ) - c(x)[ > 7] ~< e. Thus, 
the value of h must be near that of c on most points x. 



470 KEARNS AND SCHAPIRE 

We are now ready to describe our model for learning p-concepts. Let cg be a 
p-concept class over domain X. We say that cg is learnable with a model of 
probability (respectively, learnable with a decision rule) if there is an algorithm A 
such that for any target p-concept c ~ cg, for any target distribution D over X, for 
any inputs e > 0, 6 > 0, and 7 > 0, algorithm A, given access to EX, halts and with 
probability at least 1 -  6 outputs a p-concept h that is an (e, 7)-good model of 
probability (respectively, an e-good decision rule) for c with respect to D. Note 
that this model of learning p-concepts generalizes Valiant's model for learning 
deterministic concepts. 

We say that c~ is polynomially learnable (with either a model of probability or a 
decision rule) if there is a learning algorithm A that runs in time polynomial in l/e, 
1/6, and, where appropriate, t/y. (In fact, an equivalent formulation is obtained by 
requiring the running time to be polynomial in log(i/6), rather than 1/6. See 
Section 4.) Often the p-concept class c~ will be parameterized by a complexity 
parameter n, that is ~ = U n>~l ~n, and all p-concepts in ~n share a common 
subdomain X,,  and X = U ~ I X n .  In such cases we also allow a polynomial 
dependence on n. 

Our first lemma shows that a good model of probability can always be efficiently 
used as a good decision rule; thus, learning with a model of probability is a harder 
problem than decision-rule learning. 

LEMMA 2.1. Let ~ be a class of p-concepts. IfCg is (polynomially) learnable with 
a model of probability, then cg is (polynomially) learnable with a decision rule. 

Proof To prove the lemma, we show that the projection of a good model of 
probability can be used as a good decision rule. In particular, we show that if h is 
an (e, 7)-good model of probability, then n h is an (e + 27)-good decision rule. Thus, 
by choosing e and 7 appropriately, an arbitrarily good decision rule can be found 
by the assumed algorithm for learning with a model of probability. 

Let x~X ,  and suppose I h ( x ) - c ( x ) l  <<. 7. If Ic(x)-1/2[>7, then clearly 
rCh(X)=rCc(X ). On the other hand, if Ic(x)-1/21 ~-<7, then it may be that 
rOb(X) ~ rOe(X). However, the chance that ~c(X) agrees with a random label for x 
(chosen according to c) is at most 1/2 + 7, while the chance that rob(x) agrees with 
the random label is at least 1 / 2 -  7. 

Thus, the difference in predictive error between 7z c and 7r h (taken over a random 
choice of an instance and its label) is at most e + (1 - e). 27 ~< ~ + 27. I 

2.1. Alternative Formulations 

In addition to the formulation given above, there are various other natural ways 
of expressing the fact that some hypothesis p-concept h is "close" to the target c. 
For  example, we might say that h is a good model of probability for c if the average 
difference between the two functions is small, i.e., if the variational distance 
Ex~D[lh(x)--c(x)[ ] is small. Alternatively, our goal might be to make small the 
quadratic distance (i.e., the expected square of the difference between the functions). 
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As we will see in the following sections, these alternative definitions are some- 
times easier to work with than the "official" definition given above. The next lemma 
shows that the three formulations are equivalent modulo polynomial-time 
computation. 

LEMMA 2.2. Let h and c be p-concepts, and let D be a target distribution on 
domain X. Let e I = Ex~D[Ih(x) - c(x)] ] and let e 2 = E~ , [ - (h (x )  - c(x))2]. Then 

• e2 ~< el ~< V/-~2; 

• for any y > O, h is both an ( e l / y  , 7) -  and an (e2/72, y)-good model of  probability 
for c; 

• i f  h is an (e, 7)-good model of  probability, then el <~ e + 7, and e 2 <~ ~ + ~2. 

Proof Since Ih(x) - c(x)l ~< 1 for all x, it is clear that e2 ~< el. Also, it is well 
known that (E l -y])2< E l y 2 ]  for any random variable Y. Thus, el ~< ~ 2 .  

Let 7 > 0. Then by Markov's inequality, 

P r~D[Ih(x)  -- c(x)[ > 7] ~< el/7. 

Similarly, 

Pr~eD[Ih(x) - c(x)] > y] = Pr~e D[(k(x) -- c(x)) 2 > 72] ~< e2/72. 

These imply the second part of the lemma. 
Finally, suppose h is an (e, 7)-good model of probability. Then 

el <~ Prx~D[lh(x)-c(x)l  >73" 1 + P r ~ o [ I h ( x ) - c ( x ) l  <~ 73 "7 

<-,~+(1-~)7<~e+7.  

Similarly, e 2 ~< 8 + 7 2. | 

THEOREM 2.3. Let cd be a class o f  p-concepts, let c be the target p-concept, and 
let D be a target distribution on domain X. Then, assuming access to oracle EX, the 
following computational problems are equivalent (i.e., i f  one is solvable, then so are 
the others): 

1. finding, with probability at least 1 - 6, an (~, 7)-good model o f  probability in 
time polynomial in 1/e, 1/6, and 1/7; 

2. finding, with probability at least 1 - 6 ,  a hypothesis h such that 
Ex~D[[h(x ) - c(x)[ ] ~< e in time polynomial in 1/~ and 1/c5; 

3. finding, with probability at least 1 - 6 ,  a hypothesis h such that 
Ex~D[(h(x) -  c(x)) 2] ~< g in time polynomial in 1/~ and 1/6. 
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Proof Lemma 2.2 implies the following: 

• Given an algorithm A1 for solving problem 1, problem 2 can be solved by 
running A 1 with 5 and 7 each set to 5/2. 

• Given an algorithm A2 for solving problem 2, problem 3 can be solved by 
running A2 directly. 

• Given an algorithm A3 for solving problem 3, problem 1 can be solved by 
runn ing  A 3 with 5 set to 572. | 

In addition to the formulations given by Theorem 2.3, Yamanishi [-32] shows 
that an equivalent problem is to find, in polynomial time with high probability and 
for given 5, a hypothesis h such that Ex~D[( h x / ~ -  ~ ) 2 ]  ~< 5. (This quantity 
is known as the Hellinger distance.) Finally, Abe, Takeuchi, and Warmuth [, 1 ] have 
shown that all of these problems are equivalent (modulo polynomial-time computa- 
tion) to the problem of finding, with high probability and for given 5, a hypothesis 
with small Kullback-Liebler divergence, i.e., a hypothesis h for which 

[ Ex~D c(x)lg \h - ' -~ /+  (1 - c(x))lg \ ~ / j  ~< 5. 

2.2. Chernoff Bounds' 

Several times, in later sections of this paper, we will make use of the following 
bounds on the tails of a binomial distribution [-4, 14]. 

LEMMA 2.4 (Chernoff bounds). Let X 1 .... , Xm be a sequence of m independent 
Bernoulli trials, each succeeding with probability p so that E[Xi ]=p .  Let 
S = X1 + ... + Xm be the random variable describing the total number of successes. 
Then for 0 <~ 7 <~ 1, the following hoM: 

• (additive form) Pr[,S > (p + y) m] <~ e -2m~'2, and Pr[S  < (p - 7) m] ~< e-2"~2; 

• (multiplicative form) Pr IS > (1 + 7) pm ] <~ e-~2,,p/3, and Pr [ S < (1 - 7) pm ] <~ 
e - y Z m p / 2 .  

The additive form (also known as Hoeffding's inequality) holds also i f  X1, ..., Xm are 
independent identically distributed random variables with range in [-0, 1]. 

3. EFFICIENT ALGORITHMS: TIlE DIRECT APPROACH 

In this section, we describe algorithms for learning good models of probability 
based on first principles and proved correct by direct arguments. Later arguments 
will rely on an underlying theory of p-concept learning that is developed in sub- 
sequent sections. We begin with a p-concept class motivated by the problem of 
modeling "tallness" discussed in the Introduction. 
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3.1. Increasing Functions 

THEOREM 3.1. The p-concept class o f  all nondecreasing functions c: ~ ~ [0, 1 ] / s  
polynomially learnable with a model o f  probability. 

Proof  We prove the result in slightly greater generality for any domain X 
linearly ordered by some ordering "~<." Given positive e, 6, and 7, let t =  [-4/~7-] 
and let 

s = f m a x  ~ 641n(2:-/1/(~7): 6) 21n(---gt/6)~l 

t ~7 ' 7 ~ J/" 

Our algorithm begins by drawing a labeled sample of m = st examples (x i, bi). The 
examples are sorted and reindexed so that xl~<.--~<xm. In fact, we assume 
initially that no instance occurs twice in  the sample so that xl < . ' .  < xm. Later, we 
show how this assumption can be removed. 

The set X can naturally be partitioned into t disjoint intervals/j,  each containing 
exactly s instances of the sample; specifically, we let I a = ( - o % x ~ ] ;  
I j=(x( j_ l ) s ,  xj~] for j = 2 , 3  ..... t - l ;  and I t=(x( t_ l ) s ,  oo). For l~j<<,t, let 
~j=(1/s) .~x,~i jb~.  Thus, fij is an estimate of the probability pj that a random 
instance in Ij is labeled 1. Our algorithm outputs a step function h defined in a 
natural manner: for x s / j ,  we define h(x)=~j .  

This algorithm clearly runs in polynomial time. We argue next that the output 
hypothesis h is an (e, 7)-good model of probability (with high probability). Here are 
the high-level ideas: first, we show that (with high probability) each interval has 
weight approximately ~7 under the target distribution. Next we show that if c 
increases by roughly 7 or less on the interval Ij, then h is close to c on all points 
in the interval. On the other hand, since c is nondecreasing and bounded between 
0 and 1, e can increase by more than 7 in at most l/7 intervals; since these "bad" 
intervals have total weight at most e, h is a good model of probability. 

Specifically, we can apply the uniform convergence results of Vapnik and 
Chervonenkis 1-30] to show that, with high probability, each interval /j has 
probability at most e7/2. Let S be the set of all intervals on X. Then Theorem 2 of 
their paper shows that, with probability at least 1 -  6/2, for the sample size m 
chosen by our algorithm, the relative fraction of points of the sample occurring in 
any interval of S is within e7/4 of the true weight of the interval under the target 
distribution. In particular, since each interval / j  contains l i t  <<. ey/4 of the instances 
in the sample, the weight of /j under the target distribution is at most e7/2. 
(Technically, their results rely on certain measurability assumptions which may 
depend on the choice of X. However, these assumptions are satisfied when X =  N.) 

Let qj= c(xj~) for 1 ~<j< t, and let q0 = 0 and qt = 1. Then for x ~ Ij, it is clear 
that qj_ 14<. c(x)<<, qj since c is nondecreasing. In particular, this is true for each 
x¢ ~ Ij. Thus, each point x~ e / j  is labeled 1 with probability c(x¢) >>. qj_ 1, and so, for 
each j, ~j >i qj_ a - 7 / 2  with probability at least 1 -  6/4t; this follows from the fact 
that s ~> (2/72) • ln(4t/6) and by applying the additive form of Chernoff bounds given 
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in Lemma 2.4. Similarly, /~j~< qs+ 7/2 with probability at least 1 -  6/4t. Thus, it 
follows that qj_l-7/2<~j<<,qj+v/2 for all j with probability at least 1-6/2.  
Hence, if qj-qj-1--<7/2, then Ih(x)-c(x)l  <<-7 for x~Ij .  

On the other hand, q j - q  j_ 1 can exceed 7/2 for at most 2/7 values of j since c 
is nondecreasing, and bounded between 0 and 1. Since each of these "bad" 
intervals has probability weight at most e7/2, the sum total probability of these 
intervals under D is at most ~. Thus, h is an (~, 7)-good model of probability. 

Finally, we show how to ensure that the sample does not contain the same 
instance more than once. Such a situation could be problematic for our algorithm 
since it might cause some of the intervals defined above to be empty or to contain 
too many sample points. 

The idea is to replace the given domain X and target distribution D with a new 
domain X' and distribution D' under which the same instance is very unlikely to 
occur twice. In particular, we let X' = X x T and D' = D × U, where U is the uniform 
distribution on the set T =  {0, ..., 2 k -  1}, and k=[-2  lgm+lg(1/6)-]. Then X' is 
linearly ordered under the lexicographic ordering (i.e., (x, r) ~< (y, s) if and only if 
x <y ,  or x = y  and r ~< s). Also, the chance that any pair of instances are the same 
in a sample of size m drawn according to D' is at most (~'). 2 -k ~< m 2- 2 - k -  1 <~ 6/2. 

In addition, given a random source of instances from X drawn according to D, 
we can easily simulate the random choice of instances from X' according to D': 
given x ~ X, we simply draw a random number r uniformly from T, yielding an 
instance (x, r) with distribution D' (x's label is not altered). Thus, the previously 
described algorithm can be simulated (with 6 replaced by 6/2) on domain X'. If the 
same instance occurs twice in the sample, the algorithm simply fails--as argued 
above, this will happen with probability at most 6/2. Thus, with probability at least 
1-6,  the algorithm returns an (e, 7)-good hypothesis h (with respect to X'). This 
hypothesis can be used to estimate c(x) for a given point x ~ X  by randomly 
choosing r ~ T  and evaluating h((x, r)). Although this yields a randomized 
hypothesis h', it remains true that the probability (over choices of x ~ X and the 
randomization of h') that h' differes by more than 7 from c is at most ~. Thus, h' 
is an (e, 7)-good model of probability if h is. I 

This algorithm can be modified to learn with a model of probability any function 
over the real line with at most d extremal points; the running time is then polyno- 
mial in d, l/e, log(1/6), and 1/7. 

In principle, the algorithm of Theorem 3.1 could be used to learn the p-concept 
class of nondecreasing functions with a decision rule (by applying Lemma 2.1). 
However, a much simpler and more efficient algorithm exists that we give in 
Section 5. 

3.2. Probabilistic Decision Lists 

We turn next to the problem of learning a probabilistic analog of Rivest's 
decision lists [25]. We define such lists with respect to a basis °Sn of Boolean-valued 
functions on the domain {0, 1 }n. We assume always that ~n contains the constant 
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function 1. Then a probabilistic decision list c over basis ~ is given by a list 
( f l ,  r,) .... , (f~, r~), where e a c h f i ~ J ~ ,  and each ri~ [0, 1]. We also assume thatf~ 
is the constant function 1. For any assignment x in the domain, c(x) is defined to 
be rj, where j is the least index for which f j ( x ) =  1. In other words, the functions 
in ~ are tested one by one in the order specified by the list, until a function which 
evaluates to 1 on x is encountered; the corresponding real number rj is then the 
probability that x is labeled 1. 

Rivest does not define decision lists with respect to a general basis as is done 
here. Rather, in his definition, a decision list only tests the values of monomials. 
That is, he defines decision lists specifically with respect to the basis consisting of 
all conjunctions of literals. He goes on to define the class k-DL of decision lists in 
which each monomial occurring in the list is a conjunction of k or fewer literals. 
Thus, this class is over the basis of all monomials of size at most k. Rivest describes 
an efficient algorithm for learning the class k-DL, when k is any fixed constant. 

Below, we describe an efficient algorithm for learning a special class of 
probabilistic decision lists over any basis ~ .  The running time of this algorithm is 
polynomial in all of the usual parameters, in addition to ] ~  [, and the maximum 
time needed to evaluate any function f in ~ .  Thus, in particular, this implies a 
polynomial-time algorithm for the same basis considered by Rivest, namely, the set 
of all conjunctions of k or fewer literals, for k a fixed constant. 

Let c be a probabilistic decision list over basis ~ ,  given by the list 
(f~, r,) .... , (fs, r~). For co ~ [0, 1], we say that c is a probabilistic decision list with 
co-converging probabilities if ]r i - co] ~> [ri+, - col for 1 ~ i < s. Below, we describe an 
algorithm for inferring such lists when co is known. As a special case, when co = 0, 
this algorithm can be used to learn probabilistic decision lists with decreasing 
probabilities, i.e., lists in which ri ~> rj for i ~<j. 

Perhaps the most natural case occurs when co = ½. In this case, we say that c is 
a probabilistic decision list with decreasing certainty since instances with the most 
certain outcomes (labels) are handled at the beginning of the list. For instance, a 
college's admissions process (see Section l) might be naturally modeled in this 
manner as a list of criteria for determining admission, ordered by importance: for 
example, if the student has straight A's, then he should be admitted with 90% 
probability; otherwise, if he did poorly on his SATs, then he should be rejected with 
85% probability; otherwise, if he was class president, then he should be accepted 
with 75% probability; and so on. Note that the class of probabilistic decision lists 
with decreasing certainty includes the class of ordinary (deterministic) decision lists 
over the same basis. 

We also note that the algorithm given below in Theorem 3.2 can be applied to 
learn ordinary decision lists when the supplied examples are "noisy." Specifically, 
consider the problem of learning a deterministic decision list c given by the list 
(fx, bl) ..... (f~, b~), where each f~. is in the basis ~ ,  and, since the list is deter- 
ministic, each bi e {0, 1 }. Suppose further that the label of each example is flipped 
(i.e., reversed) randomly with probability q < 1. This random misclassification noise 
model is considered, for instance, by Angluin and Laird [3]. Note that the 
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observed behavior in such a situation can be modeled naturally by the probabilistic 
decision list c' given by ( f l ,  Ib l - t l l ) , . . . , ( f s ,  lbs-tl[). That is, c'(x) is the 
probability that x is labeled 1 by a noisy oracle for c. Clearly, c' is a probabilistic 
decision list with ½-converging probabilities. Thus, we can apply the efficient 
learning algorithm for this class (described below) to obtain a good model of 

< 1  probability h for c'. If we choose 7 5-~/, then it can be seen that the projection 
of h is a good approximation of c; that is, with probability at least 1 -  6, a 
hypothesis h is obtained for which Prx~D[rch(x)#c(x)] <~e. (Technically, this 
algorithm assumes that q, or an upper bound on q, is known. However, if no such 
bound is known, Angluin and Laird [3] give a technique for finding a good bound 
using a kind of "binary search.") 

Thus, a corollary of Theorem 3.2 is a proof that deterministic decision lists are 
efficiently learnable even when the supplied examples are randomly misclassified 
with probability t/. The running time is then polynomial in 1 / (1 -  2q), in addition 
to the usual other parameters. This specifically answers an open question proposed 
by Rivest [25] concerning the learnability of decision lists in such a noisy setting. 
(This problem of learning noisy decision lists was solved independently by 
Sakakibara [26]). 

THEOREM 3.2. Let co • [0, 1] be fixed, and let ~ be a basis of functions. 
Then the p-concept class of  probabilistic decision lists over basis o~ with 
co-converging probabilities is learnable with a model of probability (assuming both 
co and o~ are known). Specifically, this class can be learned in time polynomial in 
l/e, 1/7, log(l/6), n, 1~ 1, and the maximum time needed to evaluate any function 
i n ~ .  

Proof. Our learning algorithm for this p-concept class is shown in Fig. 1. As 
usual, the algorithm begins by drawing a large sample S of size m which will be 
used to construct a hypothesis probabilistic decision list L. (Note that S and all 
subsets derived from S are multisets--they are "sets" which may contain multiple 
copies of the same example.) 

Assume for convenience that the functions in ~ are indexed so that the target 
p-concept c is given by the list ( f l ,  rl) .... , (f , ,  r,). (Of course, the learning algorithm 
is not aware of this.) We also assume without loss of generality that every function 
in the basis ~ occurs in the target list so that s = I~1. 

Here is the intuition behind our algorithm: using the sample, we might estimate 
the probability Pi that a positive random example (x, 1) is drawn, given that 
f i (x )  = 1. It can be shown to follow from the definition of co-converging decision 
lists that [ P l -  col ~> IPi-col for all i. This suggests a technique for identifying the 
first variable in the list: if our estimates/~ are sufficiently accurate, we would expect 
]/~i-co[ to be maximized when i =  1. This is the approach taken by our algorithm: 
the function fe for which I/~-col is greatest is placed at the head of the hypothesis 
list. The remainder of the list is constructed iteratively using the part of the sample 
on which f~(x) = O. 
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Fro. 1. 

Input: w e [0,1] 
basis 5r,~ = {fl . . . . .  f~} 
e, 6, 7 > 0 
access to random examples of a probabifistic decision list over basis .Fn 

with w-converging probabilities 
Output: with probability at least 1 - ~, an (e,7)-good model of probability 
Procedure: 
1 L *-- empty list 

3 obtain a sample S of m = [(32s/e372) • ln(2"+2s/~)] random examples 
4 repeat 
5 if[{(x,b) E S : f j ( x ) = l } I < _ m s / 4 s f o r s o m e j E J t h e n  
6 t*--j  
7 ~t -- 0 
8 else 
9 for jCJ:~ j*- - l { (x ,b )  E S : f j ( x ) = l A b = l } [ + l { ( z , b ) ~ S : f j ( x ) = l } ]  

10 choose t that  maximizes [/Sj - w[ 
11 L ~ L, (f,,/St) 
12 S ~ { ( x , b )  E S : f , ( z ) = O )  

14 until  J = 0  
15 output  L 

An a lgo r i t hm for l ea rn ing  probabi l i s t i c  decis ion lists wi th  co-converging probabi l i t ies .  

For  I ~  {1, ..., s} a n d j ~  {1 .... , s}, let A(I , j )  be the set of all instances x for which 
f j (x)-- -1  andf i . (x )  = 0 for all i~I.  Let 

u(Lj) = P r ~ o [ x  ~ A(Lj ) ]  

and 

v(I,j) = Pr(x,b)~zx[b = 1 I x~A( I , j ) ] .  

Also, let f i( / , j)  and ~(I,j) be empirical estimates of these quantities derivable from 
the sample S in the obvious manner.  

Let  I c { l ..... s } and j ~ { 1 ..... s } be fixed. Then, using the multiplicative form of 
Chernoff  bounds given by Lemma2.4 ,  it follows that  if u(Lj )>e/2s  then, since 
m ~> (16s/~). ln(2 s+ 's/6), 

fi(I,j)  ~> ½-u(I , j )  

with probabil i ty at least 1 - 6/(s. 2 s+ 1). Fur thermore ,  if ~(Lj) > e/4s, then the 
number  of instances x e A(I , j )  included in S is at least rne/4s >>. (8/e272). ln(2 ~+ 2s/6). 
Thus, applying the additive form of Chernoff  bounds,  we see that  

Iv(L j) - ~(I,j)l <~ e7/4 

with probabil i ty at least 1 - fi/2"+ls, assuming ~(I,j) > e/4s. 
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Thus, with probability at least I -  6, a sample S is chosen such that for all 
I c  {1 ..... s} and for a l l j e  {1 ..... s}, we have that 

u(I,J) <<. maX (~s, 2fi(I,J) ) ,  (i) 

and, whenever (*(U,j)> e/4s, we also have that 

Iv(L j) - ~3(L j)l ~ ~y/4. (2) 

We assume henceforth that all of the empirical estimates fi(I,j) and ~(Lj) satisfy 
the conditions described above. As just argued, this will be the case with probability 
at least 1 - 5. To complete the proof, we show that this assumption implies that the 
algorithm's output hypothesis h is an (e, y)-good model of probability. 

Suppose h is given by the list ( fa ,  r]) ..... (ft~, r'~). Let Ti= {tl, ..., t~}. To prove 
that h is an (e, 7)-good model of probability, we show that, for 1 ~< i<~s, either 

Prx~D[X S A(Ti -  1, ti)] ~< e/2s 

o r  

Prx~z~[ lh(x) -c(x) l  > ~ l x ~ A( Ti_ l, ti) ] <~ e/2. 

Note that the sets A(T~_ 1, t~) are disjoint. Thus, this implies 

(3) 

(4) 

Pr~o[Lh(x)  - c(x)l > 7] 

= ~ Pr~D[Lh(x)-c(x)[  >7 [x~f l (T~_l ,  t~)"] .Prx~o[x~A(T~_l ,  ti)] 
i ~ l  

<<.~ 

as can be seen by breaking the sum into two parts based on whether 
P rx~o [xe  A(Ti_I,  t;)] exceeds or does not exceed ~/2s. 

Fix i, and consider the ith iteration of our algorithm. Prior to the extension of 
L at line 11, the hypothesis list is ( fa ,  r]), ..., (fti-l, r'i_ 1). Let C j -  A(T~_ 1,J). Also, 
let pj = v(r i_ l, J), and observe that, as defined in the figure,/~j = ~(T;_ 1, J)- This 
follows from the fact that, at this point in the execution of the algorithm, all 
examples (x, b) in S are such that fk(x) = 0 for k e T;_ 1. 

Let t be as in the figure (i.e., t=t~). If t was chosen at line 6, then 
~(T~_I, t)<.e/4s, and so u(Ti_j,  t)<.8/2s by Eq. (1). Thus, in this case, Eq. (3) 
holds by definition of u(I,j). 

Otherwise, for all j ~ J, fi(T~_ 1,J) > e/4s, and thus, LPj-/3j] ~< ~/4 by Eq. (2). We 
wish to prove that Eq. (4) holds in this case, i.e., that 

Prx~D[[/~t-- e(x)l > 7 [ x e Ct] ~ ~/2. 
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Let u be the smallest member of J. Then Pu = ru by definition of decision lists. Also, 
since c is given by a list with co-converging probabilities, [ r , -  col i> [r j-col  forj~> u. 
Thus, by our choice of t, for j ~ J, 

[r j-col  ~ [ru-oo[ = [ p , - c o l  ~ ]pu-cot  4-~7/4 ~< [fi t-col + ~7/4. 

Suppose/~t/> co. Then clearly rj ~</~, + 57/4 for j e  J, and thus c(x) <~, + 57/4 <~ 
fit + 7 whenever x e Ct. Let z be the probability that an x is chosen for which 
c(x) < f i t - 7 ,  given that x is in Ct: 

Then 

z =  Prx~o[c(x) < f i , -  7 [ x e Ct]. 

p ,=  E ~ D [ c ( x  ) [ x e C,] 

<~ z ( p , -  7) + (1 - z ) (p ,  + e7/4) 

<~ z(Pt + g7/4 - 7) + (1 - z)(pt + 87/2) 

<~Pt + eT/2 - 7z. 

This implies that z ~< e/2, so (4) holds in this case. The proof of (4) is symmetric 
when/Jr ~ co. The algorithm of Fig. 1 clearly runs in polynomial time. | 

It is an open question whether this class is learnable when o2 is unknown. 
The class of probabilistic decision lists has also been considered by Yamanishi 

[32]. He describes an algorithm, based on the principle of minimum description 
length, for learning a model of probability for p-concepts in this class; however, 
his algorithm is not computationally efficient. Also, Aiello and Mihail [2]  have 
recently described an efficient algorithm for learning arbitrary probabilistic decision 
lists over the basis consisting of all literals in the special case that D is the uniform 
distribution. 

3.3. Hidden-Variable Problems 

We next consider p-concept classes motivated by hidden-variable problems, in 
which there is an underlying deterministic concept, but the settings of some of the 
relevant variables are invisible to the learning algorithm, resulting in apparent 
probabilistic behavior. A visible monomial p-concept is defined over {0, 1}n by a 
pair (M, e), where M is a monomial over the visible Boolean variables xl  .... , xn and 

E [0, 1 ]. The associated p-concept c is defined for x s {0, 1 }n to be c(x)= ~. M(x).  
We conceptually regard the true deterministic concept as having the form M/~ I, 
where I is a deterministic concept over the hidden variables. We interpret c¢ as the 
probability that the settings of the invisible variables satisfy L Note that we assume 
independence between the settings for the variables of M and those for L 

For  instance, I might itself be a monomial, in which case the underlying target 
concept is a conjunction of literals, some which are visible and some which are 
hidden. 

571/48/3-8 
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Visible monomials model well situations in which certain observable conditions 
are requisite to some outcome, but in which these conditions are not in themselves 
enough to determine the outcome with certainty. Thus, the conditions are 
necessary, but not sufficient, and, when the conditions are met, the final outcome 
may be uncertain. For instance, if you are handed a drink that is brown and fizzes 
and tastes sweet, then the drink might be Coke; on the other hand, it might not be 
Coke (it could be Pepsi). In any case, if the drink lacks any one of these qualities, 
then it certainly cannot be "the real thing." 

We note that the algorithm described in the proof below can be easily extended 
to learn any p-concept e of the form c = C~eo, where c~ is an unknown constant in 
[0, 1 ] and Co is a deterministic concept from some known concept class for which 
there exists an efficient algorithm that, like the algorithm V described in the proof, 
requires positive examples only, and outputs hypotheses with one-sided error on 
the positive-examples distribution only. For instance, Valiant [28] describes such 
an algorithm for learning k-CNF (the class of Boolean formulas consisting of a 
conjunction of clauses, each a disjunction of at most k literals). 

TI-mOm~M 3.3. The class of visible monomial p-concepts is polynomially learnable 
with a model of probability. 

Proof Let the target p-concept c be defined by the pair (M, e), and let 
the target distribution over {0, 1} n be D. We describe an algorithm that, given 
~, 6 > 0 ,  outputs with probability at least 1 - 6  a hypothesis h for which 
Ex~9[]h(x)-e(x)[] <<, e; Theorem2.3 implies that such an algorithm can be 
converted into one that learns a good model of probability. 

The first step of the learning algorithm is to obtain an estimate /~ of 
p=Pr(x.b)~ex[b=l] that, with probability at least 1-6/3 ,  is such that 
Ip-/~l ~<e/3. If /~<2~/3, then the algorithm outputs the hypothesis h(x)-O. 
Assuming/3 has the desired accuracy, we have E~o[[c (x ) -  h(x)[] ~< e in this case 
as desired, since p = E~D[e (x ) ]  ~< e. Otherwise, /~ > 2e/3, and we can assume 
henceforth that p >t e/3 (as is the case with probability at least 1 -  6/3). 

Next our algorithm attempts to learn a good approximation of M. This is done 
using Valiant's algorithm [28], here denoted V, for learning monomials from 
positive examples only in the distribution-free deterministic model. Algorithm V, 
which we here use as a "black-box" subroutine, has the following properties: the 
algorithm takes as input positive e and 6, and a source of positive examples of some 
monomial M, each chosen randomly according to some fixed, arbitrary distribution 
D + on the set of all positive examples. After running for time polynomial in l/e, 
log(l/6) and n, V outputs a monomial M that, with high probability, has error at 
most e for the positive examples of M, and has zero error for the negative examples. 
That is, with probability at least 1 - 6, )1~ is such that 
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and also 

M ( x )  = 0 ~ ~ ( x )  = O. 

Our algorithm simulates V with V's parameter e set to 5/4 and 6 set to 6/3. We 
provide V with a simulated oracle EX'  which supplies V with only positively 
labeled examples. Specifically, when V requests an example, EX'  draws examples 
from E X  until an example (x, 1) is received; this intance x is then provided to V. 

Note that if x is labeled positively by EX, then c(x) > 0 and so M(x)  = 1. Thus, 
V is only supplied with positive examples. Note also that the probability of drawing 
a positively labeled example from E X  equals p. Since p/> 5/3, it follows that the 
expected running time of EX'  is at most O(1/5). 

The probability that EX'  outputs some instance x is just 

D + (x) = Pr(y,b)~ex[y= x l b = 1] 

Pr(y,b)~Ex[y = X /~ b = 1] 

Pr(y,b)~Ex[b = 1 ]  

o~M(x) . D(x)  

- ~. Pry~o[M(y)  = 1] 

M(x)  D(x)  

- Pry~D[M(y)  = 1] 

= Pry~D[y= x [ M ( y ) =  1]. 

With probability at least 1 - 6/3, V outputs a hypothesis M which is such that 
37/(x) = 0 whenever M ( x ) =  0 and 

Prx~D+ [M(x)  = 03 ~< e/4. 

Our algorithm next obtains an estimate 8 of , '=Pr(x ,b )~Ex[b= 1 I 31(X)= 1] 
that, with probability at least 1 - 6 / 3 ,  is such that 1,'-0~[ ~< e/2. Such an estimate 
can be derived from a polynomial-size sample since 

Prx~D[A~r(x) = 13 i> (1 - - e /4 ) -Prx~D[M(x  ) = 1] I> (1 - e / 4 ) p  >~ (1 -e/4)(e/3) .  

The algorithm outputs the hypothesis h defined by (h~, c2); we argue next that h is, 
with probability at least 1 - 6, within e of c on average. 

As noted above, ~r  has the property that 

Prx ~ D [-h~r(x) = 0 [ M(x)  = 1 ] - Pr  x ~ D+ [37/(x) = 03 ~< e/4. 
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Also, ~r logically implies M. Since 

c~ = Pr(x,b)~sx[b= 1 [ M(x)= 1] 

=Pr(x,b)~sx[b = 1 I ~r(x)= 1] • Pr~o[37/(x)= 1 I M(x) = 1], 

it follows that ,>~,'>~c~(1-e/4)~>c~-s/4, and so Ic~-c2l~3e/4. Thus, again 
making use of the fact that M has one-sided error, it can be seen that 

Ex~D[Ih(x) - c(x)l ] ~< Prx~D[h~r(x) = 0/x M(x) = 1] + Ic~ -c i l .  Prx~ o [37/(x) = 1 ] 

~Prx~D[-Q(x)=O IM(x)=  1] + I~-~l  

<~. I 

Finally, we remark that Kearns, Schapire, and Sellie [ 19] have recently extended 
this result beyond the class of partially visible monomials to the class of partially 
visible k-term DNF formulas. Specifically, if f is a k-term DNF formula over a set 
of hidden and visible variables, then Kearns, Schapire, and Sellie give an efficient 
algorithm for learning with a model of probability the p-concept induced by 
regarding f as a probabilistic function over only the visible variables. (This assumes 
that the random assignment to the hidden variables is chosen independently of the 
assignment to the visible variables.) Their procedure uses as a subroutine the 
algorithm of Section 3.2 for learning probabilistic decision lists with increasing 
probabilities. 

4. HYPOTHESIS TESTING AND EXPECTED Loss 

In this section, we address the problem of hypothesis testing in the p-concept 
model. More precisely, given a labeled sample, and a hypothesis p-concept, how do 
we decide how good h is with respect to the sample? As will be seen, the answer 
to this question depends on what our goal is (a decision rule or a model of 
probability). 

We begin with a description of the learning framework that was proposed by 
Haussler [12], and that extends the work of Pollard [24], Dudley [-10], Vapnik 
[-29], and others. In this framework, the learner observes pairs (x,y) drawn 
randomly from some product space Xx Yo according to some fixed distribution. 
For instance, in the p-concept model, X is the domain, and Yo= {0, 1}; the target 
distribution on X and the target p-concept together induce a distribution on the 
space X× ]1o. 

Roughly speaking, in Haussler's model, the learner tries to find a hypothesis that 
accurately predicts the y-value of a random pair (x, y), given only the observed 
x-value. Thus, the hypothesis h should be such that h(x) is "near" y for most 
random pairs (x, y). 
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It is often convenient not to restrict the range of h to the set Yo; for instance, if 
Yo = {0, 1}, then we may want to allow h to map into [0, 1]. In general, then, we 
assume that h is a function which maps X into some set Y~ Y0. 

In Haussler's model, the learner must choose a hypothesis from some given 
hypothesis space ~ of functions (each mapping X into Y). The goal of the lear- 
ner is to find the hypothesis from ~ that minimizes the "discrepancy" on ran- 
dom pairs (x, y) between the observed value y, and the predicted value h(x). 
This discrepancy between y and h(x) is measured by a real-valued "loss" func- 
tion. Formally, a loss function L is a function mapping Yx Yo into [0, 1]. (The 
extension of such results to general bounded functions is straightforward.) Thus, 
the formal goal of the learner in this framework is to find a function h ~ ~¢~ that 
minimizes the average loss E[L(h(x), y)], where the expectation is over points 
(x, y) drawn randomly from Xx  I1o according to the distribution on this product 
space. 

Following Haussler [12], we adopt the notation Lh(x,y)=L(h(x),y) for loss 
function L and hypothesis h. Moreover, we will write E[Lh] to denote the expected 
loss of h (with respect to L) under the unknown distribution on Xx  I1o. For a given 
sample S= ((xl, yl) ..... (Xm, Ym)) of m labeled examples, we will also be interested 
in the empirical loss of h: 

~x[Lh] =--1 ~ Lh(xi, yi). 
m i =  1 

Note that the empirical loss does not depend on the underlying distribution. Also, 
when the sample is clear from context, the subscript S is usually dropped. 

We can cast the problems of learning decision rules and models of probability 
into this general framework. As mentioned above, in our setting Iio = {0, 1 } since 
an algorithm only sees {0, 1 }-labels. For decision-rule learning, the algorithm out- 
puts {0, 1 }-valued hypotheses, and thus Y= Yo = {0, 1 } in this case. Similarly, for 
model-of-probability learning, we assume that hypotheses have range [0, 1 ], and so 
Y= [0, 1]. The distribution on Xx  I7o is naturally determined by the joint behavior 
of the target distribution D on t" and the conditional probabilities c(x) given by the 
target p-concept. 

For finding the best decision rule, the discrete loss function is most 
appropriate; that is, the loss function Z given by the rule Z(y,y')=O if y=y',  
and I otherwise. Then E[Zh] is just the probability that h will misclassify a 
randomly drawn point, so minimizing E[Zh] is equivalent to minimizing the 
preditive error. 

For finding a model of probability, the quadratic loss function Q(y, y') = ( y -  y,)2 
has some nice properties that make it the appropriate choice. These properties, 
which follow from the following theorem, are well known to statisticians. (See, for 
instance, White's review article [31].) Also, note that the empirical loss ~[Qh] 
is the average squared-error statistic commonly used by researchers in pattern 
recognition and statistical decision theory. 
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THEOREM 4.1. For any target p-concept c, target distribution D, and p-eoneept h, 

E[Qh]  - E[Qc]  = Ex~D[(h(x) - e(x))2]. 

Proof For  fixed x ~ X, the probability that x is labeled 1 is e(x), and in this 
case, h has loss 

Qh(x, 1)=  Q(h(x), 1)=  (1 - h(x)) 2. 

Likewise, x is labeled 0 with probability 1 - c ( x ) ,  and in this case, h has loss 
(h(x)) 2. Thus, 

E[Qh]  = f [c(x)(1 -- h(x)) 2 + (1 -- c(x)) h(x)21 dD(x). 
Jx 

Similarly, 

E[Qc]  = fx [e(x)(1 - e(x)) 2 + (1 - c(x)) e(x) 2] dD(x). 

Applying straightforward algebra and linearity of integrals, it follows that 

E[Qh]  -- E[Qc]  = ~x [ h ( x ) -  c(x)]  2 dD(x) 

= E ~  ~ [ ( h ( x )  - c ( x ) )  ~ ] 

as desired. (All these integrals are defined, assuming as usual that c and h are 
measurable.) | 

Combined with Theorem 2.3, this theorem immediately suggests a computa- 
tionally efficient method of choosing a good model of probability from a small 
(polynomial-size) class of candidate hypotheses. Suppose that a learning algorithm 
A has done some initial sampling and computation and has produced a class W of 
hypotheses, one of which is a good model of probability. Then A may simply use 
the empirical loss E[Qh] on a large enough labeled sample (a second sample) as 
an accurate estimate of the true loss E[Qh]  for each h ~ oW, and then output the 
hypothesis with the smallest empirical loss. This hypothesis h must have near 
minimal true loss, and so, by the preceding theorem and our assumption that 
contains a good model of probability, h must itself be a good model of probability. 

For  instance, we can use this method to prove that any efficient algorithm in the 
p-concept model (whose running time may be polynomial in 1/6) can be converted 
into one whose running time is only polynomial in log(i/6). More precisely, 
suppose that A is an algorithm that, with probability at least 1, succeeds in finding 
a "good" decision rule or model of probability h. Then we can convert A into an 
algorithm that successfully finds a good hypothesis with probability at least 1 -  6 
in time polynomial in log(1/6). The idea is to simply run A repeatedly, say 
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t = 0(log(1/6)) times, producing hypotheses ha,..., hr. With high probability, one of 
these hypotheses is "good," and we can find the best one by hypothesis testing each 
hj and outputting the one with the lowest discrete or quadratic loss. (This technique 
is due to Haussler et aL [13] who prove the analogous result for the deterministic 
PAC model.) 

The remainder of this section describes another example of an efficient learning 
algorithm that employs the approach outlined above. 

4.1. Probabilistic Concepts of k Relevant Variables 

For a p-concept c on n Boolean variables, we say that variable x; is relevant 
if c(x)~  c(y) for two vectors x and y which differ only in their ith bit. We say 
that c is a p-concept of k relevant variables if c has only k relevant variables. 
Such p-concepts are good models of situations in which there are a small num- 
ber of variables whose settings determine the probabilistic behavior in a 
possibly very complicated manner, but most variables have no influence on this 
behavior. 

THEOREM 4.2. Let k >1 1 be fixed. Then the class of all p-concepts of  k relevant 
variables is polynomially learnable with a model of probability. 

Proof For any set I c  {1, ..., n}, we say that two assignments x and y in {0, 1}" 
are equivalent with respect to I if x,. = Yi for all i e L Then this equivalence relation 
partitions {0, 1 }n into 2 Izl equivalence classes, called I-blocks. Let c be the target 
p-concept, and let I .  be the set of indices of the k relevant variables of c. 

Our algorithm begins by drawing a sample $1 of size ma = 0 ( ( 2 k / ~ 3 )  • log(2k/6)). 
For each of the (~) sets I of k indices, and for each/-block B, our algorithm obtains 
from $1 an estimate/~e of pB=Pr(x.b)~Ex[b = I I x ~ B  ]. A hypothesis ht is then 
defined by the rule h~(x)=PB for x e B .  

By our choice of m~, it follows from Chernoff bounds (Lemma 2.4) that, with 
probability at least 1-6/2 ,  a sample $l is chosen for which I ~ - p s l  ~<~/4 for 
every/ , -block B which satisfies Pr~ ~ D Ix e B] > e/2 k + 2. This implies that, with high 
probability, 

Ex~D[ [ h z . ( x )  - c(x)l 3 = ~ r'rx~[x e B3. I ~ -  e(x)l ~< ~/2, 
B 

where the sum is taken over a l l / , -b locks  B. This bound follows from the fact that 
c(x) =PB for x E B, and by breaking the sum into two parts according to whether 
Prx~D[x ~ B] exceeds or does not exceed e/2 ~+2. 

Next, our algorithm tests each hypotheses hz; that is, an estimate E[Qh,] is found 
from a sufficiently large sample $2 that, with high probability, is within e/4 of 
E[Qh,]. Specifically, this will be the case with probability at least 1 -  6/2 for all 
hypotheses h I if we choose a sample S 2 of size O((1/e2). log(nk/6)). The algorithm 
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outputs the hypothesis h = hi with the minimum empirical loss. Then, applying 
Theorem 4.1, we have 

Ex~D[(h(x)  - e(x)) 23 = E[Qh]  -- E[Qc3 

<<- E[Qh]  -- E[Qc]  + e/4 

~< ~;[Qh,.] - E[Qc]  + e/4 

E[Qh,.] - E[Qc]  + e/2 

= Ex~D[(h i . (x  ) - e(x)) 2] + ~/2 ~< e. 

Applying Theorem 2.3, it follows that this efficient algorithm can be used to learn 
a good model of probability. | 

5. UNIFORM CONVERGENCE METHODS 

When is minimization of the empirical loss over a hypothesis class Jt ° sufficient 
to ensure good learning of a decision rule or a model of probability? Note that even 
with computational issues set aside, the hypothesis-testing methods of the preceding 
section fall apart in the case of an infinite class ~ :  directly estimating the empirical 
loss of each h E Yf separately would take an infinite number of examples and an 
infinite amount of time. What is required is a characterization of the number of 
examples required for uniform convergence of empirical losses to expected losses 
analogous to that provided by the VC-dimension in the case of deterministic 
concepts. This is particularly pressing in our model of p-concepts, where even when 
the domain is finite (e.g., {0, 1 }n), the target p-concept class is usually infinite due 
to the different values allowed for the probabilities. We now turn to a discussion of 
such uniform convergence techniques applicable to p-concept classes. 

Haussler [12],  Pollard [24],  and others have described the pseudo dimension of 
a class of real-valued functions ~- on domain X, and have shown that the pseudo 
dimension is a powerful tool for obtaining uniform convergence results. 

Specifically, the pseudo dimension of ~ is defined as follows: Let 
T =  {(x 1, rl), ..., (Xd, rd)} be a set of d pairs, where each x i ~ X  and each re~ ~. We 
say that ~ shatters T if for every string v ~ {0, 1 }a there is a function f ~  ~ such 
that for 1 ~< i ~< d, if Ve = 0 then f (xe)  <~ re and if ve = 1 then f (xe)  > ri. Thus on the 
points x l  ..... xa the class ~ exhibits all 2 a possible "above-below" behaviors with 
respect to the re. A geometric interpretation of this definition is to regard (rl,. . . ,  ra) 
as the origin of a coordinate system in d-dimensional Euclidean space; then o~ 
shatters T if the set { ( f (x , )  .... , f ( x a ) ) : f e  ~-} intersects all 2 a orthants of the coor- 
dinate system. For  this reason we will sometimes refer to (rl,. . . ,  rd) as the origin o f  
shattering. The pseudo dimension of ~-, denoted PD(~-) ,  is defined as the largest 
value of d for which there exists some set T of d pairs that is shattered by ~-; if no 
such d exists, then P D ( ~ )  is infinite. 
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For us, the most important property of the pseudo dimension is that it allows us 
to upper bound the size of a sample sufficient to guarantee uniform convergence of 
empirical estimates for an entire class of functions. We state this formally in the 
following theorem which is adapted directly from Haussler's Corollary 2 [12]. 

For a hypothesis space Yf and loss function L, we define L ~  = {Lh: h ~ W}. 

THEOREM 5.1. Let ~ be a hypothesis space of functions mapping X into Y which 
satisfies certain "permissibility" assumptions (see HaussIer's paper). Let D be a 
probability distribution on X× Yo, let L: Y x Yo ~ [0, 1] be a loss function, let d< 
be the pseudo dimension of L w ,  and let S be a sample of m points from X x Yo chosen 
randomly according to D. Assume 

Then 

m ~, - 82 

Pr[3h ~ ~ :  IE[Lh] -- E[Lh]I > e] ~< 6, 

where the probability is taken over the random generation of S according to D. 

Theorem 5.1 suggests the following canonical algorithm for finding a hypothesis 
from ~ with near minimum loss, when the pseudo dimension d is finite: take a 
sample S of at least re(d, el2, 6) labeled examples from the oracle EX, and output 
any he  aft that minimizes the empirical loss E[Lh] with respect to S. Then the 
theorem guarantees that the output hypothesis has true loss within e of the best 
possible with probability at least 1 - &  This, of course, ignores the computational 
problem of actually finding such a hypothesis. 

We can apply Theorem 5.1 to our learning problems by determining what the 
pseudo dimension is for each of the loss functions Z and Q. For the loss function 
Z, Haussler points out that the pseudo dimension is just the VC-dimension of the 
hypothesis class. That is, if ~¢g is a hypothesis space of functions with range {0, 1 }, 
then the pseudo dimension of the set of functions Z ~  is just the VC-dimension of 
Jig. Thus, the number of examples needed for decision-rule learning is bounded by 
the VC-dimension of the space of hypotheses used by the learning algorithm. (That 
the VC-dimension can be used in this manner was also observed by Blumer et al. 
[6].) 

For example, consider the problem of learning a decision rule for an increasing 
function over ~. Note that the best decision rule for such a p-concept is always of 
the form ha(x)= 1 for x >  a, and 0 otherwise, for some a. Thus, a natural and 
efficient decision-rule learning algorithm for this problem is the following: draw a 
"large" sample from EX. Then, for each xi in the sample, determine the empirical 
predictive error of hypothesis hzi, that is, the fraction of points in the sample whose 
labels disagree with hx,. Finally, output that hxi with the minimum empirical predic- 
tive error. Since the VC-dimension of this class of decision rules is one, it follows 
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from Theorem 5.1 that a polynomial-size sample suffices to ensure the correctness 
of this algorithm. 

For the problem of learning a model of probability, we will be interested in 
characterizing the pseudo dimension of L g  when L is the quadratic loss function 
Q and or: is a class of p-concepts over domain X. In fact, the following theorem 
shows that, in the p-concept model, the pseudo dimension of Q g  is equal to the 
pseudo dimension of ovf. 

THEOREM 5.2. For any p-concept class J/f, the pseudo dimension of  Q g  is equal 
to the pseudo dimension of  ~ .  

Proof. Let {(xe, re))~=l shatter ~ .  For all v~ {0, 1} a, there exists h ~ V f  such 
that 

sigh(re- h(xi)) = re, 

where s ign(y)= 1 if y~>0 and s ign(y)=0  if y < 0 .  Since all quantities are non- 
negative, h(xi) <~ re if and only if Qh(Xe, O) = (h(xe)) 2 <<. r~. Thus, 

vi = sign(r~ - Qh(xi, 0)), 

and so {((xe, 0), ri))ea=l shatters Q g .  Thus, the pseudo dimension of Q~e is at 
least PD (o~/f). 

Conversely, let {((xi, bi), re)}~=l shatter Q g .  Since d is finite, we can assume 
without loss of generality that the ri's are chosen so that strict inequality holds in 
the definition of pseudo dimension, i.e., for all v ~ {0, 1 )a there exists h e  ~ such 
that Qh(Xe, be) < re if v e = 1 and Qh(xe, bi) > re if v e = 0. Then 

sign(re- Qh(xi, bi)) = sign(re- (h(xi) - be) 2) = s i g n ( ~ / -  Ih(xi) - be l) 

which equals sign(x//~e-h(xi)) if be=O, and equals s i g n ( h ( x i ) - ( 1 - ~ i ) ) =  
1 - sign((1 - v /~)  - h(xe)) if be = 1. It follows that ((x~, Ibe- a/~el ))d=~ shatters ~¢~, 
and thus the pseudo dimension of Q:e is at most P D ( ~ ) .  | 

Note that the second part of the proof of this theorem relies critically on the fact 
that, in the p-concept model, instances are only {0, 1 )-labeled. 

5.1. Linear Function Spaces 

Armed with the definition of pseudo dimension and the sample size upper bounds 
provided by Theorem 5.1, we can now seek efficient algorithms that work by 
directly minimizing the quadratic loss over an infinite class of functions. This is the 
approach taken in our next theorem. For any domain X, let fe: X ~ ~, 1 ~< i ~< d be 
any d functions, and let (g(f~, ...,fa) denote the class of all p-concepts of the form 
c ( x ) = ~ a = l  aJe(X) for a~eR, where we assume that the fe and ai are such that 
c(x)~ [0, 1] for all x s X .  We describe below an algorithm that learns a model 
of probability for p-concepts in the class ~g(f~ ..... fa). The running time of this 
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algorithm is polynomial in the usual parameters, d, and the time needed to evaluate 
the functions f~. 

This result can be applied to prove the polynomial learnability of several natural 
p-concept classes. For  instance, consider the generalization of deterministic disjunc- 
tions in which the target p-concept has the form c(x) = (xil + .. .  + x~t)/t, where the 
xb are Boolean variables chosen from Xl, ..., xn, and + denotes ordinary addition. 
Thus, such a p-concept is "more positive" on vectors x ~ {0, 1 }" that have many of 
the relevant variables set to one. Such a p-concept class is clearly of the form required 
by Theorem 5.3, so it is polynomially learnable with a model of probability. 

As a more subtle application, consider a class of p-concepts over {0, 1 }n that are 
partially specified by a canonical positive example z ~ {0, 1 }n. We wish to model a 
setting in which z is the prototypical positive instance, and those examples "most 
like" z are more likely to be labeled positively. Thus, the target p-concept might 
have the form c( x ) -- a - b. d(x, z) where d(x, z) denotes the Hamming distance and 
a and b are positive real-valued coefficients such that c is maximized at z and is 
always in the range [0, 1 ]. Here the p-concept class c~ is obtained by ranging over 
the choices of the prototype z and the coefficients a and b, and the "decay func- 
tion," which specifies the rate at which vectors further away from the prototype fail 
to exemplify the concept, is linear. It is not difficult to show that each function in 
cg can in fact be written as a weighted linear sum of the variables x~ .... , xn, so cg 
is polynomially learnable with a model of probability. 

Finally, we remark that Theorem5.3 can be applied to learn so-called 
"t-transform functions" considered by Mansour [22]. 

THEOREM 5.3. For any set of  d known computable functions fl: X ~ ~, 1 <~ i <~ d, 
the class cg(f 1 ..... fd) is learnable with a model of  probability. Specifically, there exists 
a learning algorithm for this class whose running time is polynomial in 1/e, log(i/6), 
1/~, d, and the maximum time needed to evaluate any of the functions fi.  

Proof Given e, 6 >0 ,  our algorithm draws a sample of size m =  rm(d, el2, 6)-] 
as given by Theorem 5.1 and attempts to find the choice of coefficients al ..... ad 
that minimizes the quadratic loss over the sample. This can be done using a 
standard least-squares approximation. For  instance, this can be done directly by 
differentiating with respect to each unknown coefficient ai the expression 

m b m Z j = I  [ (Zd=l  a J i ( x j ) ) - b j ]  z (where {(xj, j )}j=l  is the labeled sample) and setting 
the resulting partial derivative to zero. This yields a system of d linear equations in 
the d variables a~ that is of a special form and that can be solved using standard 
techniques. Cormen, Leiserson, and Rivest [7, Chap. 31] describe in detail how this 
can be done efficiently; see also Duda and Hart  [9].  

Let fi~ ..... rid be the resulting solution, and let ho = Zd= 1 fi~f~- Note that ho may 
not be bounded between 0 and 1, so it may not be in ~g = cg(fa .... ,fu). We show 
below how to handle this difficulty. 

For  any real-valued function f,  let c lamp(f )  denote the function obtained by 
"clamping" f between 0 and 1; that is, c l a m p ( f ) = g o f ,  where g : E ~ N ,  and 
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g(x) is defined to be 0 if x~<0, x if 0~<x~< 1, and 1 if x~> 1. Let Y f =  
{clamp(Z~=, a~f~): a~s N}. Our algorithm outputs the hypothesis h =  clamp(ho). 
Clearly h is in Yf, as is the target c. 

Dudley [10] shows that a d-dimensional linear function space has pseudo dimen- 
sion d. (This is reproved by Haussler [12, Theorem 4].) Combined with Haussler's 
Theorem5 (which concerns the pseudo dimension of families of functions 
constructed in the same way as W), this immediately implies PD(3/g)~<d. 
Thus, by Theorem5.1 and our choice of m, with probability at least 1 - 6 ,  
IE[Qh,] - E [ Q h , ] [  ~< e/2 for every h '~ oug. Also, note that E[Qh]  ~< E[Qh0] since all 
instances in the sample are {0, 1}-labeled, so clamping the hypothesis only 
improves its performance. Thus, with probability at least 1 -  3, we have 

Ex~D[(h(x ) -  c(x)) 23 = E[Oh]  - E[Qc]  

~< E[Qh]  - E[Qc]  +z /2  

~< EEQh0] - EEQc] + e/2 

~ < E [ Q c ] - E [ Q ~ ]  +e/2~<~. 

As usual, Theorem 2.3 can be applied to convert this algorithm into one that 
learns a good model of probability for this class. | 

6. A LOWER BOUND ON SAMPLE SIZE 

Theorem 5.1 provides a kind of general upper bound on the sample size required 
for learning a model of probability. We turn now to the problem of lower bounds 
on sample complexity in this framework. For  this, we need to introduce a refined 
notion of shattering. 

Let Yf be a class of p-concepts over domain X. Let T =  {(Xa, rl) ..... (xa, ra)} be 
a set of d pairs, where each xi E X and each ri ~ [0, 1 ]. For  w > 0, we say that g/f 
w-shatters T if for every string v ~ {0, 1 }e there is a p-concept h ~ 3/f (a witness) such 
that for 1 ~< i ~< d, if v~ = 0 then h(x~) < r~-  w and if v; = 1 then h(xi) > r~ + w. Thus, 
in addition to T being shattered by Yg we require that there be a separation of 
width w between ri and h(xi) for each witness h; we call w the width of shattering. 
Note that if Yf has pseudo dimension at least d then there always exists some w > 0 
such that some set of d pairs over X x [0, 1 ] is w-shattered. 

Based on this stronger notion of shattering, we can now prove the following 
lower bound on sample complexity in our model. This lower bound, combined with 
Theorem 5.1 and 5.2, shows that when the pseudo dimension is finite it characterizes 
the sample size required for learning with a model of probability (that is, the bound 
obtained by applying Theorem 5.1 is tight within a polynomial factor of 1/5 and 
1/3). This lower bound may also be of theoretical interest, since in Haussler's 
general learning framework [12] the pseudo dimension is used only to 
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approximately upper bound the so-called covering number, which is directly used to 
obtain sample-size bounds. 

THEOREM 6.1. Let ~ be a p-concept class that w-shatters a set o f  cardinality d. 
Then for  ~ <<. w and e + 6 <~ ½, any algorithm for learning c~ with a model o f  probability 
requires at least [_d(lg e)/8_] = f2(d) examples. 

Proof  Our proof is based on the analogous lower bound proof given by Blumer 
et al. [6] for learning deterministic concepts. However, the analysis is more 
involved in the probabilistic case. 

Let T =  {(x~, r~) .... , (xd, rd)} be w-shattered by the p-concept class ~. Let ego___ cg 
be any fixed subclass of cd such that ~f0 w-shatters T and [cg01 = 2 d. Let A be a 
learning algorithm for cg taking m examples for the given choices of e, 6, and 7, and 
let hs denote the hypothesis output by A on input a labeled sample S of size m. (We 
assume for simplicity that A is deterministic--the proof is easily modified to handle 
randomized algorithms.) 

Let the target distribution D be uniform over the points xl ,  ..., x a. We define a 
weak error measure e(c, S) for target c e c g0 and input sample S as follows: the 
error ei(c, S) at xi is defined to be 0 if c(xi) and hs(x~) are either both less than 
ri, or both greater than ri; otherwise, e~(c, S ) =  1. Then e is just the average of 
the e;'s: 

1 ~ ei(c, S). e( c, S) = ~l . 

Note that if e(c, S) > e, then hs cannot be an (~, w)-good model of probability for 
c, since if c(xi) and hs(xi) are not "on the same side" of ri, then they differ by more 
than w. 

This definition allows us to examine the expectation 

Es[e(c, S)] = ~ Pr[S [ e l .  e(c, S) 
s 

which is taken over S drawn randomly according to D and labeled randomly 
according to c, and P r [S [  c] is the conditional probability that S is generated by 
D and c. 

We will also be interested in the expectation of e(c, S) when both c zCg0 is 
generated uniformly at random and S is generated according to the randomly 
chosen c and the target distribution D: 

Ec, s[e(c, S)] = ~  ~ Pr [SJ  c] .e(c, S). 
S c ~ %  



492 r, ZEARNS AND SCHAPIRE 

We wish to lower bound e(c, S)  for most of the p-concepts in Zo. For any sample 
S, let cg s = {c s ego: e(c, S) < ¼}. Then for c e c~ o - Cgs, e(c, S)  >t ¼, so we obtain the 
lower bound 

Ec, e [sfc] 
S c s % - ~ g s  

=2a+2 ~ Pr[SIc]-2 2 P r [ S [ c ]  . 
c e %  S cs~gs 

Now 

~ P r [ S [ c ] =  ~ ~ P r [ S I c ] = 1 % l = 2  a 
S c ~ %  c E %  S 

since for any c, ~2sPr[S I c] = 1. To upper bound ~ c ~ 0  Y'.s P r [S  c], we will first 
derive upper bounds on the total number of possible samples S, the cardinality of 
Cgs, and the value of P r [S  I c]. First, the number of possible samples S is at most 
(2d) m, since each of the d points may appear with either label and the number of 
examples in S is m. To bound h~gs[, consider drawing a p-concept c uniformly at 
random from the class %. By choice of %,  the probability that e(c, S ) <  ¼ is 
bounded by the probability of fewer than d/4 heads occurring in d flips of a fair 
coin. Thus, applying Chernoff bounds (Lemma 2.4), we conclude that 

ICgsl < I%1" e -el8 = 2 (1- ao)d 

where ao = (lg e)/8. Finally, P r [S  [ c] ~< 1/d m since if we ignore the labels on the 
points in S, the probability of any particular set of m points being generated by the 
target distribution D is at most 1/d". 

Piecing together these bounds, we may now write 

1 a ( 2 d ) m . 2 ( a - . o ) a . d - . ) = ~ ( l _ _ 2 . - a o a ) .  Ec, s[e(c, S)] ~>~;-7 (2 - 

Thus, if m<. a o d - 1  then Ec. s[e(c, S)] >~-~. From this it follows that for some 
fixed Co s °  go, Es[e(c,  S)] ~>~, where the expectation is taken over S drawn 
according to D and labeled according to co. By assumption A learns with a model 
of probability. Thus, with probability at least 1 -  6, a sample S is chosen such 
that h s is an (e, w)-good model of probability. As noted above, in such a case, 
e(c, S)  <. e. Thus, Es[e(co,  S)'I ~< (1 - 6) e + 6 < ~ + 6. Therefore, if ~ + 6 ~< ~ then m 
is at least [_aod], proving the theorem. | 

Any theorem giving a sample-size lower bound must incorporate the width of 
shattering; for instance, ours holds only for 7 ~< w. To see that this is necessary, note 
that the p-concept class of all functions mapping X into { ½- w, ½ + w } shatters all 
of X, but for 7 >/w this class can be learned with no examples with the hypothesis 
h(x)  = ½. A more natural example is provided by the non-decreasing functions of 
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Section 3.1. Here the pseudo dimension is infinite, but we have an efficient learning 
algorithm. An interesting open problem is to give improved general upper bounds 
on sample sizes that incorporate the width of shattering. 

7. OCCAM'S RAZOR FOR GENERAL LOSS FUNCTIONS 

In this section, we present a generalized form of Occam's razor [-5] applicable to 
the minimization of bounded loss functions, and in particular to learning 
p-concepts with a model of probability or a decision rule. Here we have several 
motivations: first, it is of philosophical interest to investigate the most general 
conditions under which learning is equivalent to some form of data compression; 
second, as in the Valiant model, we hope that Occam's razor will help isolate and 
simplify the probabilistic analysis of learning algorithms; third, Occam's razor may 
be easier to apply than uniform-convergence methods in the case that the pseudo 
dimension is unknown or difficult to compute; and fourth, Occam's razor may give 
better sample-size bounds than direct analyses. 

An Occam algorithm for hypothesis class ~ over parametrized domain X, with 
respect to a loss function L: Y× Yo ~ [-0, 1] is a polynomial-time algorithm A that 
takes as input a labeled sample S~ (Xn x I10) m, and outputs a hypothesis h with the 
properties that: 

1. E l -Lh] - in fh ,~g  E[-Lh, ] ~'c = z(n, m) =nam -~ for some constants a~>0, 
and ~ > 0; and 

2. h can be represented by a string over the finite alphabet {0, 1 } of encoded 
length l = l(n, m) = nbm p for some constants b 1> 0 and fl < 1. 

Thus, as in the non-probabilistic setting, we require an Occam algorithm to 
perform some kind of data compression, i.e., to output a hypothesis significantly 
smaller than the given sample. Furthermore, the output hypothesis must come close 
to minimizing the empirical loss on the sample over the entire hypothesis space oVf. 

THEOREM 7.1. Let A be an Occam algorithm as described above. Let S be a 
labeled sample o f  size m generated according to some target p-concept c. Let h be the 
result o f  running A on S. Assume m is so large that z <~ el4 and 2(2t+ 1)e-~2m/8 ~< 6. 
Then 

PrI-E[Lh] -- inf E[Lh.] > ~] ~< 6. 
h'~,Cg 

In particular, this will be the case if  

m ~> m a x  
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Proof The proof is analogous t o  that of Blumer et al. [5]. Let ~ be the set 
of (at most) 2 z hypotheses which might potentially be output by A. Let h,  E ~ be 
such that E[Lh. ] ~<infh,~ E[Lh, ] +5/4. Then, by Chernoff bounds (Lemma 2.4), 
the probability that either E[Lh,]>~,[Lh,]+5/4 for any h ' ~ ,  or that 
E[Lh.] >E[Lh . ]  + 5/4 is at most 2(2l+ 1) e -~2m/8 ~< 6. So, with probability at least 
1 - 5 ,  

E[Lh] ~< E[Lh] + 5/4 

~< inf E[Lh,] +5/2 
h ' ~ , ~  

~< E[Lh.] + 5/2 

~< E[Lh. ] + 35/4 

~< inf E[Lh,] +5. 
h' E ¢¢g 

We show next that the stated bound on rn is sufficient. Clearly, from the first 
bound on m, ~<5/4. Further, from the second bound, we have that 
l = nbm ~ ~ (lg e) 52m/16. Thus, 2(2 z + 1 ) e-din/8 << 4.21e-~2m/S ~< 4. e-din/16 ~< t5 by the 
last bound on m. | 

As an example, Theorem 7.1 can be applied to the problem of learning 
p-concepts with k relevant variables. Essentially, the algorithm given in 
Theorem 4.2 can be modified so that a single initial sample of size rn can be used 
for all of the estimates made by that algorithm. Note that a hypothesis output by 
this algorithm can be represented by the names of k of the variables, plus the 
probabilities for the 2 k equivalence classes. Each name requires lg n bits, and 
moreover, each probability is a rational number (being an empirical probability 
estimate) that requires only O(logm) bits; thus, the hypothesis has size 
O(klog n + 2 k log m). Finally, it can be shown that the hypothesis has the mini- 
mum empirical loss over the entire class of p-concepts with k relevant variables. 
Thus, Theorem 7.1 can be used to easily determine an appropriate sample size for 
this algorithm. 

Note that Theorem 7.1 is only applicable to algorithms which output hypotheses 
over a finite alphabet. However, the theorem can be extended to apply to other 
algorithms in a manner similar to the approach taken by Littlestone and Warmuth 
[21] in the Valiant model. The basic idea is to allow the learning algorithm to out- 
put hypotheses that can be represented over the alphabet S u {0, 1 }, where S is the 
given sample. That is, the representation of the hypothesis may include individual 
examples from the sample itself. For example, the hypothesis output by the algo- 
rithm for learning increasing functions with a decision rule (Section 5) can be 
represented by a single example from the sample, despite the fact that this 
hypothesis would require an infinite number of bits to represent over a fixed finite 
alphabet. Thus, this alternate form of Occam's razor can be used to provide a good 
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sample-size bound. Similarly, the algorithm given in Theorem3.1 (slightly 
modified) for learning increasing functions with a model of probability can be cast 
in this light as an Occam algorithm. 

8. CONCLUSIONS AND OPEN PROBLEMS 

In this paper, we have explored an extension of Valiant's model that incorporates 
the uncertainty inherent in many real-world learning problems. We have focused 
primarily on techniques for the design of efficient algorithms in this model. 

Naturally, we would like to find efficient algorithms for much broader classes of 
p-concepts than the simple classes considered here. For example, can the algorithm 
of Section 3.2 be extended to learn arbitrary (not necessarily co-converging) 
probabilistic decision lists? As is often the case in the deterministic Valiant model, 
sample size is not the problem: from Theorem 7.1, one can fairly easily derive a 
polynomial sample-size bound for learning this class using a computationally 
inefficient Occam algorithm that, given a sample, finds the decision list with the 
minimum quadratic loss by trying all permutations of the list order. The problem 
here is computational: how can we learn this class efficiently? The development of 
further techniques for learning p-concepts is a vitally important direction for further 
research. 

Although the p-concept model captures realistic aspects of many learning 
problems, it might still be criticized for its assumption that the target p-concept 
belongs to an a priori known class of p-concepts. More realistic is a so-called 
agnostic learning model in which the target p-concept is any function from X into 
[0, 1], and the learner's goal is to find the best hypothesis from some fixed space 
of hypotheses. This is actually the framework assumed by Haussler [12] in deriving 
his sample-size bounds. A few of the algorithms described in this paper are effective 
agnostic learners, such as the algorithm of Theorem 4.2 for p-concepts with k 
relevant variables. An important open problem is the extension of other algorithms 
to agnostic learning. For instance, do there exist efficient agnostic algorithms for 
probabilistic decision lists with co-probabilities (Section 3.2) or for linear function 
spaces (Section 5.1)? 

It is also important to continue to develop a theoretical foundation for p-concept 
learning. For instance, are there other loss functions that might be appropriate, 
such as the log loss function? (See Haussler [12] in this regard.) Also, can the 
lower bound proof of Theorem 6.1 be significantly improved? 

Finally, consistent with our quest for efficient algorithms is the need to be able 
to recognize that a learning problem is computationally intractable. Various tech- 
niques in this regard have been developed in the Valiant model, such as those of 
Pitt and Valiant [23], and Kearns and Valiant [18, 16]. Can such techniques be 
extended to the p-concept model? Both of these results seem to depend crucially 
on the deterministic nature of the Valiant model. What then would a negative, 
computational result look like in the p-concept model? 
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