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Abstract. We examine a Markovian model for the price evolution of a
stock, in which the probability of local upward or downward movement
is arbitrarily dependent on the current price itself (and perhaps some
auxiliary state information). This model directly and considerably gen-
eralizes many of the most well-studied price evolution models in classical
�nance, including a variety of random walk, drift and di�usion models.
Our main result is a \universally pro�table" trading strategy | a sin-
gle �xed strategy whose pro�tability competes with the optimal strategy
(which knows all of the underlying parameters of the in�nite and possibly
nonstationary Markov process).

1 Introduction

We examine a Markovian model for the price evolution of a stock, in which
the probability of local upward or downward movement is arbitrarily dependent
on the current price itself (and perhaps some auxiliary state information). Our
main result is a \universally pro�table" trading strategy | a single �xed strat-
egy whose pro�tability competes with the optimal strategy (which knows all
of the underlying parameters of the in�nite and possibly nonstationary Markov
process). While we shall make this statement more precise shortly, our strategy
is provably pro�table whenever the optimal strategy has signi�cant pro�ts.

The strategy itself is eÆcient and simple, and employs a \best expert" weight-
ing scheme (Cesa-Bianchi et al. [1997]) over two substrategies | one of which
attempts to do rudimentary learning from past observations (which may be ex-
tremely sparse), and one of which tries to spot signi�cant directional trends
in price. Our main technical contribution is a proof that in our model, one of
these two strategies must always have a pro�t that compares favorably with the
optimal strategy.

There are several motivations for the model we introduce. The language of
Wall Street and �nance is riddled with suggestions that the dynamics of price
movement may depend strongly on price itself. Professionals and articles discuss
\support" and \resistance" levels for a stock | speci�c prices or ranges of prices
below or above which the market will apparently not let the share price fall or
rise, respectively. The �eld of technical analysis is dominated by price patterns
whose appearance is thought to signal future behavior. The common notion of
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price uptrends or downtrends is predicated on a series of price levels in which
the directional bias is nonzero.

There are also many less speculative reasons price dynamics may change dra-
matically with price. For example, one might expect there to be support for the
share price at the level at which market capitalization (share price times number
of outstanding shares, which is essentially the cost of buying the entire company)
equals the liquid assets of the company. Similarly, many investors become un-
comfortable if the ratio of the share price to a company's earnings (P/E ratio)
becomes excessively large compared to its sector average. Note that it in these
cases, there may be many factors aside from price inuencing trading behavior
(market cap, P/E) | but such factors do result in di�erent price dynamics at
di�erent prices.

From the perspective of related literature on trading algorithms, we are par-
ticularly interested in price models that fall in between the highly adversarial
assumptions typical of competitive analysis and universal portfolio work in com-
puter science (Cover and Ordentlich [1996], Blum and Kalai [1999], El-Yaniv
et al. [2001], Helmbold et al. [1996]), and the strong statistical assumptions
typical of classical �nance random walk and di�usion models and their gener-
alizations (reviewed in Section 3). Our model and result can be thought of as
exhibiting a \sweet spot" in the pantheon of price models, in the sense that
it contains an extremely rich range of statistical behaviors, yet still permits a
universally pro�table trading strategy.

We emphasize from the outset that while our model is a gross oversimpli�ca-
tion of all the complexities that enter into real-world price formation, it directly
and considerably generalizes many of the most well-studied price evolution mod-
els in classical �nance, including a variety of random walk, drift and di�usion
models (see Section 3). To our knowledge, our model has not been explicitly con-
sidered before in the �nance literature, especially in an algorithmic and learning
context.

The outline of the paper follows. In Section 2, we provide the formal def-
inition of our model and the optimal trading strategy that knows the process
parameters. In Section 3, we briey review some of the most common price
evolution models in the �nance and computer science literatures and relate our
model to these. In Section 4, we discuss a number of interesting properties of the
model and give simulation results for a particular instance that demonstrates
these properties. Section 5 contains our main result. In Section 6 we generalize
our result to permit simple extensions of the state.

2 Model and De�nitions

In the most basic version of our model, the probabilistic dynamics of directional
price movement depend only on the current price. More precisely, we assume that
for every integer p between �1 and +1 , there is a bias value �(p) 2 [� 1

2 ;
1
2 ].

The interpretation of this bias is as follows: if the price at time t is pt, then with
probability 1

2 + �(pt) we have pt+1 = pt + 1, and with probability 1
2 � �(pt) we
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have pt+1 = pt�1. Note that in this model, the jpt+1�ptj = 1 always; it will be
clear that all of our results hold with only slight degradation in a more general
setting in which pt+1 must only remain in a bounded range around pt, including
the possibility of no movement. In our model, prices movements are additive,
prices are always integer values, and negative prices are allowed for convenience,
as all that will matter are the pro�ts made from price movements. (In the long
version of this paper discuss a generalization of our results when pt represents
the log price.) Without loss of generality, we always assume the initial price p1
is 0.

The complete probabilistic dynamics of price movement at all possible prices
is given by the in�nite vector of biases �(p) for all integers p, which we shall de-
note simply by �. A model in our class is thus a countably in�nite-state Markov
process. (Note that � = 0 corresponds to an unbiased random walk.) We em-
phasize that this Markov process may be nonstationary and non-recurrent | an
in�nite walk may never return to its origin, and may forever visit new prices.

In this paper, we will be concerned with trading algorithms that have no
a priori information about �, yet can compete with the optimal algorithm that
knows the full vector of biases. In order to make such comparisons, it is necessary
to somehow limit the amount of risk the optimal algorithm can assume. For
instance, if �(p) = 1=2 for some price p, so upwards movement at price p is a
certainty, the \optimal" algorithm should purchase an in�nite number of shares.
We shall thus limit our attention to trading strategies whose share position
(number of shares owned (long) or owed (short)) at any time is at most 1. Other
restrictions are possible, but this one has especially natural properties.

With this restriction, then, the optimal algorithm Aopt = Aopt(�) is straight-
forward. If the current price is pt and �(pt) > 0, then Aopt buys one share; and
if �(pt) < 0 then Aopt sells (shorts) 1 share. If �(pt) = 0, then Aopt takes no
action. Whichever action Aopt takes at time t, at the next time step t+ 1, Aopt

reverses its action by selling the share bought or buying the share sold at time
t, and then repeating the process on pt+1. Thus after each time step, Aopt either
earns +1 (if it bought a share and the price rose, or it sold a share and the
price fell), or loses -1. Thus, we can view Aopt as an algorithm for 1-step binary
prediction of price movements on the probabilistic sequence of prices. Note that
if the price enters a long period of upwards price movement (for example) that
Aopt correctly predicts, then Aopt will be repeatedly buying a share, selling it
at the next step and immediately buying another share, etc. This behavior is
formally equivalent to buying a single share and holding it for the same period.

For any given bias vector � and number of steps T , we let p = (p1; p2; : : : ; pT )
be a random variable that is a sequence of T prices generated according to �.
Without loss of generality, we assume p1 = 0. For any trading algorithm A and
price sequence p, we let V (A;p) denote the total amount earned or lost by A
on p divided by T (so that earnings are normalized to per-step averages) and
V (A; �; T ) = E�;T [V (A;p)] is thus the expected per-step earnings or losses of A
over T -step sequences p distributed according to �. We limit ourselves to only
consider algorithms A which limit their share position to at most 1 share, and so
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it is easy to see that V (A; �; T ) is between �1 and 1. We note that V (A; �; T ) can
be highly dependent on the speci�c value of T , since we are in an in�nite-state
Markov process: larger values of T may cause us to visit new price levels whose
dynamics are entirely unlike those seen on smaller time scales.

With these de�nitions, it is easy to show that V (Aopt; �; T ) is in fact the
optimal expected value among all trading algorithms whose position must be at
most 1 share at all times, which we shall thus also denote with the shorthand
V �(�; T ). Note that V �(�; T ) 2 [0; 1] always.

For any sequence p, we de�ne #(p) to denote the number of unique prices
appearing in p. Thus E�;T [#(p)] is the expected number of unique prices, and
E�;T [#(p)=T ] is the expected fraction of steps that are �rst visits to some price.
This expectation will play a crucial role in our analysis.

3 Related Models

There is a rich history of mathematical models for the evolution of price time
series. Perhaps the most basic and well-studied of these are variants of standard
random walk or di�usion processes, often referred to in the literature as Wiener
processes . Among others, this category includes pure unbiased random walks of
price and random walks with overall upward or downward drifts (for instance,
to model the overall growth of the securities markets historically). Perhaps the
most general in this line of models is the Ito process , in which the instantaneous
drift and variance may depend arbitrarily on both the current price and the
time. A good overview of all of these models can be found in Hull [1993].

Our model can be viewed being considerably more general than a Wiener
process with drift, but considerably less general than a general Ito process. In
particular, it will be easy to see that our results will not hold in such a model.
Broadly speaking, if the price process is allowed to depend arbitrarily on time,
it is impossible to compete with the pro�tability of an omniscient party who
knows exactly the nature of this time dependence.

The popularity of the various random walk models stems in part from their
consistency with broader economic theory, most notably the EÆcient Market
Hypothesis (EMH), the thesis that individual trader rationality should drive all
(expected) pro�t and arbitrage opportunities out of the market for a stock (or
at least all those opportunities beyond those implied by consistent long-term
growth, ination, or drift). However, a long line of relatively recent works have
carefully questioned and refuted random walk models and their variants, pri-
marily on the basis of observed conicts between historical price data and model
predictions (Lo and MacKinlay [1999]). Some of these studies have suggested be-
havioral explanations for the deviations between historical prices and the EMH,
an explanation certainly in the spirit of our model, where the market may react
di�erently to di�erent prices for psychological reasons.

The extensive �eld of technical analysis (Murphy [1999]), which suggests
that certain price (and other) patterns may presage market behavior, is also
clearly at odds with the EMH, at least in its strongest form. The long-term
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statistical pro�tability of certain technical indicators has been argued based on
historical data (Brock et al. [1992]). The implicit assumptions of many technical
strategies is that price dynamics are largely determined by the current price and
some simple auxiliary state information (such as whether the recent price has
shown an uptrend or downtrend, or the high and low prices over some recent
time window). While our basic model permits only the current price as the
Markovian state, in Section 6 we generalize our main result to hold for simple
generalizations that incorporate many common technical indicators.

As noted in the Introduction, our model is also considerably more specialized
(in terms of the allowed price behavior) than the worst-case price models often
examined in computer science and related �elds (Cover and Ordentlich [1996],
Blum and Kalai [1999], El-Yaniv et al. [2001], Helmbold et al. [1996]). Indeed,
in such models, one could never prove that any �xed collection of strategies
always contained one competing with the optimal strategy that knew the price
generation process. The precise point of our model and result is the introduction
of a more limited but still quite powerful statistical model for price evolution,
along with the proof that a �xed and simple strategy that mixes rudimentary
learning and trend-spotting must always be competitive.

4 Properties of the Model, and an Example

Let us now enumerate a few properties (or in some cases, non-properties) of
our model that are noteworthy and that distinguish it from some of the more
classical models discussed in Section 3:

{ As already noted, setting all �(p) = 0 yields a standard (additive) random
walk, while all �(p) = � for some nonzero � yields a random walk with drift.

{ One can also program rich mixtures of uptrends, downtrends, unbiased ran-
dom walks, support and resistance levels, and other features in a single in-
stance of our model.

{ While our model does not allowed the detailed speci�cation of time-dependent
events (and indeed, our main result would not hold in models such as a gen-
eral Ito process), one can program rich temporal behaviors in expectation.
We shall see examples shortly.

{ None of the standard random variables of interest | such as the price after
T steps, the maximum and minimum prices over T steps, or the pro�tability
of �xed trading strategies | are (necessarily) unimodal in distribution or
sharply peaked around their means.

{ The optimal per-step pro�tability V �(�; T ) may be nonmonotonic in T .

We now examine a concrete instance of our model. Since all we are concerned
with is the additive movements of the price, without loss of generality we assume
that the initial price is zero. Now consider the following instance of our model,
which will be shown in simulation in Figures 1 through 3. In these Figures, the
upper two horizontal lines are green (at y-values of 25 and 40) and the lower two
horizontal lines are red (at y-values of �25 and �100).
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{ For p = �25; : : : ; 25, �(p) = 0. Thus, on either side of the initial price, there
is a region of unbiased random walk. In the �gures, this region is between
the upper red line and the lower green line.

{ For p = 26; : : : ; 40, �(p) = 0:1. Thus, above the random walk region near the
initial price, there is a small region of uptrend. This region is between the
two green lines.

{ For p > 40, �(p) = �0:1. Thus, above the uptrend there is in�nite resistance
to further upward movement. This region is above the upper green line.

{ For p = �100; : : : ;�26, �(p) = �0:1. Thus, below the random walk region
near the initial price, there is an extensive region of downtrend. This region
is between the two red lines.

{ For p < �101, �(p) = 0. Thus there is an in�nite region of unbiased random
walk below the lower red line.

Figures 1 through 3 each show 16 randomly sampled time series from the model
� described above. Each �gure shows samples from one of the four time scales
T = 100; 1000; 10000. All of the behaviors identi�ed at the beginning of this
section are clearly exhibited, and are discussed in the �gure captions.

5 Main Result

In this section, we develop our main result: a trading strategy that knows nothing
about the underlying model parameters �, but whose per-step pro�tability can be
provably related to V �(�; T ). While the analysis is rather involved, the strategy
itself and the intuition behind it are appealingly simple and are now sketched
briey.

The key to the analysis is the quantity E�;T [#(p)=T ], the expected fraction of
�rst visits to prices. The �rst insight is that if this expectation is \small", then we
make \enough" repeat visits to prices to obtain a slight advantage in estimating
the biases. For the �nal result to work out, we must show that this intuition
holds even when the average number of visits per state is far too small (such
as a constant) to apply concentration inequalities such as the Cherno� bound.
Essentially, while we may not have large enough samples to assert an advantage
in estimating the bias of any particular price, we prove that an advantage exists
on average across the prices visited. In this case a rather rudimentary learning
strategy fares well.

The second insight is that if E�;T [#(p)=T ] is \large", the price must be
following a strong trend that is driven by an overall directional bias, and cannot
be easily reversed on a comparable time scale (even though it may be reversed
on much longer time scales). In this case a simple trend-following or momentum
strategy is pro�table.

The challenge in the analysis is to make these intuitions precise, and to
prove that pro�tability is possible for all values of E�;T [#(p)=T ]. In Section 5.1
we provide the analysis for the case of \small " values for E�;T [#(p)=T ], and in
Section 5.2 we consider the case of large values. Section 5.3 stitches the pieces
together to give our main result, which we now state:
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Theorem 1. (Main Result) Let  > 0, and let T 0 satisfy T 0e�2T 0=100 < =32
(which is satis�ed for T 0 = 
((1=2) log(1=))). There exists an algorithm
Amaster, taking input ; such that for all � and T � T 0, as long as V �(�; T ) �
2
p
, we have

V (Amaster(); �; T ) � 

4
V �(�; T )�

p
2 log(2)=T : (1)

Let us interpret this result briey. If the pro�tability of the optimal algorithm
is too small (quanti�ed as being below 2

p
), we simply \give up" and are not

competitive. The parameter  thus provides a trade-o� to the user of Amaster.
Smaller values of  will cause the lower bound on V (Amaster; �; T ) to take e�ect
at smaller values of V �(�; T ), but the competitive ratio (which is essentially
=4) degrades accordingly. Larger values of  cause us to not compete at all for
a wider range of V �(�; T ), but give a better competitive ratio when V �(�; T ) is
suÆciently large.

Note also that Theorem 1 provides an \anytime" result, in that the strategy
Amaster is competitive simultaneously on all time scales, and does not require
T as an input. This is important in light of the fact that V �(�; T ) may be
nonmonotonic in T .

The remainder of this section is devoted to developing Amaster and proving
Theorem 1.

5.1 A Statistical Strategy

We now de�ne a simple trading algorithm that makes minimal use of past ob-
servations. We shall denote this algorithm Astat. If the current price pt is being
visited for the �rst time (that is, time t is the earliest appearance of price pt in
the sequence p), Astat makes no trade. In this case, after pt+1 is revealed, Astat

stores a �rst-visit record consisting of the price pt along with an indication of
whether pt+1 went up or down from pt.

If t is not the �rst time price pt has been visited, then Astat looks up the
�rst-visit record for pt and trades according to this record | that is, if after the
�rst visit to pt the price went up, Astat buys one share, otherwise it sells one
share, respectively. To obey the 1-share position limit, at time t + 1 Astat sells
o� or buys back the position it accumulated and repeats the process on pt+1.

Thus, Astat is the algorithm that makes perhaps the least possible use of
statistical history, simply predicting that what happened after the very �rst
visit to a price will continue to happen. Obviously, it would make more intuitive
sense to collect statistics on all the visits to a given price, and trade based
on these cumulative statistics. But it turns out that Astat must operate with
sample sizes that are far too small to usefully apply large-deviation bounds such
as the Cherno� inequality. Hence, one can't provide a general bound in which
our expected value is a linear fraction of the optimal value. Instead, we compete
against the square of the optimal value (which we conjecture is the best one
could hope for). More formally, we have:
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Theorem 2. (Statistical Strategy) For any biases � and any T ,

V (Astat; �; T ) � V �(�; T )2 �E�;T [#(p)=T ]: (2)

Proof. Let us �rst write down an explicit expression for the T -step optimal value
V �(�; T ). At each time step t, the optimal algorithm examines the bias �(pt) to
decide how to trade. Abusing notation slightly, let us denote �(t) = �(pt) when t
is a time value and not a price value and thus there is no risk of confusion. The
expected pro�t of Aopt at time t is then

�
1

2
+ j�(t)j

�
(+1) +

�
1

2
� j�(t)j

�
(�1) = 2j�(t)j: (3)

Now recall that V �(�; T ) = E�;T [V (Aopt;p)]. Since V (Aopt;p) is a sum of T
1-step returns, by linearity of expectation we may write

V �(�; T ) =
1

T

TX
t=1

X
p:jpj=t

Pr
�;t
[p](2j�(t)j) (4)

where each inner sum over sequences p of length t � T is the expected pro�t of
Aopt on the step t.

Let us now analyze the 1-step expected pro�t of algorithm Astat at time t. If
t is the �rst visit to the price pt in the sequence p, then then the pro�t of Astat

is 0. Otherwise, the pro�t depends on whether the �rst visit to pt revealed the
correct or incorrect sign of �(pt). More precisely, the expected return of Astat on
non-�rst visits to pt may be written

�
1

2
+ j�(t)j

�
(2j�(t)j) +

�
1

2
� j�(t)j

�
(�2j�(t)j) = 4j�(t)j2: (5)

The logic here is that with probability 1
2 + j�(t)j, the �rst visit to pt reveals the

correct sign of the bias, in which case on all subsequent visits, Astat will behave
the same as Aopt and receive 2j�(t)j in expected pro�ts; and with probability
1
2 � j�(t)j, the �rst visit to pt reveals the incorrect sign, in which case on all
subsequent visits, Astat will receive �2j�(t)j. Thus the expectation is taken over
both the randomization on the current visit to pt, and the randomization on the
�rst visit.

We would now like to apply this observation on the 1-step pro�t of Astat to
obtain an expression for V (Astat; �; T ); the main challenge is in dealing with the
dependencies introduced by conditioning on the number of visits to each price
level. The following inequality can be shown (details omitted):

V (Astat; �; T ) � 1

T

TX
t=1

X
p:jpj=t

Pr
�;t
[p](4j�(t)j2)�E�;T [#(p)=T ] (6)
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Combining Equation (4) and Equation (6), we now have:

V (Astat; �; T )� V �(�; T )2 =

4

T

TX
t=1

X
p:jpj=t

Pr
�;t
[p]j�(t)j2 �

0
@ 2

T

TX
t=1

X
p:jpj=t

Pr
�;t
[p]j�(t)j

1
A

2

�E�;T [#(p)=T ] (7)

It remains to show that the �rst two terms are positive.
Recall that each �(t) = �(pt) is actually the bias at some price level pt. Let

us de�ne for each price q

w(q) =
1

T

TX
t=1

X
p:jpj=t;p(t)=q

Pr
�;t
[p]: (8)

It is easy to see that since the price must remain in the range [�T; T ] on sequences
of length at most T , the values w(�T ); : : : ; w(T ) sum to 1 and are all positive,
and thus can be interpreted as a distribution. The �rst two terms in Equation
(7) may be rewritten as

4

0
B@

TX
q=�T

w(q)j�(q)j2 �
0
@ TX

q=�T

w(q)j�(q)j
1
A

2
1
CA (9)

This di�erence is non-negative as desired, by the convexity of the function f(x) =
x2. (Interestingly, note that this di�erence has the form of the variance of �(q)
with respect to the distribution w(q).) ut

5.2 A Momentum Strategy

We now turn attention to a strategy that will succeed for large values of the
quantity E�;T [#(p)=T ]. For any given values of  and T , the momentum strategy
Amom(; T ) can be described as follows:

1. For all p 2 (�T=4; T=4), take no action.
2. For all p � T=4, purchase one share and sell it back at the next time step.
3. For all p � �T=4, sell one share and purchase it back at the next time step.

Note this strategy uses knowledge of the time T ; however, this dependency
can be removed (details omitted) to yield an algorithm that is competitive on
all time scales simultaneously.

The following de�nitions will be necessary in our analysis of Amom. For the
remainder of this subsection, p will denote a price sequence of length T for
some �xed T . Let max(p) (min(p), respectively) be the maximum (minimum,
respectively) price reached on p. Let drop(p) be the absolute value of the dif-
ference between max(p) and the smallest price reached on p after the �rst visit
to max(p). Thus, drop(p) measures the \fall" from the high price. Similarly, we
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de�ne rise(p) to be the absolute value of the di�erence between min(p) and the
largest price reached on p after the �rst visit to min(p).

Amom enjoys the following performance guarantee.

Theorem 3. (Momentum Strategy) Let  > 0, and let T 0 satisfy T 0e�2T 0=48 <
=16. If T > T 0 and if either E�;T [max(p)=T ] �  or E�;T [jmin(p)=T j] �  then

V (Amom(; T ); �; T ) � 

2
� 

2
V �(�; T ) (10)

Note that unlike the guarantee for Astat, Amom must be run for a time larger
than some threshold time. Essentially, this time is the time long enough to
discover the trend. Also, note that we always must have either E�;T [max(p)] �
E�;T [#(p)]=2 or E�;T [jmin(p)j] � E�;T [#(p)]=2.

At the heart of the proof of Theorem 3 is the following simple probabilistic
lemma. The lemma essentially states that if the price makes large moves on some
time scale, then with high probability it cannot return to its starting value on a
comparable time scale.

Lemma 1. For any constant a > 0, we have

1. For all �, T and z � aT , Pr�;T [max(p) = z and drop(p) � aT=2] � e�a2T=12.
2. For all �, T and z � �aT , Pr�;T [min(p) = z and rise(p) � aT=2] �

e�a2T=12.

Proof. (Sketch) We sketch only Part 1, as Part 2 is entirely symmetric. First
let us suppose that among the biases �(0); : : : ; �(z) there are more than aT=4
which are negative. In this case we show that the probability of max(p) even
reaching the price z is small. In order for the price to reach z, it clearly must
\get through" these negative biases | in other words, the price must have a net
upwards movement of at least aT=4 even when restricted only to those visits to
prices with negative bias. If we modify all of these negative biases to be equal to
0 (unbiased), we can clearly only increase the probability that max(p) reaches
the price z.

We can thus bound Pr�;T [max(p) = z] by the probability that in T indepen-
dent ips of a fair coin, we would see an excess of heads over tails of at least
aT=4. By the standard Cherno� bound, the probability of seeing such an excess

in T ips is at most e�(a2=2)2T=3 = e�a2T=12. Since the probability of max(p)
even reaching z has been thus bounded, the lemma holds in this case.

Otherwise, we must have that at most aT=4 of the biases �(0); : : : ; �(z) are
negative. In this case we show that Pr�;T [drop(p) � aT=2] is small. Since the
price can drop by a net amount of at most aT=4 when restricted only to visits
to prices with negative biases, in order to drop by a total of at least aT=2, it
must drop a further net amount of at least aT=4 when restricted only to visits
to prices with positive biases. Using a similar argument, it is straightforward to
see that this probability being bounded by e�a2T=12. ut

Lemma 1 is used to prove the following result (and a similar result holds in
terms of E�;T [min(p)=T ]).
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Lemma 2. Let  > 0, and let T 0 be such that T 0e�2T 0=48 < =16. If T > T 0,
then for any biases �

V (Amom(; T ); �; T ) � E�;T [max(p)=T ]� =2 (11)

Proof. (Sketch) First, using a Markov inequality argument, one can show:X
x>T=4

Pr
�;T

[max(p) = x](x � T=4) � E�;T [max(p)]� T=4: (12)

Informally, this summation is the expected pro�t from the cases in which the
maximum price exceeds T=4, conditioned on the subsequent drop being at most
T=4.

Now one can use Lemma 1 to show that the value of Amom is close to the
above. ut

Theorem 3 follows from Lemma 2 under the assumption that E�;T [max(p)] >
T , and noting that V �(�; T ) � 1.

5.3 Putting the Pieces Together

Theorems 2 and 3 establish that for any biases � and any T , at least one of
the two strategies Astat and Amom must have a expected pro�t that compares
\favorably" with that of the optimal algorithm that knows �. We now wish to
de�ne a single strategy accomplishing this same criterion. Of course, one way
of doing this is to have a strategy that simply ips a fair coin at the outset
of trading to decide with Astat and Amom to use, at a cost of a factor of 2 in
our expected return in comparison to V �(�; T ). While this cost is insigni�cant
in light of the other constant factors we are already absorbing, we prefer to
apply the so-called \experts" methods of worst-case on-line analysis. When we
generalize our results to permit the biases � to depend on an underlying state
variable more complex than just the current price, the experts methodology will
be necessary.

In order to apply the experts framework, it is important to recall the ob-
servation made in Section 2 that our trading model can really be viewed as
an instance of on-line binary prediction. We view trading strategies (and Astat,
Amom and the optimal trading algorithm in particular) as making a series of
trades or predictions, each of which wins or loses immediately. We can thus im-
mediately apply the on-line weighting scheme of Cesa-Bianchi et al. [1997] to
the strategies Astat and Amom (in this case, an especially small set of experts);
let us call the resulting strategy Amaster, since it can be viewed as a \master"
strategy allocating capital between the two subordinate strategies. Combining
Theorem 16 of Cesa-Bianchi et al. [1997] with Theorems 2 and 3 allows one to
show that

V (Amaster; �; T ) � min
�
V �(�; T )2 � ;



4
V �(�; T )

�
�
p
2 log(2)=T (13)

always holds. Notice that this lower bound may actually be near zero for small
values of V �(�; T ). From this equation, Theorem 1 follows.
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6 Extending the State

So far we have focused exclusively on a model in which the directional bias of
the price movement may depend arbitrarily on the current price itself. In this
section we generalize our results to a considerably richer class of models, in which
the directional bias � = �(p; s) may depend on both price p and some auxiliary
information s. For example, one might posit that a more realistic model for price
dynamics is that the directional bias depends not only on the current price, but
also on whether the current price was arrived at from below or above. We can
model this letting the probability that pt+1 = pt + 1 be 1

2 + �(pt; st), where
�(pt; st) 2 [� 1

2 ;
1
2 ] and st 2 f0; 1g equals 1 if pt = pt�1 + 1 (uptrend) and 0 if

pt = pt�1 � 1 (downtrend). We again have an in�nite Markov process, but with
the Markovian state now being the pairs (p; s) rather than just p alone. We will
continue to use the notation � to denote the in�nite set of biases �(p; s) for all
integer prices p and binary trend indicators s.

We now outline why the results of Section 5 continue to hold with some
additional machinery, after which we will provide a more general and formal
statement. Let p be the sequence of prices pt, and let s be the corresponding
sequence of auxiliary values st. Let us de�ne #(p; s) to be the number of unique
states (pt; st) visited on (p; s). Then it is easily veri�ed that Theorem 2 holds
with E�;T [#(p)=T ] replaced by E�;T [#(p; s)=T ]. In this case, the obvious mod-
i�cation of strategy Astat | namely, to always trade according to the observed
behavior of the price on the �rst visit to state (p; s) | permits an identical
analysis.

The extension of Theorem 3 is slightly more involved. In particular, in our
new model Lemma 1 simply no longer holds | we can now easily \program"
behavior that (for example) causes the price to deterministically rise to some
price and then deterministically fall back to its starting value. In the price-
only model, such behavior was excluded by Lemma 1, which states that the
probability of the conjunction of a steep rise in price and a subsequent drop is
exponentially small.

However, in the new model it remains true that if E�;T [#(p; s)=T ] is larger
than , then either E�;T [max(p)] or E�;T [min(p)] must be large | namely, one
of them must be at least T=4 (as opposed to T=2 in the price-only model).
This is because for every n unique states we visit, we must visit at least n=2
unique prices as well, since for each price p there are only two associated states
(p; 0) and (p; 1). To exploit this, despite the fact that Lemma 1 no longer holds,
we make richer use of the Cesa-Bianchi et al. [1997] results. For each 1 � i � T ,
we introduce two simple trading strategies, A+i and A�i. Strategy A+i buys a
single share at the outset of trading, and sells it back if and only if the price
reaches the value i above its starting point. Strategy A�i sells a single share
at the outset of trading, and buys it back if and only if the price reaches the
value i below its starting point. If either E�;T [max(p)] or E�;T [min(p)] is least
T=4, then clearly the expected maximum per-step pro�t among the strategies
fA+i; A�ig1�i�T is at least =4.
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The new overall algorithm is thus to apply the weighting scheme of Cesa-
Bianchi et al. [1997] to the strategies fA+i; A�ig1�i�T along with the strategy
Astat. Regardless of the value of E�;T [#(p; s)=T ], one of these 2T + 1 strategies
will be pro�table.

To generalize the analysis above, note that the only property we required of
the state space (p; s) is that each possible price p have only a \small" number
of possible extensions s (2 in the analysis above). This motivates the following
de�nition: for any price p, let us de�ne �(p) to be jf(p; s) 2 Sgj, where S is
the set of possible states. For instance, in the example above, for any given p,
only the states (p; 0) and (p; 1) are possible, so �(p) = 2 always. We then de�ne
�max = maxpf�(p)g. Note that �max can be �nite and small even though an
in�nite number of values of s are possible as we range over all values of p. For
example, if s is de�ned to be the maximum price in the last ` time steps, then
for any p, there are at most 2` possible values for s; but the domain of s is all
the integers.

Let Ageneral(T ) refer to this more general algorithm which takes T as an
input and which weights the strategies Astat and fA+i; A�ig1�i�T as discussed
above. Then we have the following theorem.

Theorem 4. (Main Result, Extended State) Let �max be as de�ned above. Let

 > 0, and let T 0 be such that T 0e�2T 0=100 < =32 (which is satis�ed for T 0 =

((1=2) log(1=))). If T � T 0, then for any � and as long as

V �(�; T ) � 2
p
(2=4�max) + 4 (14)

we have
V (Ageneral(T ); �; T ) � 

2�max
V �(�; T )�

p
2 log(T )=T: (15)

Note that this di�ers from the price-only result of Theorem 1 in that our
competitive ratio is now proportional to =�max rather than , and the regret
term

p
2 log(T )=T of the weighting scheme now has log(T ) replacing log(2).

Also, this result is not anytime since Ageneral takes as input the time T .
Thus for constant �max, our bound essentially su�ers only a constant factor

degradation.
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Fig. 1. 16 sampled walks of length T = 100. On this short time scale, with high
probability, the walk remains in the unbiased region between p = �25 and p = 25.
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Fig. 2. 16 sampled walks of length T = 1000. Most walks either enter the uptrend
region above p = 25 and are lifted to the resistance level at p = 40 (plot (1; 3)), or
enter the downtrend region below p = �25 (plot (1; 2)). Some walks enter the uptrend
or downtrend only very late (plot (2; 1)), or do not even leave the unbiased region (plot
(3; 1)).
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Fig. 3. 16 sampled walks of length T = 10000. Now all walks either traverse the uptrend
and remain near the p = 40 resistance level, or traverse the downtrend and follow an
unbiased random walk below p = �100, the bottom of the downtrend region. On this
time scale, some of the uptrend walks are starting to show \cracks" in the form of
dips back into the original unbiased region (plots (2; 2), (2; 4) and (3; 2)). Eventually
these cracks will pull the price back through the original unbiased region and into the
downtrend; asymptotically, all walks eventually spend most of their lives in the lower
unbiased region below p = �100.


