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1. Introduction

The Statistical Mechanics (SM) approach to the analysis of learning curves �has
enjoyed increased attention and success in the �eld of computational learning theory
over the past several years. In part due to the novelty of its technical methods, and in
part due to its identi�cation of interesting learning curve behavior not explained by
classical power law theories, the SM theory has emerged as an important complement
to the powerful and general Vapnik-Chervonenkis (VC) theory of learning curves. To
crudely summarize the di�erences between the SM and VC theories, we can say that
the VC theory requires less knowledge of the problem speci�cs than the SM theory y,
but the VC theory may su�er for this more general approach by predicting learning
curves that deviate further from the actual behavior than those predicted by the
SM theory. It is worth emphasizing that from a mathematically rigorous point of
view, both theories may o�er only an upper bound on the learning curve, and these
upper bounds will diverge from the true behavior as the implicit assumptions of the
theories are violated by the problem under consideration. However, it seems fair to
assert that the SM theory has a better chance at capturing the true behavior of the
learning curve, since more speci�cs of the problem are taken into account.

While the SM theory has contributed new methods of analysis and new bounds
on learning curves, it has done so for essentially the same learning algorithms that
are considered in the VC theory and its variants. For instance, it is common in the
VC framework to analyze the learning algorithm that chooses the hypothesis mini-
mizing the training error (breaking ties arbitrarily), and it is now known that the SM
theory can also provide learning curve upper bounds for this algorithm 1. Similarly,
many investigations in the SM theory focus on the Gibbs algorithm (which essen-
tially chooses a hypothesis randomly from a distribution that exponentially penalizes
training error), but the tools of the VC theory are equally applicable here as well 2.
Thus the SM theory is primarily descriptive rather than prescriptive: we may obtain
new and better bounds on learning curves, but for the same algorithms we have been
studying all along.

Are there natural learning problems in which the sometimes rather di�erent pre-
dictions made by the VC and SM theories would have algorithmic consequences? Here
we argue that model selection, in which we must choose the appropriate value for the
complexity of our hypothesis, is such a problem. An informal example will serve to
illustrate the issues. Suppose we are given a set of training data S = fhxi; biigmi=1
�As an informal working de�nition, the learning curve is the plot of the generalization error as
a function of the number of examples, when the hypothesis or student model is chosen by some
\natural" learning algorithm such as the Gibbs algorithm.
yMore precisely, in the context of supervised learning of boolean functions from independent random
examples, the VC theory requires only knowledge of the class of hypothesis or student functions
(actually, only the VC dimension of this class is required), while the SM theory additionally requires
knowledge of the input distribution, and in certain cases, knowledge of the target or teacher function.



where the xi are vectors of real numbers and the bi are binary values. We wish to
choose a neural network with a single layer of hidden units on the basis of the data
(for simplicity, let us assume full connectivity between adjacent layers). Now if we are
given a �xed value d for the number of hidden units, both the VC and SM theories
could be used to relate the generalization error of hd, the network of d hidden units
minimizing the training error on S, to the normalized sample size m=d. Let us sup-
pose that the VC theory predicts that the resulting generalization error �(d) � �(hd)
will be �vc(d) and the SM theory predicts that it will be �sm(d). So far, both theo-
ries have been applied to the same learning algorithm, although the predicted values
�vc(d) and �sm(d) may be quite di�erent.

Now suppose that rather than being given a �xed value, we must choose the
number of hidden units d on the basis of the sample S, which implicitly means that
we choose the hypothesis hd; we would like to choose d to minimize the resulting
generalization error �(hd). Then straighforward application of the two theories suggest
the choices dvc = argmindf�vc(d)g and dsm = argmindf�sm(d)g. These two values
for d, and therefore the resulting generalization errors, may be quite di�erent, despite
the fact that the underlying training procedure used to choose a network of a �xed
size is the same in both theories.

In e�ect, we are saying the following: �x an underlying training procedure (in
this case, training error minimization) that for any sample S and any \complexity"
d will produce a hypothesis function hd, whose unknown generalization error we are
denoting �(d). Then by applying the VC and SM theories for each value of d, we
obtain predictions �vc(d) and �sm(d) for the behavior of the function �(d). The
\ideal" choice for d satis�es d = argmindf�(d)g, and the extent to which the values
dvc and dsm deviate from this ideal (and the extent to which this deviation results
in inferior generalization) is clearly determined by the accuracy of �vc(d) and �sm(d)
as models of �(d).

The crux of the model selection problem lies in the fact that, in general, we
expect the minimum of �(d) to be achieved at some \intermediate" value. For values
of d that are too small, �(d) will be large simply because the representational power
provided by networks with so few hidden units is insu�cient to accurately model the
unknown target function. For values of d that are too large, �(d) will again be large,
because even though there is su�cient representational power, we do not have enough
data to constrain the weights to values that will result in an accurate hypothesis. In
other words, as we increase d for �xed m, at some point the ratio m=d becomes too
small for us to reliably increase d any further without su�ering greater generalization
error. The question, of course, is where exactly is this point? Since the VC and SM
theories may sometimes di�er radically in their predictions of the generalization error
to be expected at any given ratio m=d, we should expect them to sometimes provide
radically di�erent solutions to the problem of model selection.

In the remainder of the paper, we �rst examine more closely the solutions to the
model selection problem that are implicit in the two theories. We then propose a
speci�c model selection problem, based on the learning curve for the committee ma-
chine, in which the two solutions should be quite di�erent. After a discussion of the
relative di�culty of directly applying the SM solution in general, we summarize some
recent results 4 in which the SM theory is instead invoked to argue in favor of another
well-known model selection method, namely cross validation. We conclude with a
discussion of interesting avenues for further research.



2. The VC Solution to Model Selection

Before describing the VC theory solution to model selection, it will be helpful to
generalize the simple example discussed above to provide a more abstract setting for
model selection problems. In the context of supervised learning of boolean functions
from independent random examples, a model selection problem consists of an arbitrary
target or teacher function f , a distribution D over the inputs x to f , a sample size
m, a training algorithm L, and a nested sequence of hypothesis or student function
classes

F1 � � � � � Fd � � � �
For any function h, the target function f and the input distribution D together de�ne
the generalization error �(h) � Prx2D[f(x) 6= h(x)]. The training sample S consists
of m randomly chosen examples of f , possibly corrupted by noise. The training
algorithm L accepts as input the training sample S and a complexity value d, and
outputs a function hd 2 Fd; as we range over all the possible values for d, the training
algorithm thus yields a sequence h1; : : : ; hd; : : : of increasingly \complex" hypotheses
(where complexity is de�ned by the partial ordering on functions implied by the
sequence of hypothesis function classes Fd). The model selection problem is simply
that of choosing d to minimize �(hd) = �(d). We assume that the model selection
procedure has no information about the target function (and possibly no information
about the input distribution), and thus seeks to minimize the resulting generalization
error in, say, a minimax sense. In the example discussed above, we did not specify
f and D, but the training algorithm L was training error minimization, and Fd was
the class of all neural networks with at most d hidden units. As another example,
we might consider the case where L is the Gibbs algorithm, and Fd is the class of all
committee machines with at most d committee members.

In the VC learning curve theory, the prediction �vc(d) for the generalization error
�(d) depends not only on Fd and m, but also on the training error �̂(d) � �̂(hd) �
jfhxi; bii 2 S : hd(xi) 6= bigj=m. The resulting expression for �vc(d) is

�vc(d) = �̂(d) + c0
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where c0 > 1 is a constant and vcd(Fd) is the Vapnik-Chervonenkis dimension of
Fd

3. The detailed derivation of this expression is rather involved, but the reader
is encouraged to consult Vapnik's fascinating and beautiful book on the subject. A
few remarks on �vc(d) are in order here. First, it can be rigorously shown that with
high probability over the random sample S, �vc(d) � �(d) 3. In fairness to the VC
theory, this is the only property of �vc(d) that is needed for many computational
learning theory results | in many applications (such as deriving sample size bounds
for particular learning algorithms), it is not necessary to propose a model for the exact
behavior of �(d), and an upper bound will su�ce. Second, although it may be di�cult
to see from Equation (1), the expression for �vc(d) is essentially based on a power
law theory of learning curves | or more precisely, on power law uniform convergence
bounds. By this we mean that the main technical fact underlying Equation (1) is that
with high probability over S, for any function h in the class Fd the deviation of the

training error of h from the generalization error of h is bounded above by
q
vcd(Fd)=m



z. Furthermore, the largest deviation between the training and generalization error
over the functions in Fd is closely related to the learning curve for the class Fd. Thus
the extent to which �vc(d) approximates �(d) is directly related to how much the
learning curves for the Fd resemble power laws x. In any case, the expression for dvc
| the VC theory choice of complexity in the model selection problem | simply
becomes

argmind

8<
:�̂(d) + c0

vcd(Fd)

m
log

m

vcd(Fd)

0
@1 +s

1 + �̂(d)
m

vcd(Fd) log
m

vcd(Fd)

1
A
9=
;
(2)

3. The SM Solution to Model Selection

To illustrate how the SM theory can be extended to obtain a prescription for
model selection, we will rely on the formalization provided by Haussler, Kearns,
Seung and Tishby 1; this will require a number of technical assumptions. However,
we believe that the less rigorous but more general methods that have been in use in
the SM theory are also applicable to model selection, and the reader well-versed in
that literature should be able to envision the extension.

To apply the formalism, we need to assume that the function classes Fd are �nite 1;
as a concrete example, we could consider the case where Fd is the class of all binary
committee machines with at most d committee members (thus, the weights of each
committee member must be either +1 or �1). In the following discussion, we assume
that the (arbitrary) target function f and input distribution D are �xed (and de�ne
the generalization error �(�)).

In this formalization of the SM theory, the crucial quantity to be examined for
each class Fd is the entropy function sd(�), de�ned by

sd(�) � 1

d
log jFd(�)j (3)

where Fd(�) � Fd is the set of all functions in Fd whose generalization error with
respect to f and D is \approximately" � {. The function sd(�) plays a similar role in
the SM theory to that played by the VC dimension in the VC theory, in the sense
that the primary dependence that the SM theory has on the speci�cs of the problem
(that is, on f , D and m) is through sd(�).

Speaking informally, the generalization error predicted by the SM theory (when
the hypothesis is chosen to minimize the training error in Fd on m random examples)
is �sm(d), where �sm(d) is the largest value of � satisfying

s(�) � �m
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zA more re�ned bound that varies from
p
vcd(Fd)=m for small d to vcd(Fd)=m for large d holds,

and is actually the bound used to derive Equation (1).
xMore precise statements of this nature are possible, but this will su�ce for our purposes.
{See the paper of Haussler, Kearns, Seung and Tisbhy 1 for technical details. A number of variations
of this basic de�nition are allowed, including ones that replace the factor 1=d by 1=t(d) for some
appropriate \scaling function" t(�), and that permit sd(�) to merely upper bound the right-hand side
of Equation (3).



Here �opt(d) � minh2Fdf�(h)g is the best generalization error that can be achieved
within the class Fd. The value �sm(d) has a natural interpretation as a competition
between entropy and energy that is a common metaphor in the SM theory.

Like the function �vc(d), �sm(d) provides a rigorous upper bound on the true
function �(d) under certain technical conditions 1 k. As discussed earlier, we can
interpret �sm(d) as more than just a bound on �(d) | in the model selection prob-
lem, we can hope that �sm(d) is a good approximation to �(d) and choose dsm =
argmindf�sm(d)g.

4. An Informal and Illustrative Example

Let us summarize where we are. For �xed sample size m, and for each value of
d, the VC theory implicitly predicts that the resulting generalization error �(d) obeys
�(d) = �vc(d), where �vc(d) depends only on m, vcd(Fd) and the training error �̂(d).
The SM theory predicts that �(d) = �sm(d), where �sm(d) depends on m, Fd, and
the input distribution D. It is known that �sm(d) is a better approximation to �(d)
than �vc(d), at least in the �nite Fd case 1, and we should expect it to be true for
the general (non-�nite) case | �sm(d) simply takes into account more of the speci�cs
of the problem. Thus, we should also expect the model selection problem solution
derived from �sm(d) to be superior to that derived from �vc(d). In this section, we
simply wish to describe a simple example where this seems likely to be the case. We
will treat the example rather informally, and leave the formal veri�cation as an open
problem.

Let us suppose that the target function f is a committee machine with exactly d�

committee members with binary weights, and that the input distribution D is uniform
over f+1;�1gn (here n is the number of inputs to the target machine f). Let the
class Fd consist of all committee machines with d or fewer committee members with
binary weights ��, so f 2 Fd�.

First consider the functions �(d) and �sm(d) when the number of examples m is of
order d�n. There is strong evidence from the SM theory, supported by experimental
simulations, that for some constant �c > 0, if m = �cd

�n, then �(d�) = 0, while if
m < �cd

�n then �(d�) > c0 for some constant c0 > 0 5;6 | in other words, there
is a �rst-order phase transition to perfect generalization at �cd�n examples yy. The
SM theory correctly predicts this behavior | that is, �(d�) = 0 for m = �cd

�n and
�sm(d

�) > c0 for m < �cd
�n. In the context of model selection, this means that

dsm = d�, and the generalization error su�ered by using the SM theory to choose a
value for d is therefore 0.

In contrast, let us examine the function �vc(d) under these same circumstances.
For m = �cd

�n examples, �vc(d
�) will be a non-zero constant, because vcd(Fd�) is

of order d�n 7, meaning that the expression vcd(Fd�)=m (which appears additively
in the expression for �vc(d) given in Equation (1)) will be a non-zero constant de-
pending on �c. The main point here is that for this particular problem, the VC theory

kPerhaps the most important and restrictive of these conditions is the requirement that we take a
thermodynamic limit; however, in certain cases �nite sample size bounds on generalization error can
also be obtained.
��The ensuing argument should also hold qualitatively for the case where the committee members
have continuous weights 6.
yyAgain, these results formally rely on a thermodynamic limit, but a rapid increase in the rate of
generalization is seen in simulations near �cd

�n examples even for �nite systems.



overpenalizes for complexity, and thus �vc(d
�) greatly overestimates �(d). In the con-

text of model selection, this may result in dvc << d� | the minimization of �vc(d)
may yield a value of d that su�ers large training error �̂(d) in exchange for reducing
the penalty for complexity. If this were the case, then choosing dvc would cause
increased generalization error compared to choosing dsm. We have not carefully de-
termined whether the VC theory's overpenalization for complexity actually results
in inferior generalization error for this particular model selection problem; however,
it is possible to rigorously demonstrate the phenomenon we have discussed here on
other model selection problems, and in fact show that the additional error su�ered
by choosing dvc instead of dsm can be quite large 4.

5. Remarks on the SM Theory and Cross Validation

The remarks of the preceding section indicate how the solutions to model selection
suggested by the VC and SM theories may di�er, and why it may result in inferior
performance by the VC method on certain problems. Despite this, we do not expect
the SM model selection method outlined in Section to become a serious competitor
to the VC method of Section for one simple and obvious reason: the general SM
approach requires too much knowledge of the problem speci�cs (knowledge that may
be di�cult or impossible to attain), and the calculations required are extremely dif-
�cult. Nevertheless, even if we do not choose to directly implement the SM solution
to model selection, the SM theory still has algorithmic consequences for the model
selection problem, namely by providing concrete arguments for favoring the use of
cross validation over the VC method (and similar \penalty-based" methods such as
the minimum description length principle) for certain problems. Here we just briey
remark on why SM theory discoveries lend support for cross validation, and refer
the reader to an extensive paper quantifying and verifying the ideas given informally
here 4.

Suppose that we began by assuming that for every problem, �vc(d) were a rea-
sonably good model of �(d), denoted �vc(d) � �(d). Using Equation (1), we see that
this is tantamount to assuming that there is a universal relationship between the
training error �̂(d) and the generalization error �(d). Perhaps the main contribution
of the SM theory to research on learning curves has been its conclusive demonstration
of the fact that there is no such universal relationship | there is a great diversity of
possible relationships between �̂(d) and �(d). The example given in the last section
is based on this diversity | it is simply a problem in which the relationship between
�̂(d) and �(d) that is assumed by the VC theory does not hold.

Given the diversity of learning curves established by work in the SM theory, it
seems reasonable to assert that any model selection method based on the assertion
of a universal relationship between �̂(d) and �(d) would be doomed to failure on at
least some problems. This is in fact the case, and can be veri�ed rigorously 4. From
this viewpoint, the strength of cross validation lies in the fact that it assumes no such
universal relationship | rather, regardless of the behavior of �̂(d), cross validation
directly estimates �(d) using an independent test sample. Of course, the issue of
how much generalization ability is lost due to excluding part of the sample from the
training process is important here, and for some problems may in fact cause cross
validation to have inferior performance. However, our claim here is that under fairly
common circumstances, the exibility cross validation enjoys by directly estimating
�(d) compensates for the diversity of learning curves that proves fatal for many other
model selection methods. Again, these ideas are made considerably more precise in



a recent paper 4.

6. Topics for Further Research

Despite the di�culty of the required calculations in general, it would be inter-
esting to work out the details of the SM prescription for model selection outlined
in Section for particular problems, such as choosing the best number of committee
members. Experimental comparisons with other approaches such as the VC theory,
cross validation and the minimum description length principle could then be carried
out.
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