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Abstract. We introduce a new formal model in which a learning algorithm must combine a
collection of potentially poor but statistically independent hypothesis functions in order to ap-
proximate an unknown target function arbitrarily well. Our motivation includes the question of
how to make optimal use of multiple independent runs of a mediocre learning algorithm, as well
as settings in which the many hypotheses are obtained by a distributed population of identical
learning agents.
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1. Introduction

In this paper, we are concerned with the problem of combining a number of poten-
tially poor but statistically independent hypotheses in order to obtain a signi�cantly
better approximation to an unknown target function. Our motivating scenario is
a world in which a large number of learning agents each collects a small but inde-
pendent sample and forms a hypothesis based on its sample. Although the data
available to individual agents is limited, the entire population regarded as a sin-
gle entity has collected a large number of independent examples. These examples
are no longer directly available, but have been translated into many individual hy-
potheses, each with potentially large error. We are thus interested in learning not
from random examples, but from the population's many hypotheses. The goal is
to combine a number of these limited accuracy hypotheses in order to obtain a new
hypothesis with arbitrarily small error.

There are two lines of prior research in computational learning theory and related
�elds that immediately come to mind in our setting. The �rst is the recent work
on combining \expert" opinions in an optimal on-line fashion (see Cesa-Bianchi et
al. [2] for recent results and an extensive bibliography). Brie
y, in the research on
experts, we assume that have access to the predictions of a panel of experts, and our
goal is to make predictions with a mistake rate approaching that of the best expert.
Since typically no assumptions are made regarding the sequence being predicted or
the experts (for instance, the sequence may be arbitrarily time-dependent, so an
expert's performance on any part of the sequence may be a poor predictor of its
future performance), approaching the best expert's mistake rate is the most that
can expected in such models [2].
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In contrast, in this paper we make assumptions about both the desired predictions
and the \experts" (which we do not regard as being especially expert). The desired
predictions are represented by a �xed, unknown target function chosen from a
restricted, known class, and each \expert" (or hypothesis) is the result of training
on a small but independent random sample of the target function. By making
these assumptions, we allow the possibility of somehow combining the independent
hypotheses in a way that considerably outperforms any single hypothesis.

The second loosely related line of research is the work on boosting weak learning
algorithms [11], [5], [6], in which the goal is to combine a collection of hypotheses
from a mediocre learning algorithm in order to obtain an arbitrarily accurate hy-
pothesis. Although our goals are similar, a crucial di�erence is that in the boosting
work, we have control over the executions of the weak learning algorithm and thus
by modifying the training distribution we can force each subsequent hypothesis to
have a slight prediction advantage where the previous hypotheses have failed. Here
we assume no such mechanism, and each hypothesis is trained on the same �xed
distribution. Indeed, it is interesting to note that natural schemes for combining
hypotheses that are successful in the boosting setting, such as majority vote [5],
often fail in our setting.

1.1. Overview of Results

We now give a summary of the paper. In Section 2, we introduce and motivate our
model, which we call population learning . Brie
y, in this model a population learner
is provided with an oracle that on each call produces a function that is consistent
with an independent random sample of the unknown target function. Thus, each
call to the hypothesis oracle causes a new sample of m random examples to be
drawn, and for a function consistent with these m examples to be returned to the
population learner. The method by which the consistent function is chosen can
sometimes be crucial and is a parameter of our model. For several of our results,
we concentrate on the case where the returned function is chosen randomly from
among all consistent hypotheses (that is, by a Gibbs learner). We regard m as a
�xed constant over which the population learner has no control, but the population
learner may draw as many hypotheses as desired in order to obtain arbitrarily small
error.

In Section 3, we analyze a simple population learning problem and introduce
the important and natural idea of the distribution induced on hypotheses by the
hypothesis oracle. This allows us to develop some general theory for population
learning in Section 4. We �rst introduce our central technical tool, the separation
functions. These functions essentially quantify how the distance between two pos-
sible target functions (measured with respect to the target distribution) translates
to the distance between the two corresponding induced distributions on hypotheses
(measured by Kullback-Leibler divergence or variation distance). Intuitively, if this
translation results in an extreme contraction of distances, then population learning
is di�cult, and if this translation is relatively mild, then population learning can
be accomplished with a modest number of hypotheses.

With the notions of induced hypothesis distributions and separation functions in
hand, we next turn to the fundamental problem of providing general upper and



lower bounds on the number of hypotheses that must be drawn in order to obtain a
desired level of accuracy. This is analogous to the problem of determining upper and
lower bounds on sample complexity in standard models of learning from examples.

For the upper bound, we formulate population learning as a problem of classical
parametric distribution estimation of the induced distributions on hypotheses. We
then invoke the powerful tools of the uniform convergence literature to analyze the
maximum likelihood method for this problem, in order to obtain an upper bound
which is polynomial in the inverse of the separation functions and a dimension
term. We then provide a lower bound that is also polynomial in the inverse of the
separation functions, thereby demonstrating that these functions give a coarse and
partial characterization of the required number of hypotheses.

Section 5 gives several applications of the general theory. We analyze some simple
population learning problems, including problems where the hypotheses are initial
intervals of the real line, boolean conjunctions, and perceptrons. We also consider
both cases where the Gibbs algorithm is used to choose consistent hypotheses, and
where an arbitrary consistent hypothesis is chosen.

Section 6 mentions several areas for further research.

We wish to emphasize that although some of the methods we propose here are
computationally e�cient in the limited settings we consider, our primary concern
in this paper is with the statistics of learning from a population of hypotheses, that
is, with the number of independent hypotheses that are necessary and su�cient for
learning in our model (whether by a computationally e�cient algorithm or not). In
general we have left the important problem of computational feasibility to future
investigations.

2. The Population Learning Model

Imagine a world populated by a large number of initially identical learning agents.
Each agent wanders through the world, acquiring a limited number of independent
examples of an unknown target function, and then applies an internal algorithm
for learning from examples to the data it has collected in order to obtain a hy-
pothesis function. We assume that all agents use the same internal algorithm for
learning from examples, so agents di�er only in the data they have gathered and
its subsequent e�ects on their hypotheses. In this paper, we wish to investigate the
problem of learning not from examples, but from the hypotheses computed by the
independent agents.

A population learning problem will be de�ned as a triple (F ; D;m) (we will add
some further components shortly). Here F is the class of possible f0; 1g-valued
target functions over the input space X, D is a probability distribution over X (or
density in the case of continuous X), and m � 1 is a natural number called the
agent sample size, which is the number of random examples seen by each agent.

We assume that F , D and m are all known to the algorithm trying to solve
the population learning. We also assume that every agent sees the same number
m of random examples. In general, throughout the paper we will at any time be
discussing a �xed population learning problem, so for notational brevity we will not
explicitly indicate dependences on F ; D and m except where necessary. Note also
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that we are studying a \distribution-speci�c" model of learning, in the sense that
D is �xed and known.
As is typical of concept learning models, we seek algorithms that can �nd good ap-

proximations to an unknown target function f 2 F with respect to the distribution
D. However, in our model the algorithm (called a population learning algorithm)
does not have direct access to random examples of f , but only to a large collec-
tion of hypotheses that have been independently computed using random examples
of f . More precisely, for the population learning problem (F ; D;m) a population
learning algorithm is given access to the oracle POP (f) that runs in unit time and
behaves as follows on each call:

� Draw m inputs S = fx1; : : : ; xmg randomly and independently according to D.
Let Sf denote the set of inputs in S paired with the labels given by the target
function f 2 F .

� Choose an element h of the version space VS (Sf ), which is the set of all functions
in F that are consistent with the labeled sample Sf (further details of this step
are discussed below).

� Return h.

Thus, we may think of each call to the oracle POP(f) as returning the hypothesis
of a single learning agent from a large population of agents, each member of which
saw m independent random examples of f . If we make ` calls to this oracle, we
obtain a pool h1; : : : ; h` of hypotheses. Although we expect each hi to have limited
accuracy (because each hi was obtained using only m examples), the total number
of independent random examples that was used to train the entire pool is ` �m.
Despite the fact that a population learning algorithm has access only to the hi,

for su�ciently large ` in principle it may be possible to combine h1; : : : ; h` in some
manner to obtain a new hypothesis f̂ that is considerably more accurate than any
of the hi. Indeed, as ` becomes large one might expect to be able to obtain f̂ with
arbitrarily small error. It is exactly this type of statement that we wish to formalize
and quantify in this paper.
A crucial detail left unspeci�ed by the given description of POP(f) is which ele-

ment of VS (Sf ) is returned by the oracle. The insistence that the chosen hypothesis
be consistent with the examples is in fact largely inconsequential to the general the-
ory we will develop, but is a reasonable working assumption. The method used to
choose from the version space amounts to an assumption on what common algo-
rithm for learning from examples is used by the learning agents. There are many
reasonable and interesting assumptions that could be made here. In this paper we
will both develop a general theory that applies regardless of what algorithm is used
by the agents, and also study the details of a model in which the agents use the
so-called Gibbs algorithm.
In the general case, we add another item A (called the agent algorithm) to the

description of a population learning problem (F ; D;m;A). Here A may be any
randomized algorithm that takes as input a set Sf of labeled examples of some
f 2 F and outputs some h 2 VS (Sf ). Again, as for the other items in the quadruple
de�ning a population learning problem, we shall usually leave any dependences on
A implicit for notational brevity.



Under agent algorithm A, the previously underspeci�ed second step of the oracle
POP(f) is completed as follows: the h 2 VS (Sf ) chosen for output by the oracle is
simply A(Sf ) (the output of A when given the labeled sample Sf ). It is important
to note that the agent algorithmA is part of the description of a population learning
problem and thus is considered to be \known" by the population learning algorithm.
Thus, we allow population learning algorithms to be designed for the particular
agent algorithm A in question (as well as the particular F ; D and m).

A special case of interest occurs when the agent algorithm A is the well-studied
Gibbs algorithm, which is known to be a near-optimal learning algorithm in terms
of its expected error as a function of the number of examples m [8]. This algorithm
simply chooses h uniformly at random from the version space VS (Sf ). This models
a population in which each agent learns by choosing a consistent hypothesis from
F without bias, in the sense that given consistency with the training data, all
functions are equally likely to be chosen.

A population learning algorithm P for a population learning problem (F ; D;m;A)
is an algorithm that for any target function f 2 F is given access to the oracle
POP(f) and two inputs 0 < �; � � 1, and eventually halts by outputting a function

f̂ 2 F that with probability at least 1� � satis�es D[f�f̂ ] � �.

Given any �xed population learning problem (F ; D;m;A), in this paper we are
primarily interested in the population size required for learning. Thus, for a popula-
tion learning problem (F ; D;m;A) we de�ne the function `(�; �) to be the minimum
over all population learning algorithms P for (F ; D;m;A) of the maximumnumber
of calls (over all target functions f 2 F) made by P to the oracle POP(f) on inputs
� and �. Note that `(�; �) depends on all four parameters of the population learning
problem.

Several points regarding the model bear mentioning before we embark on our
investigation. First, note that we �x the population learning problem (F ; D;m;A),
and then seek an algorithm that works for all values of � and � for this problem.
Thus, we think of the agent sample size m as a constant , and a population learning
algorithm can obtain more information about the target only by drawing a larger
number of hypotheses that each have this same constant amount of training.

Second, note that we assume that the oracle POP (f) returns exact descriptions of
hypotheses, as opposed to only returning \black boxes" (input-output oracles) for
hypotheses. Thus, in principle a population learning algorithm may not only eval-
uate the sampled hypotheses, but may use the de�ning parameters of the sampled
hypotheses in any way it sees �t. For instance, if the function class F is a class of
neural networks of some �xed architecture, the population learning algorithm has
access to the values of the weights in the hypotheses returned by POP(f). Although
the algorithms we propose will technically use this capability, in general we suspect
that there is little additional power gained over black-box use of the hypotheses.
For instance, for every speci�c population learning problem analyzed in Section 5,
our algorithms are easily coverted to make only black-box use of hypotheses with
no change in the required population size.

Finally, the population learning model could be viewed as an instance of what
statisticians callmeta-analysis, in which multiple sources of perhaps secondary data
are combined to give a uni�ed hypothesis.
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3. An Illustrative Example: The High-Low Game

In this example, the domain X is the real interval [0; 1], and F is the class of
all initial intervals. Thus, each target function is a real number f 2 [0; 1], and
the positive examples are the subinterval [0; f ], with the interval (f; 1] being the
negative examples. Let D be the uniform distribution on [0; 1]. These settings are
also known as the \high-low game", since each example x of f simply indicates
whether x is smaller or larger than f .

Let us examine the population learning problem (F ; D;m = 1; A = Gibbs). In
this problem, for target f the oracle POP (f) behaves as follows: a single x 2 [0; 1] is
chosen uniformly at random. If x � f (positive example), then a random h 2 [x; 1]
is chosen uniformly and returned. If x > f (negative example), then a random
h 2 [0; x) is chosen uniformly and returned.

An important observation that applies to any population learning problem is
that for any target f 2 F , the oracle POP (f) induces a well-de�ned probability
distribution qf over F . Thus, for any h 2 F , we let qf [h] denote the probability that
h is output by the oracle POP (f) (or the density of qf at h in the continuousF case).
Note that qf depends crucially on the agent algorithm A. A population learning
algorithm has access to random draws from qf as its sole source of information.
The function class F gives rise to the associated class of induced distributions
Q = fqf : f 2 Fg.
It is the analysis of the problem of learning the distribution qf , and the rela-

tionship between this problem and approximating the target function f , that will
form the backbone of our entire approach. We will shortly obtain general upper
bounds on required population size by analyzing the classical maximum likelihood
approach to estimating qf . For the speci�c case of the high-low game, it turns out
to be su�cient for the analysis to compute Eh2qf [h] = E[h], which is the expected
value of the hypotheses h 2 [0; 1] generated by the distribution qf . (Throughout
the paper, we use the subscript h 2 qf on an expectation or probability to denote
that h is chosen randomly according to qf , and h 2 S to denote that h is chosen
uniformly from the set S.) We may write

E[h] =

Z 1

0

E[hjx]dx

=

Z f

0

Eh2[x;1][h]dx+

Z 1

f

Eh2[0;x] [h]dx

=

Z f

0

�
x+

1� x

2

�
dx+

Z 1

f

x

2
dx

=
f

2
+

1

4
:

Here we have broken the expectation into two easily analyzed parts: the �rst
where the single example x is positive (in which case h is drawn randomly from
[x; 1] and thus has expected value x+(1�x)=2), and the second where x is negative
(in which case h has expected value x=2). This calculation immediately suggests the
following population learning algorithm: draw h1; : : : ; h` from the oracle POP(f)

and let havg = (1=`)
P`

i=1 hi; then solve havg = f̂ =2+1=4 for the �nal hypothesis f̂ .



Correctness and convergence of this procedure can be proven via Cherno� bounds,
giving the following theorem.

Theorem 1 Let F be the class of initial intervals over [0; 1], and D the uniform
distribution on [0; 1]. Then for the population learning problem (F ; D;m = 1; A =
Gibbs), `(�; �) = O(1=�2 log 1=�).
This bound compares favorably with the �(1=� log 1=�) sample size that is re-

quired for learning F from the random examples themselves (rather than the hy-
potheses) with respect to the same distribution. Thus, even when each agent has
seen only a single example of the target function, a relatively small sampling of
hypotheses can be combined to �nd a much more accurate hypothesis. Note that
our algorithm for this simple problem is also computationally e�cient.

3.1. Remarks on the High-Low Game

Several other points regarding this simple example bear mentioning. First of all,
the choice of the agent algorithm A can sometimes have great e�ect: let A be the
consistent algorithm that for a positive example x chooses the hypothesis h = x+
,
and for a negative example x chooses the hypothesis h = x � 
 (for some small

 � 0). Then it easy to see that as 
 approaches 0, qf approaches the uniform
distribution on [0; 1] independent of f . This demonstrates that for the high-low
game with m = 1, it is not possible to obtain a single �nite upper bound on `(�; �)
that holds simultaneously for all choices of A, and we must analyze the required
population size for di�erent agent algorithms on a case-by-case basis.
Second, however, the e�ects of the particular agent algorithm A can sometimes

be overcome by a su�ciently large agent sample size m. Thus, we will later show
that in the m = 2 case of the high-low game, we can upper bound `(�; �) by a
polynomial in 1=� and 1=� simultaneously for all agent algorithms. In general, we
expect larger agent sample size to make population learning easier (or at least not
more di�cult). However, there are some subtleties involved with this intuition that
we discuss later.
Finally, the high-low game is a simple problem for which several natural and

naive approaches to population learning fail. For instance, it is tempting to con-
jecture that a general approach to population learning is majority voting: sample
hypotheses h1; : : : ; h` and let f̂ be the majority vote of these hypotheses. In the
high-low game, it is easy to see that this scheme is equivalent to choosing f̂ to
be the median of h1; : : : ; h`. However, when the target function f = 0, it can be
shown that the median converges to the value 0:1865::: as ` ! 1, and thus will
not achieve arbitrarily small error even given an in�nite population size.

4. Development of the General Theory

Throughout this section, we assume a �xed population learning problem (F ; D;m;A).
Thus far, we have observed that each target function f 2 F gives rise to an in-
duced distribution qf 2 Q over F which is exactly the distribution sampled by the
oracle POP (f); note that each qf depends on all four parameters of the population
learning problem in addition to f . One natural approach to population learning
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would be to learn an approximation q̂ to qf , and somehow use q̂ to �nd a good
approximation to f itself. Our approach to the high-low game can be viewed as a
special case of this approach, where all that was needed was an approximation to
the mean of qf .
In order to formalize this approach, we must specify what is meant by learning

the distribution qf (or more precisely, what measure is used to evaluate a hypoth-
esis distribution), and then study quantitatively how the problem of learning the
distribution qf relates to the original problem of learning the target function f .
We will �nd it convenient to consider two di�erent standard measures for the

distance between two probability distributions. The �rst is the Kullback-Leibler
divergence (which is not a metric, since it lacks symmetry):

KL(qf1 jjqf2) =
X
h2F

qf1 [h] log
qf1 [h]

qf2 [h]
:

The second is the variation distance:

V (qf1 ; qf2) = sup
F 0�F

jqf1[F 0]� qf2 [F 0]j:

Both measures have analogues for densities in the continuous case; in developing
our general theory, however, we shall restrict ourselves to the case of distributions
for simplicity. We will use the following theorem due to Kullback [9]:

Theorem 2 For any distributions qf1 ; qf2

KL(qf1 jjqf2) � V 2(qf1 ; qf2):

4.1. The Separation Functions

Having de�ned these two closeness measures for probability distributions, we now
introduce their associated separation functions. This is our most important de�ni-
tion, and is motivated as follows: suppose that in a population learning problem,
two potential target functions f1; f2 2 F have disagreement D[f1�f2] = �. If we
had access to random examples of the target function, we could distinguish between
f1 being the target and f2 being the target in O(1=�) examples.
In population learning, however, all we have access to is either qf1 or qf2 . If despite

the � separation between f1 and f2, the separation between qf1 and qf2 is much
smaller than �, then we may require a very large population size to achieve error
�. On the other hand, if the � separation between f1 and f2 implies a \signi�cant"
(say �2) separation between qf1 and qf2 , then a modest population size may su�ce.
We thus de�ne the separation functions as:

�KL(�;m) = min
f1;f22F;D[f1�f2]��

KL(qf1 jjqf2)

and

�V (�;m) = min
f1 ;f22F;D[f1�f2]��

V (qf1 ; qf2):



(In cases where the minimum does not exist, we instead take the in�mum.) Here
we are violating our convention of leaving dependence on the agent sample size m
implicit for reasons we shall discuss shortly in Section 4.2. Both separation functions
take � as an argument, and �nd the closest (with respect to either Kullback-Leibler
divergence or variation distance) that two �-separated functions in F (with respect
to D) can become in the space Q of induced distributions. Note that by Theorem 2
we have �KL(�;m) � (�V (�;m))2 always.
Shortly we will provide evidence for the signi�cance of the separation functions by

showing that they provide a rough characterization of the population size required
for any population learning problem. Speci�cally, we give upper and lower bounds
on the population size `(�; �) that are polynomial expressions in 1=�KL(�;m) and
1=�V (�;m) (as well as 1=� and various complexity measures of the population
learning problem). We �rst engage in a brief discussion of the dependence of the
separation functions on the agent sample size m.

4.2. The Role of Agent Sample Size

Let us brie
y digress from the main development in order to discuss a primary
but unfortunately unful�lled goal of our investigation, and to clear the air of any
confusion that this failure may cause. As we have indicated, a \nice" separation
function would have behavior such as �KL(�;m) � �2, so that large distances in
the metric induced on F by D would translate to large distances (either Kullback-
Leibler divergence or variation distance) in Q. We will soon see that such nice
behavior leads to relatively modest upper bounds on the required population size.
In the population learning model, we essentially regard m as a �xed constant,

representing the limited amount of training received by each learning agent in the
population. In particular, we do not allow m to increase according to the desired
error bound � given to the population learning algorithm| m is independent of �,
and all the population learning algorithm can do to achieve smaller and smaller � is
to take more and more hypotheses of this �xed sample size m. Thus, an important
question for us is how small m can be while the separation functions still have nice
behavior.
More precisely, note that in general we expect that as m increases, each in-

duced distribution qf (which of course implicitly depends on m) becomes more
peaked around f . For this reason, we expect that as m increases, KL(qf1 jjqf2)
and V (qf1 ; qf2) become larger for any two functions f1; f2, and thus �KL(�;m) and
�V (�;m) should also increase with m. While this much seems clear, the challenging
problem is to obtain conditions on m that are independent of � but that guarantee
that �KL(�;m) and �V (�;m) are polynomially large in �.
To see the di�culty, let us lower bound �KL(�;m) in terms of � and m using

some standard methods from uniform convergence analysis and see why they are
insu�cient for our purposes. Suppose we consider two functions f1; f2 2 F , let � =
D[f1�f2], and let m be the �xed agent sample size. For any numbers 0 � r; s � 1
let us de�ne KL(rjjs) = r log(r=s) + (1 � r) log((1� r)=(1� s)); it is easy to show
that this is lower bounded by maxfr log 1=s� 1; (1� r) log 1=(1� s) � 1g.
Now it is also true [9] that for any F 0 � F ,

KL(qf1 jjqf2) � KL(qf1 [F 0]jjqf2[F 0]): (1)
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Thus to lower bound KL(qf1 jjqf2) let us choose F 0 to be the �=2-ball around f2 in
F with respect to D, that is

F 0 = ff 2 F : D[f2�f ] � �=2g:

Now using uniform convergence methods [13], [7] one can show

qf2 [F 0] � 1� c
(2m)d

d!
e���

2m

and

qf1 [F 0] � c
(2m)d

d!
e���

2m

for constants c; � > 0, where d is the Vapnik-Chervonenkis dimension of F . Thus
using Equation (1) and the lower bound on KL(rjjs) we obtain

KL(qf1 jjqf2) �
1

2
log

1

c (2m)d

d! e���2m
� 1

� c1�
2m � c2d logm + c3 logd! + c4

for constants c1; c2; c3; c4 > 0. This �rst term of the lower bound has the desired
\nice" behavior: if two functions are at a distance �, then their induced distributions
have Kullback-Leibler divergence 
(�2). Unfortunately, despite this machinery, the
lower bound is negative until m = 
(1=�2), a condition that is unacceptable for the
reasons outlined above.
In fact, it is possible to argue that the desired condition on m needed to enforce

niceness of the separation functions cannot be expressed solely in terms of a param-
eter of the function class F such as the Vapnik-Chervonenkis dimension. It appears
that the best we could hope for is a statement of the form: provided m � F (F ; D),
we have �V (�;m) � �2 (or some similarly large function of �), for some function F
of the function class F and distribution D. We have been unable to obtain such a
result so far.
In any case, our belief that the separation functions may be sensitive functions of

m, combined with our inability to quantify this sensitivity, prompts us to explicitly
indicate the dependence on m for these functions.

4.3. A General Upper Bound on Population Size

An important observation regarding the separation functions is given in the fol-
lowing lemma, whose proof is immediate from the de�nitions of �KL(�;m) and
�V (�;m).

Lemma 1 For any f; f̂ 2 F , if KL(qf jjqf̂) < �KL(�;m) or V (qf ; qf̂ ) < �V (�;m)

then D[f�f̂ ] < �.

Given the machinery we have developed thus far, we can now recast population
learning as a problem in parametric distribution estimation. The population learner
receives ` hypotheses h1; : : : ; h` drawn independently at random from a distribution.



The learner knows that this distribution is a member of the class Q, which is
parametrized by F . We study the case where the learner uses the method of
maximumlikelihood estimation, and thus outputs a hypothesis f̂ that is a maximum
of
Q`

i=1 qf 0 [hi] with respect to f 0. This method treats f 0 2 F as an abstract
parameter that does nothing more than parametrize the distributions qf 0 2 Q. This
method may be of more theoretical than practical relevance, since the likelihoods
qf [h] are generally di�cult to compute. Nevertheless, the bounds on the population
size required by maximum likelihood are a useful �rst step towards bounds for more
practical learning algorithms.
The classical analysis of the error of the maximum likelihood method, involving

the Fisher information, requires that the distribution class Q be a smooth function
of continuous, real-valued parameters. As will be illustrated by speci�c examples
in Section 5, F (and hence Q) often admits no continuous parametrization. Fur-
thermore, even in the case of a continuous parametrization, the likelihood can be
nondi�erentiable in its parameters, as noted by Amari[1]. Hence classical statistics
is not typically applicable to the learning problems of interest here.
Instead we proceed by invoking uniform convergence theorems [7], [10], [3] to

bound 
uctuations in empirical log-loss. These theorems are relevant because max-
imizing the likelihood is equivalent to minimizing the empirical log-loss, which is
�1=`P`

i=1 log qf 0 [hi]. Hence maximum likelihood is but a speci�c case of the gen-
eral class of empirical loss minimization algorithms. Combined with Lemma 1,
which relates log-loss in Q to loss in the parameter space F , the uniform conver-
gence bounds lead to the following upper bound on population size, whose proof is
omitted due to space considerations, but is a fairly straightforward application of
the main theorem of Haussler [7].

Theorem 3 Let (F ; D;m;A) be any population learning problem. Then

`(�; �) = O
�

dim(Q) �M
(�KL(�;m))2

log
M

�KL(�;m)
+ log

1

�

�

and

`(�; �) = O
�
dim(Q) �M
(�V (�;m))4

log
M

�V (�;m)
+ log

1

�

�
:

Here dim(Q) is the combinatorial dimension [7] of the distribution class Q, and M
is a bound on the empirical log-loss of any distribution in Q.

Let us take a moment to absorb this result. First of all, the combinatorial dimen-
sion dim(Q) is a generalization of the Vapnik-Chervonenkis (VC) dimension [14]
and can be considered a standard and natural notion of the \complexity" of the
population learning problem. In the �nite F case, dim(Q) � log jFj. We refer
the interested reader to Haussler's paper [7] for details. Secondly, although the ap-
pearance of the bound M in the population size upper bound might initially seem
worrisome (since we have no a priori reason to assume a �nite bound on � log qf [h]
for all f; h 2 F), this is often a technicality: we can typically get around any dif-
�culty using quite general \clamping" techniques that choose a hypothesis from a
restricted subclass that excludes degenerate distributions with large loss.
The bounds in Theorem 3 depend on � and m through the separation functions.

Although it seems intuitively clear that the separation functions should tend to
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increase with m and decrease with �, we have not succeeded in characterizing this
dependence rigorously, and it appears that uniform convergence theory may be too
coarse a tool for this task (see the extensive discussion of this issue in Section 4.2).
This technical di�culty is related to the di�culty of performing the quenched av-
erage in statistical mechanical analyses of learning[12]. In the absence of general
bounds, we must settle for calculation of the separation functions for some speci�c
learning problems, to be done in Section 5.
A more positive statement about Theorem 3 is that the dependence of `(�; �) on

� is captured in the polynomial dependence on 1=�KL(�;m) and 1=�V (�;m). This
demonstrates the importance of the separation functions: good lower bounds on
the separation functions lead to good upper bounds on the required population size.
If we can prove, for instance, that �KL(�;m) is bounded below by �2, then we have
shown that `(�; �) has an O(1=�4) dependence on �. If, on the other hand, �KL(�;m)
grows like �n where n is a complexity measure such as the Vapnik-Chervonenkis
dimension, we face the possibility of exponentially large population size. Indeed, in
the following subsection we show that this possibility can in fact be realized, and
complete our rough characterization of `(�; �) by providing a lower bound expressed
in terms of the separation functions.

4.4. A General Lower Bound on Population Size

Theorem 4 Let (F ; D;m;A) be any population learning problem. Then

`(�; �) = 


 
1p

�KL(2�;m)

!
and `(�; �) = 


�
1

�V (2�;m)

�
:

Proof: The proof is most easily done for the variation distance; the Kullback-
Leibler lower bound then follows from Theorem 2. Thus let �0 = 2�, and let f1; f2 2
F be such that D[f1�f2] � �0 and V (qf1 ; qf2) = �V (�0;m). Such functions must
exist by the de�nition of �V (�0;m). Let P be a population learning algorithm
requiring at most ` calls to the oracle POP (f) to obtain error smaller than � (for
some small constant �) for any f 2 F .
To prove the lower bound, we will choose the target function randomly between f1

or f2, and we may assume without loss of generality that under these conditions, P
outputs either f1 or f2. Let us de�ne two complementary sets of `-tuples of functions
in F : Tf1 = fT � F` : P (T ) = f1g and Tf2 = fT � F` : P (T ) = f2g. Here
P (T ) 2 ff1; f2g is the output of algorithm P when the sequence T = (h1; : : : ; h`)
is returned by the oracle. We assume that P is deterministic; the same proof
holds with only minor modi�cation if P is randomized. Thus, Tf1 is the set of all
sequences of ` functions causing P to output f1, and similarly for Tf2 .
We now analyze the probability (over the random choice of f1 or f2 as the target

function f , and the subsequent random choices of POP (f) from qf ) that algorithm
P outputs the wrong function; notice that if this event occurs, the error of P 's
hypothesis is at least �0. We may write

Prf2ff1;f2g;T2q`f
[P (T ) 6= f ] =

1

2
q`f1 [Tf2 ] +

1

2
q`f2 [Tf1 ]

=
1

2
+
1

2
(q`f2 [Tf1 ]� q`f1 [Tf1 ]):



Here we have used the equality q`f1 [Tf2 ] = 1� q`f1 [Tf1 ]. Now��q`f2 [Tf1 ]� q`f1 [Tf1 ]
�� � X

(h1 ;:::;h`)2Tf1

��q`f2 [(h1; : : : ; h`)]� q`f1 [(h1; : : : ; h`)]
��

�
X

(h1 ;:::;h`)2F`

��q`f2 [(h1; : : : ; h`)]� q`f1 [(h1; : : : ; h`)]
��

�
X

(h1 ;:::;h`)2F`

���q`�1
f2

[(h1; : : : ; h`�1)]qf2[h`]

�q`�1
f1

[(h1; : : : ; h`�1)]qf1 [h`]
���

Now it is not hard to show that for any A;A0; B;B0 � 1

jAA0 � BB0j � jA0 � B0j+ jA�Bj:
Applying this to the above equation gives��q`f2 [Tf1 ]� q`f1 [Tf1 ]

�� � X
h`2F

jqf2 [h`]� qf1[h`]j

+
X

(h1;:::;h`�1)2F`

���q`�1
f2

[(h1; : : : ; h`�1)]

�q`�1
f1

[(h1; : : : ; h`�1)]
���

Now the �rst term in this �nal expression is bounded above by �V (�0;m), and so
by induction the sum of the two terms is bounded above by ` � �V (�0;m). Thus

Prf2ff1;f2g;T2q`f
[P (T ) 6= f ] � 1=2� (1=2)` � �V (�0;m):

The expected error of P is thus 1
2 (1 � ` � �V (�0;m))�0. Thus to obtain expected

error smaller than � = �0=2 requires ` = 
(1=�V (2�;m)), as desired.
Note that we suspect the existence of stronger lower bounds, since Theorem 4

lower bounds only the dependence on the separation functions. It seems plausible
that a lower bound also incorporating dim(Q) is the right answer, but the given
bound is su�cient for an initial characterization of population size.
Let us review where we are. At this point we have shown that the population size

is roughly characterized by �V (�;m) or �KL(�;m) and the dimension term dim(Q).
A natural question to pose is how di�erent are the given bounds from the usual
bounds on the number of random examples required for learning from examples?
The answer to this lies in how dramatically the separation functions may contract
distances. For instance, if we could somehow prove that for any population learning
problem we have �V (�;m) � �2 then we would have shown (at least for �nite classes,
where dim(Q) is bounded by log jFj) that the population size required for learning
is always polynomially bounded by the number of random examples required for
learning.
Unfortunately, and not surprisingly, the answer is not so simple in general, as

the separation functions can greatly contract distances. For instance, one can show
that for F the class of all parity functions over n boolean variables, D the uniform
distribution over f0; 1gn, and for small values of m, even when the agent algorithm
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A is the Gibbs algorithmwe have �V (1=2;m) � 1=2n (in this problem, � = 1=2 is the
only relevant value since every pair of target functions disagree on 1=2 the inputs).
Theorem 4 immediately implies an exponential lower bound on the population size
for this problem, whereas it is well-known that O(n) random examples su�ce for
learning from examples. Thus, given a population learning problem, in general we
must expect to make a speci�c argument for polynomial population size.
In the Section 5, we make such arguments for several population learning problems

by lower bounding a separation function. In doing so, we illustrate a case where it
is possible to analyze the e�ects of increasing the agent sample size m, and a case
where we can prove small population sizes regardless of the agent algorithm A.

4.5. More General Learning Models

It is worth noting that all of the theory we have developed in this section for the
population learning model can actually be applied to a much more general setting
of learning from secondary data. The only properties of the population learning
model that we have used in this section are:

� The existence of a primary metric space Z. In the population learning model,
the primary space was Z = F and the metric was simply that induced by the
distribution D.

� The existence for each z 2 Z of an induced distribution qz over some secondary
abstract data space Y . In the population learning model, for f 2 F , qf happens
to be over Y = F , and is de�ned by POP(f).

Thus in general, we could study the problem of learning a point close to a target
point z 2 Z when given access only to qz. The separation functions can be de�ned,
and both our upper and lower bounds will apply to this more general setting.

5. Applications of the General Theory

We now give polynomial upper bounds on the population size required for several
population learning problems of interest. The general approach is to lower bound
a separation function and then apply Theorem 3. It should be noted that since
Theorem 3 is obtained by Haussler [7] in an extremely general setting, we suspect
the existence of considerably better upper bounds than those we provide here; for
now, however, we restrict our e�orts towards proving polynomial bounds, leaving
improvement of the polynomial degree for future research.

5.1. The High-Low Game with Any Agent Algorithm

Recall that in Section 3, we argued that in the high-low game with agent sample
size m = 1, it was impossible to obtain an upper bound on population size that
held simultaneously for all consistent agent algorithms. In the following theorem,
we show that with m = 2, we can obtain such a uniform bound. We include a proof
sketch that is illustrative of the type of reasoning used to prove such bounds.



Theorem 5 Let F be the class of initial intervals over [0; 1], and D the uniform
distribution on [0; 1]. Then for any consistent agent algorithm A, the population
learning problem (F ; D;m = 2; A) satis�es `(�; �) = O(1=�8 log 1=�+ log1=�).

Proof: We demonstrate that the separation function for the variation distance
obeys �V (�; 2) = 
(�2); the stated upper bound on `(�; �) can then be obtained as
outlined in Section 4.3 and Theorem 3.
Let f 2 [0; 1] be a potential target function. Recall that in the population learning

problem (F ; D;m = 2; A), POP (f) draws two points uniformly from [0; 1], labels
them according to f , and applies the consistent agent algorithm A to the resulting
sample to obtain the returned hypothesis h 2 [0; 1]. Without loss of generality, we
will use xL to denote the smaller of the two chosen sample points, and xR to denote
the larger.
To prove that �V (�; 2) = 
(�2) it su�ces to show that for any � and any tar-

get functions f1; f2 2 [0; 1] such that D[f1�f2] � �, V (qf1 ; qf2) = 
(�2). For
S; SL; SR � [0; 1], let us use qf [SjxL 2 SL; xR 2 SR] to denote the probability that
qf generates a hypothesis h falling in S given that in the two-point sample, xL fell
in SL and xR fell in SR.
For f1; f2 satisfying D[f1�f2] = � (let us assume without loss of generality that

f1 � f2 = f1 + �), we �rst have that for any S � [0; 1],

qf1 [SjxL; xR 62 f1�f2] = qf2 [SjxL; xR 62 f1�f2]:

This is because the behavior of POP(f) depends only on the labeled sample, and not
directly on the target function, so as long as both f1 and f2 give the same labeling
to the sample the conditional distribution of hypotheses is identical regardless of
which function is the target.
Now let z be the midpoint between f1 and f2, so z = (f1 + f2)=2 = f1 + �=2. It

is easy to see that

qf1 [[0; z]jxL 2 [f1; z]; xR 2 [z; f2]] = 1

and

qf2 [[z; 1]jxL 2 [f1; z]; xR 2 [z; f2]] = 1:

Furthermore, the probability that xL 2 [f1; z] and xR 2 [z; f2] is �2=4. Thus, if
we restrict our attention only to the conditional cases of xL and xR discussed so
far, we have found two regions on which qf1 and qf2 di�er by �(�2): that is, qf1
is �2=4 more likely than qf2 to generate a hypothesis in [0; z] and qf2 is �

2=4 more
likely than qf1 to generate a hypothesis in [z; 1]. It is fairly straightforward to show
that the remaining cases of xL and xR do not alter this di�erence, thus giving
qf1 [[0; z]] = qf2 [[0; z]]+�2=4 and qf2 [[z; 1]] = qf1 [[z; 1]]+�2=4. Either of these su�ce
to show V (qf1 ; qf2) � �2=4, as desired.
Better upper bounds for this problem may be possible by direct analysis of the

Kullback-Leibler separation function. The proof of Theorem 5 also provides a case
where it reasonably straightforward to analyze the bene�cial e�ects of increased
agent sample size m. In the proof, we lower bounded �V (�; 2) by the probability
we drew a sample xL; xR such that xL 2 [f1; z] and xR 2 [z; f2]. The arguments
given hold for any m, but now the probability that we draw a set S of m points
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fromD such that there exists xL; xR 2 S satisfying xL 2 [f1; z] and xR 2 [z; f2] can
be lower bounded by 1� 2(1� �=2)m � 1� e��m for some constant �. Thus in the
high-low game, for any consistent A and any m we have �V (�;m) � 1�e��m, giving
considerably improved population size upper bounds for large m via Theorem 3.
This is a rare case where we can precisely quantify the e�ects of increasing m, as
opposed to the general situation discussed in Section 4.2.

5.2. Conjunctions with Gibbs and Any Distribution

The high-low game is a one-dimensional learning problem, so we have not examined
the potential e�ects of high dimension on the separation functions (other than for
the class of parity functions with small agent sample size in Section 4.4, where
we saw that the contraction of distance was exponentially small in the dimension).
We now examine some population learning problems in high-dimensional spaces and
�nd that often the e�ects are rather modest, and still permit polynomial population
size. We begin with the well-studied class of boolean conjunctions, for which we
can actually obtain a bound that holds simultaneously for any �xed distribution.
Here we restrict our attention to the m = 1 case.

Theorem 6 Let Fn be the class of all monotone conjunctions over n boolean vari-
ables, and let D be any distribution over f0; 1gn. Then for the population learning
problem (F ; D;m = 1; A = Gibbs) we have `(�; �) = O(n5=�4 logn=�+ log1=�).

Proof: We proceed as usual by demonstrating an appropriate lower bound on
�V (�; 1). Thus, let f1 and f2 be any monotone conjunctions, and let D[f1�f2] = �.
Let T1 be the set of variables appearing in f1 but not in f2 and let T2 be the set of
variables appearing in f2 but not in f1. Let �1 be the probability with respect to
D that an x is drawn satisfying f1(x) = 1; f2(x) = 0 and let �2 be the probability
that f1(x) = 0; f2(x) = 1; note that �1 + �2 = �.

First let us describe the behavior of the Gibbs algorithm in this context. Given
a positively labeled x, a random consistent hypothesis is obtained by randomly
choosing a subset of the variables set to 1 in x, and forming the conjunction of this
subset. Given a negatively labeled x, a random consistent hypothesis is obtained
by choosing a random subset of all the variables, then rejecting the trial unless the
chosen subset contains at least one variable set to 0 in x.

To demonstrate a di�erence between qf1 and qf2 we may restrict our attention to
points where f1 and f2 disagree. Thus, suppose that f1 is the target and we draw
x such that f1(x) = 1; f2(x) = 0 (which happens with probability �1). Then the
expected number of variables in T1 chosen by the Gibbs algorithm is jT1j=2 (since
all these variables must be set to 1 in x), and the expected number of variables in
T2 chosen is at most (jT2j � 1)=2 (since at least one variable in T2 is set to 0). On
the other hand, if f1 is the target and we draw x such that f1(x) = 0; f2(x) = 1
(which happens with probability �2), then the expected number of variables in T1
chosen is at least jT1j=2 (the fact that T1 contains at least one variable set to 0 can
only introduce a bias towards larger subsets), and the expected number of variables
in T2 chosen is jT2j=2 (since all variables in T2 must be set to 1 in x). If for any
monotone conjunction h, we let �1(h) denote number of variables in h appearing



in T1, these facts are easily combined to give

Eh2qf1
[�1(h)]�Eh2qf2

[�1(h)]

� �1

� jT1j
2

�
+ �2

� jT1j
2

�
� �1

� jT1j
2

�
� �2

� jT1j � 1

2

�

=
�2
2
:

By symmetric arguments, if �2(h) denotes the number of variables in h appearing
in T2, we have

Eh2qf2
[�2(h)]�Eh2qf1

[�2(h)] � �1
2
:

Since either �1 � �=2 or �2 � �=2, we may assume without loss of generality that
Eh2qf1

[�1(h)]� Eh2qf2
[�1(h)] � �=4. Now

Eh2qf1
[�1(h)]�Eh2qf2

[�1(h)] =
X
h

(qf1 [h]� qf2 [h])�1(h)

�
X
h

jqf1[h]� qf2 [h]j�1(h)

� n
X
h

jqf1[h]� qf2 [h]j

� 2nV (qf1 ; qf2)

where we have used the fact that �1(h) � n always. Thus we have V (qf1 ; qf2) �
�=8n or �V (�; 1) � �=8n. Application of Theorem 3 then yields the stated bound
on `(�; �).

5.3. Learning from a Population of Perceptrons

The population learning formalism can also be applied to the learning of homoge-
neous linear threshold functions (perceptrons) with respect to a spherically sym-
metric input distribution. This learning problem is nontrivial, yet analytically
tractable, so that the Kullback-Leibler divergence can calculated to within very
tight bounds for the case of agent sample size m = 1.

Theorem 7 Let Fn be the class of homogeneous linear threshold functions on
Rn+1, and let D be any spherically symmetric distribution over Rn+1. Then for
the population learning problem (Fn; D;m = 1; A = Gibbs) we have

`(�; �) = O(n2=�4(log 1=�)(logn=�) + log 1=�):

Proof: Each perceptron in the concept class is parametrized as sgn(~w � ~x), where
~w 2 Rn+1 is constrained to lie on the unit n-sphere Sn (the magnitude of ~w does
not matter). As shorthand notation, we will refer to a perceptron by its weight
vector ~w. We assume a spherically symmetric input distribution D on the input
space X = Rn+1. The angle �12 between two unit vectors ~w1 and ~w2 is de�ned by
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~w1 � ~w2 = cos �12. It is easily shown that the probability of disagreement between
two perceptrons is proportional to �12:

D[~w1�~w2] =
�12
�
: (2)

This result depends on ~w1 and ~w2 only through the angle �12 because of the spherical
symmetry of the input distribution D.

For the case m = 1, the ratio of the probability density dq~w1
to the uniform

density dq0 is proportional to 1�D[~w�~w1], that is,

dq~w1

dq0
= 2(1�D[~w�~w1]) (3)

because all version spaces determined by a single example have the same volume.
The normalization constant 2 is set by noting that the expectation of D[~w�~w1]
for ~w drawn according to dq0 is 1=2. An analogous result holds for dq~w2

. In this
continuous setting, the Kullback-Leibler divergence is de�ned by

KL(dq~w1
jjdq~w2

) =

Z
dq~w1

log
dq~w1

dq~w2

: (4)

In the appendix, this is evaluated using spherical coordinates. The resulting integral
can be tightly bounded for large n using Laplace's method. The result described
by Equation (7) depends on ~w1 and ~w2 through their angle, and implies

KL(�) =
�2

�
p
n
+O(�4n�1=2) +O(n�3=2)

for small � = D[~w1�~w2]. In particular, this implies that the separation function
�KL(�; 1) = 
(�2=

p
n). The only obstacle to application of Theorem 3 is the lack

of a simple bound on dim(Q) due to the in�nite cardinality of F . However, by
constructing a maximal �-separated set in F , we can obtain a �nite concept class
F 0 of cardinality O((1=�)n), the learning of which is equivalent to the learning of
F . This construction leads to a bound on `(�; �) that is equivalent to that provided
by Theorem 3 with the substitution of dim(F 0) = O(n log 1=�) for dim(Q).

6. Future Research

There are many open problems in the population learning model. Here is a small
sampling:

� E�ects of Agent Sample Size. It would be nice to prove general quantitative
theorems regarding the e�ect of increasing the agent sample size m. This is
perhaps the most important open problem, and some of the di�culties involved
in its solution were discussed in Section 4.2. For instance, for the high-low game
in Section 5, we showed that �V (�;m) grows like 1�e���m; can we give general
conditions under which such exponential behavior occurs?



�Natural Algorithms. The maximum likelihood or empirical loss minimization
procedure we proposed, while providing very general upper bounds on popula-
tion size, does not seem like the most natural method of combining hypotheses.
On the other hand, we know that certain intuitive methods such as majority
vote fail. It would be interesting to obtain good upper bounds on other natural
approaches, such as weighted voting schemes.

� Bounds on dim(Q). We suspect that except for degenerate classes, the combi-
natorial dimension dim(Q) can be bounded by a slowly growing function of the
Vapnik-Chervonenkis dimension of F . It would be interesting to give conditions
for this.
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Technical Appendix

This appendix gives the details of the calculation of the Kullback-Leibler divergence
between two densities dq~w1

and dq~w2
induced on F by two perceptrons ~w1 and ~w2.
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We parametrize the concept class F = Sn using spherical coordinates:

w1 = cos'n cos'n�1 � � �cos'2 cos'1

w2 = cos'n cos'n�1 � � �cos'2 sin'1

w3 = cos'n cos'n�1 � � � sin'2

...

wn = cos'n sin'n�1

wn+1 = sin'n:

Here '1 2 [��; �] and '2; : : : ; 'n 2 [��=2; �=2]. The spherically symmetric mea-
sure on Sn is given by

dq0 =
1

An
cosn�1'n cos

n�2'n�1 � � � cos'2d'nd'n�1 � � �d'1

where the normalization constant An is the area of Sn, or

An =

Z �=2

��=2

d'n � � �
Z �

��

d'1 cos
n�2'n�1 � � �cos'2

=
2�(n+1)=2

�[(n+ 1)=2]
:

To write the densities dq~w1
and dq~w2

in spherical coordinates, we �rst align our
coordinate system so that ~w1 = (0; : : : ; 1) and ~w2 = (0; : : : ; sin �12; cos �12), which
is consistent with ~w1 � ~w2 = cos �12. This choice of coordinates, which involves no
loss of generality, leads to

~w � ~w1 = sin'n

~w � ~w2 = sin'n cos �12 + cos'n sin'n�1 sin �12:

For the sequel we de�ne

R = sin'n cos �12 + cos'n sin'n�1 sin �12

for notational brevity.
Substitution of this result in Equations (2) and (3) yields the induced densities

dq~w1
=

�
1 +

2'n
�

�
dq0

dq~w2
=

�
1 +

2

�
sin�1R

�
dq0:

In spherical coordinates, the Kullback-Leibler divergence of Equation (4) takes the
form

KL(dq~w1
jjdq~w2

)

=

Z
dq0

�
1 +

2'n
�

�
log

1 + 2'n
�

1 + 2
� sin

�1R

=
An�2

An

Z �=2

��=2
d'n cos

n�1'n

Z �=2

��=2
d'n�1 cos

n�2'n�1

�
1 +

2'n
�

�
log

1 + 2'n
�

1 + 2
� sin

�1R
: (5)



The last equality was obtained by performing the integral over d'n�2 � � �d'1, yield-
ing An�2, the area of Sn�2.
For large n, we can derive an asymptotic expansion for this integral using Laplace's

method [4]:

Lemma 2 (Laplace's Method) Let

J(�) =

Z
I

g(x)e��f(x)dx (6)

where � is a large positive parameter and the integration domain I in RN contains
some neighborhood of the origin. If the minimum of f in I is at the origin, f and
g possess fourth-order Taylor expansions about the origin, and the Hessian of f at
the origin is positive de�nite, then

J(�) =

Z
RN

g2(x)e
��f2(x)dx+O(��5=2)

where f2 and g2 are the second-order Taylor expansions of f and g.

The proof of this lemma can be found in many textbooks, but the intuition behind
it is simple. As � becomes large, only the neighborhood around the minimum of
f contributes to the integral. Hence the integral can be approximated by Taylor
expanding f and g.
The integral of Equation (5) can be put in the form of Equation (6) by setting

f = � log cos'n�1� log cos'n, � = n� 1, and g equal to the rest of the integrand.
We Taylor expand f and g to second order, and perform the resulting Gaussian
integrals, yielding

KL(dq~w1
jjdq~w2

) =
2

�3
1� cos �12p

n
+O(n�3=2) (7)

where we have used An�2=An = (n � 1)=2�.


