
Cryptographic Primitives Based on Hard Learning Problems

Avrim Blum�

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Merrick Fursty

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Michael Kearns
AT&T Bell Laboratories
Murray Hill, New Jersey

Richard J. Lipton
Princeton University
Princeton, New Jersey

Abstract

Modern cryptography has had considerable impact on the
development of computational learning theory. Tools from
cryptography have been used in proving nearly all of the
strong negative results for learning. In this paper, we give
results in the reverse direction by showing how to construct
several cryptographic primitives based on certain assump-
tions on the di�culty of learning. Thus we develop further
a line of thought introduced by Impagliazzo and Levin [5].

As we describe, standard de�nitions in learning theory
and cryptography do not appear to correspond perfectly in
their original forms. In particular, a learning algorithm is
generally required to be much more successful than a \sta-
tistical test" in cryptography. However, we show that natu-
ral modi�cations to standard learning de�nitions can yield
a strong correspondence between hardness for learning and
cryptography.

The particular cryptographic primitives we consider
are pseudorandom bit generators, one-way functions, and
private-key cryptosystems. We give transformations of hard
learning problems into cryptographic primitives with the de-
sirable property that the complexity of the resulting primi-
tive is not much greater than that of the hard-to-learn func-
tions and distributions. In particular, our constructions are
especially adept in preserving the degree of parallelism in-
herent in the hard functions and distributions. Thus, \sim-
ple" functions that are apparently di�cult to learn (such
as DNF formulae) may lead to cryptographic primitives of
considerably reduced parallel complexity.

In addition to generic transformations, we also describe
a very simple pseudorandom bit generator based on the as-
sumption that the class of parity functions is hard to learn
in the presense of random noise (an assumption similar to
the intractability of decoding random linear codes). Our
construction is simpler than related constructions that have
been described previously. A similar construction is appar-
ently already known to some researchers in the cryptography
community as a \folk theorem".

1 Introduction and Motivation

The contribution of modern cryptography to research
in computational learning theory has been signi�cant:
ideas and constructions from cryptography have been
essential in proving many of the strongest negative re-
sults for e�cient learning [4, 8, 1, 9]. In fact, virtu-
ally every intractability result in Valiant's model [12]
(that is representation-independent in the sense that it

�Supported in part by an NSF Postdoctoral Fellowship.
ySupported in part by NSF grant CCR-9119319.

does not rely on an arti�cial syntactic restriction on the
learning algorithm's hypotheses) has at its heart a cryp-
tographic construction (and therefore a cryptographic
assumption). In particular, the assumption P 6= NP
has so far proven insu�cient to obtain representation-
independent hardness results for learning.
This state of a�airs naturally leads one to wonder

if such intractability results for learning in fact require
cryptographic assumptions. In this paper we give a
partial positive answer to this question by demonstrat-
ing that under the assumption that learning problems
are hard under certain natural conditions, it is possi-
ble to construct familiar cryptographic primitives such
as pseudorandom bit generators and one-way functions.
These primitives are an example of the potential contri-
bution of learning theory to cryptography, and demon-
strate in further detail principles �rst articulated by
Impagliazzo and Levin [5].
We obtain our results using an average-case model of

learning, and we describe our cryptographic primitives
as uniform circuit families rather than polynomial time
algorithms, since this allows us to make more precise
statements about the complexity and depth of these
primitives. We are especially interested in constructions
that preserve the parallelism present in the hard-to-
learn function classes and distributions. The following
are our main results.

� For any class of functions that is hard to \weakly pre-
dict" in our learning model, we construct a cryp-
tographically secure pseudorandom bit generator.
The circuit complexity of this generator can be ex-
plicitly given in terms of the circuit complexity of
the class of functions and the complexity of gen-
erating the hard distribution of functions and the
hard distribution of inputs to the functions. We
then describe an improved version of this genera-
tor that achieves signi�cantly increased expansion
and is based on ideas of Nisan and Wigderson [11].
The security of this improved generator is based
on the stronger assumption that weak prediction is
hard even when the learning algorithm is allowed
to query the unknown target function on inputs of
its own choosing (known as membership queries)

in addition to receiving random examples.

� For any class of functions that is hard to \strongly
predict" in our learning model, we construct a one-
way function, whose circuit complexity can again
be explicitly given in terms of that of the class of
functions and that of generating the hard distribu-
tions.

� For any class of functions that is hard to weakly pre-
dict in our learning model, we construct a private-
key cryptosystem secure against chosen message
attack, whose circuit complexity can again be ex-
plicitly given in terms of the hard functions and
distributions.

� In addition to these primitives based on general in-
tractability assumptions, we also propose a simple
pseudorandom bit generator based on the assump-
tion that the class of parity functions is hard to
learn in the presence of classi�cation noise. The
generator is very similar to a one-way function pro-
posed by Goldreich, Krawczyk and Luby [3], who
then apply a generic transformation to obtain a bit
generator. Here we modify this function slightly
and provide an analysis showing that the output
of the modi�ed function is already pseudorandom.

Note that while it is well-known that some of the
primitives above imply the existence of others (for in-
stance, the equivalence of bit generators and one-way
functions) [13, 6], we are interested in the separate re-
sults because the equivalences between primitives of-
ten do not preserve complexity measures such as circuit
depth (parallelism). For instance, it is not known how
to construct a bit generator inNC given a one-way func-
tion in NC. One of the main potential bene�ts of this
line of research is that as \simple" function classes (for
instance, functions with small circuit depth) continue
to elude e�cient learning, our belief in the intractabil-
ity of learning such classes increases, and we can ex-
ploit this intractability to obtain simpler cryptographic
primitives.

1.1 The Apparent Necessity of
Average-Case Assumptions

There are several technical barriers to the immediate
translation of an assumed hardness result for learn-
ing (in Valiant's model or any of its common vari-
ants) into an interesting and useful cryptographic prim-
itive, the most daunting of which center on the discrep-
ancy between worst-case and average-case assumptions.
These di�culties were �rst noted by Impagliazzo and
Levin [5]. Roughly speaking, in most learning theory
models, a learning algorithm is required for every value
of n to learn all functions over f0; 1gn that meet some
(usually strong) constraints known to the algorithm.
For instance, we might ask that the learning algorithm

be able to learn any DNF formula over f0; 1gn with at
most n2 terms.
Thus, assuming hardness for learning seems in gen-

eral to imply only that for each polynomial time al-
gorithm there exists some function meeting the con-
straints that is hard for that algorithm. Under such a
demanding de�nition of learning, for instance, a failed
DNF learning algorithm might still always be able to
learn any n2-term DNF provided n was even, and might
learn all but a small scattered set of n2-term DNF
formulae when n was odd. If we consider using such
a \hard" learning problem in constructing a crypto-
graphic primitive, this \failed" learning algorithm will
clearly cause problems: a bit generator that is easily
distinguishable from random whenever the seed length
is even and with overwhelming probability when the
seed length is odd is not especially useful either for
cryptography or for the deterministic simulation of ran-
domized algorithms.
We thus introduce an average-case model of learning

that reduces these apparently fundamental discrepan-
cies between hardness for learning and the conditions
required by cryptography, but otherwise preserves both
the spirit and technical aspects of many existing mod-
els in learning theory. We then proceed to demonstrate
that this worst-case/average-case discrepancy was es-
sentially the only barrier to a natural correspondence
between hard learning problems and many common
cryptographic primitives.

2 Preliminaries

2.1 Learning Models

The learning models we consider are models of learning
boolean functions from labeled examples.
Throughout the paper, Fn will denote a class of

boolean functions over f0; 1gn, so each f 2 Fn is a map-
ping f : f0; 1gn ! f0; 1g. We assume that each func-
tion in Fn is represented using some �xed and reason-
able representation scheme. A representation scheme
for Fn is a pair (Rn; En), where Rn � f0; 1gr(n) for
some �xed polynomial r(n), and En : Rn ! Fn is an
onto mapping.
We interpret a string � 2 Rn as a representation of

the function En(�) 2 Fn. Note that a function f 2
Fn may have many representations in Rn. Also, since
Rn contains only r(n)-bit strings, we are insisting that
each function in Fn have a \short" representation. We
shall see that the computational details of evaluating
the representations are relevant to our study. We de�ne
F = fFng and (R; E) = f(Rn; En)g.
In our average-case learning models, the unknown

target function will be generated according to some
�xed distribution Pn over the function class Fn from
the distribution ensemble P = fPng over F . When we
have �xed a representation scheme (R; E) for F , some-
times we instead prefer to think of Pn as a distribution

over representations Rn, which implicitly de�nes a dis-
tribution over Fn.

Once a target function f 2 Fn is generated accord-
ing to Pn (which we shall denote f 2 Pn), a learn-
ing algorithm will receive access to labeled examples
of f selected according to some �xed distribution Dn

over the input space f0; 1gn from the distribution en-
semble D = fDng. Each example is a pair hx; f(x)i
where x is drawn randomly according to Dn (denoted
x 2 Dn). If S = x1; : : : ; xm is a sequence of in-
puts from f0; 1gn, we use hS; fi to denote the sequence
hx1; f(x1)i; : : : ; hxm; f(xm)i of labeled examples of f .

De�nition 1 Let F be a class of boolean functions, P
a distribution ensemble over F , and D a distribution
ensemble over f0; 1g�. For any 0 < � < 1=2, we say
that F is �-predictable on average with respect to P
and D if there exists a polynomial time algorithm M
(taking a labeled sample hS; fi and a test input ~x) and
a polynomial m(n) such that for in�nitely many n,

Pr
f2Pn;S2D

m(n)
n ;~x2Dn

[M (hS; fi; ~x) = f(~x)] � 1� �:

We callM an �-prediction algorithm (for F with respect
to P and D), and the function m(n) is the sample size
of M .

Note that in this de�nition, a smaller value of � places
a greater demand on the learning algorithm. We will
want in particular to consider two extreme cases of pre-
dictability as follows:

De�nition 2 Let F be a class of boolean functions,
P a distribution ensemble over F , and D a distribu-
tion ensemble over f0; 1g�. We say that F is weakly
predictable on average with respect to P and D if
there exists some �xed polynomial q(n) such that F is
(1=2� 1=q(n))-predictable on average with respect to P
and D. We say that F is strongly predictable on av-
erage with respect to P and D if for any polynomial
q(n), F is 1=q(n)-predictable on average with respect to
P and D.

We will also consider these same learning models
when the learning algorithm is provided with mem-
bership queries. Here the de�nitions of prediction on
average remain unchanged, but in addition to random
labeled examples, the learning algorithm may receive
the value f(x) on inputs x of its own choosing; we as-
sume that the test input ~x is drawn after all queries
are made to prevent the algorithm from cheating by
querying f(~x).

In the appendix we discuss some of the di�erences be-
tween these de�nitions and the more standard Valiant
model and its variants.

2.2 Measuring the Complexity of Rep-
resentation Schemes and Distribu-
tions

In order to appropriately quantify the complexity of our
proposed cryptographic primitives, it will be necessary
to de�ne complexity measures for the representation
scheme (R; E) and the distribution ensembles P and D.
As we have mentioned, we choose to use uniform circuit
families to allow the most precise statements and to
emphasize the preservation of parallelism exhibited by
our constructions.
We begin with the straightforward case of the input

distribution ensemble D.
De�nition 3 Let D be a distribution ensemble over
f0; 1g�, and let D = fDng be a uniform circuit se-
quence, where Dn takes d(n) input bits for some poly-
nomial d(n) and outputs n bits. We say that D is gen-
erated byD if for every n, the output distribution of Dn

is exactly Dn: that is, if we choose w uniformly at ran-
dom from f0; 1gd(n) then Dn(w) 2 f0; 1gn is distributed
according to Dn.

Notice that we allow the generating circuits Dn to
have d(n) input bits since it may require more or fewer
than n random input bits to produce an n-bit output
according to Dn.
We wish to formulate a similar notion for the gener-

ation of the distribution P. For our cryptographic con-
structions, given a �xed representation scheme (R; E),
it will be easier to think of the function distribution Pn

as being over the set Rn (rather than over function class
Fn itself), which then implicitly de�nes a distribution
over Fn under En. In this case we can de�ne what it
means for P to be generated by a circuit sequence.

De�nition 4 Let P be a distribution ensemble over
Rn � f0; 1gr(n), and let P = fPng be a uniform circuit
sequence, where Pn takes p(n) input bits and outputs
r(n) bits for polynomials p(n) and r(n). We say that P
is generated by P if for every n, the output distribution
of Pn is exactly Pn: that is, if we choose w uniformly at
random from f0; 1gp(n) then Pn(w) 2 Rn is distributed
according to Pn.

We are not only interested in the complexity of gen-
erating representations of functions with respect to P
but also in evaluating the functions represented. A dis-
tribution P over R that allows very rapid generation
of function representations will not be especially useful
to us if the representation of f makes it expensive to
compute f(x). Thus, we make the following de�nition:

De�nition 5 Let (R; E) be an encoding scheme for F
such that Rn � f0; 1gr(n), and let E = fEng be a uni-
form circuit sequence, where En takes r(n) + n input
bits and outputs a single bit. We say that (R; E) can
be evaluated by E if for every n, on inputs �f 2 Rn

such that f = En(�f) 2 Fn and x 2 f0; 1gn, we have
En(�f ; x) = f(x).

Finally, we will need to de�ne circuit sequences that
are formed from other circuit sequences in certain
ways. If C = fCng is a circuit sequence, we de�ne
Cm = fCm

n g to be the circuit sequence of m-fold repli-
cation of the circuits in C. More precisely, the cir-
cuit Cm

n takes m � n inputs, and consists of m dis-
joint \copies" of Cn: on inputs x1; : : : ; xm 2 f0; 1gn,
the output Cm

n (x1; : : : ; xm) is the concatenation of
Cn(x1); : : : ; Cn(xm).
Now if C and D are sequences of circuits, we de�ne

the sequence C �D = fCn �Dng as follows: the circuit
Cn�Dn has q(n) inputs for some polynomial q(n). Some
or all of these inputs feed the �xed circuit Dn, whose
outputs (along with some or all of the inputs) in turn
feed the �xed circuit Cn. (Note that Cn �Dn is techni-
cally a set of circuits since we have not speci�ed exactly
how the inputs are wired.) Similarly, if C,D and E are
sequences of circuits, the sequence C � (D;E) is that in
which the circuit Cn � (Dn; En) has some or all of its
inputs fed to the �xed circuits Dn and En in parallel,
whose outputs (along with some or all of the inputs) in
turn feed the �xed circuit Cn.
It will be helpful to keep in mind that taking multiple

copies of a circuit increases the circuit width, and that
the composition operation � increases circuit depth.

3 General Results

In this section, we provide what we consider to be our
general results: explicit constructions of various crypto-
graphic primitives based on general assumptions about
the di�culty of learning. In the following section, we
give a very speci�c bit generator based on a particular
intractability assumption for learning parity functions
with noise that builds on ideas introduced in this sec-
tion.
We will provide the formal de�nitions for the crypto-

graphic primitives as they are needed. Our de�nitions
are essentially standard, with the exception mentioned
in the introduction that we describe our primitives as
uniform circuit families. Again, the reason for this is
that it allows us to make precise complexity statements
for our primitives.

3.1 A Bit Generator Based on Hardness
for Weak Prediction

We begin by showing that a function class hard to
weakly predict on average can be used to create a
CSPRBG whose circuit depth is comparable to that
of the function class plus that of generating the hard
distributions.

De�nition 6 A cryptographically strong pseudoran-
dom bit generator (CSPRBG) is a uniform circuit se-
quence G = fGng, where Gn takes n bits of input and
produces g(n) > n bits of output, with the following
property: for any polynomial time algorithm T that pro-
duces a boolean output and any polynomial q(n), there

exists an n0 such that for all n � n0,

�
�
�
� Pr
y2f0;1gg(n)

[T (y) = 1]� Pr
x2f0;1gn

[T (Gn(x)) = 1]

�
�
�
� � 1=q(n):

We call the function e(n) = g(n) � n the expansion of
G.

We �rst tackle the special case in which the input
distribution ensemble is uniform.

Theorem 1 Let F be a class of boolean functions,
(R; E) a representation scheme for F , P a distribution
ensemble over R, and U the uniform distribution en-
semble over f0; 1g�. Let (R; E) be evaluated by the cir-
cuit sequence E, and let P be generated by the uniform
circuit sequence P . Then if F is not weakly predictable
on average with respect to P and U , there is a CSPRBG
computed by the uniform circuit sequence Em(n) �P for
some �xed polynomial m(n).

Proof: (Sketch) Informally, for any n, the bit gen-
erator Gn behaves as follows: it takes as input a ran-
dom bit string, and uses some of these bits to generate
a function f 2 Fn according to the distribution Pn.
The rest of the input bits are used directly as m in-
puts, x1; : : : ; xm 2 f0; 1gn for f . The output of the
generator consists of x1; : : : ; xm followed by the m bits
f(x1); : : : ; f(xm).
More formally, Gn takes as input a random string of

p(n) + m � n bits. Here p(n) is the number of random
input bits required by the circuit Pn for generating a
representation �f 2 Rn of a function f = En(�f) 2 Fn,
where �f is distributed according to P; m will be de-
termined by the analysis. The generator feeds the �rst
p(n) input bits into Pn to obtain �f . The remaining
m � n random input bits are regarded as m random
vectors x1; � � � ; xm 2 f0; 1gn. For each i the generator
then feeds �f and xi to a parallel copy of En to obtain
En(�f ; xi) = f(xi). The output of the generator is then
x1; : : : ; xm; f(x1); : : : ; f(xm). It is easy to ver�fy that
G is computed by the circuit sequence Em � P . Since
our generator produces g(n) = m � n + m output bits,
we obtain expansion provided that m > p(n).
We now argue that G is in fact a CSPRBG. For con-

tradiction, suppose that G is not, and let T be a poly-
nomial time algorithm such that

�
�
�
� Pr
y2f0;1gg(n)

[T (y) = 1]� Pr
x2f0;1gn

[T (G(x)) = 1]

�
�
�
� � 1=q(n)

for some polynomial q(n). For each i, let ti denote the
probability that T outputs 1 when its �rst i input bits
are the �rst i bits of G(x) on random x, and the re-
maining input bits of T are truly random. Then we
have jt0 � tg(n)j � 1=q(n), and by a standard \proba-
bility walk" argument there must be an 1 � i < g(n)
such that jti � ti+1j � 1=n � q(n) (note that in fact
i must be larger than m � n since the �rst m � n bits

of Gn's output are in fact truly random, having sim-
ply been copied from the input). Furthermore, we can
�nd such an i (with high probability) by performing
repeated experiments with T using random draws from
Pn and Dn, and once such an i is found we can \center
the bias" to produce an e�cient algorithm T 0 such that
t0i � 1=2 + 1=q0(n) and t0i+1 � 1=2 � 1=q0(n) for some
polynomial q(n).
Algorithm T 0 thus has the following property: sup-

pose we draw a function f randomly according to
Pn, and draw m random n-bit vectors x1; : : : ; xm
and we give T 0 the inputs x1; : : : ; xm along with
f(x1); : : : ; f(xi), followed by an input bit bi+1 that
is either f(xi+1) or a truly random bit, followed by
g(n) � i � 1 random bits. Then T 0 can determine with
probability signi�cantly better than random guessing
whether its i + 1st input bit bi+1 is f(xi+1) or a truly
random bit; we interpret an output of 1 as a guess that
bi+1 is random, and an output of 0 as a guess that
bi+1 = f(xi+1).
Now suppose we have access to random exam-

ples according to Un of a target function f drawn
according to Pn, and we also have a random
test input ~x. Suppose we give to T 0 the ran-
dom strings x1; : : : ; xi�1; ~x; xi+1; : : : ; xm followed by
f(x1); : : : ; f(xi), followed by an undetermined input bit
bi+1, followed by g(n) � i � 1 random bits. Then it is
easy to show by a simple averaging argument that the
following strategy yields an algorithm for weakly pre-
dicting F with respect to P and U : with the other
inputs as speci�ed, we run T 0 both with bi+1 = 0 and
bi+1 = 1. If both inputs cause an output of 0, or both
inputs cause an output of 1, we ip a coin to predict
f(~x). Otherwise, we predict that f(~x) is the value of
bi+1 that caused T 0 to output 0.
The following simple lemma relates the hardness of

learning a function class with respect to some input dis-
tribution ensemble to the hardness of learning a related
function class with respect to the uniform distribution
ensemble.

Lemma 2 Let F be a class of boolean functions, P a
distribution ensemble over F , and D a distribution en-
semble over f0; 1g�. Let the ensemble D be generated
by the circuit sequence D, and let F � D denote the
class of functions obtainable by composing a function
in Fn with the circuit Dn. Then for any �, if F is not
�-predictable on average with respect to P and D, then
F �D is not �-predictable on average with respect to P
and the uniform ensemble U over f0; 1g�.
Proof: Immediate; we are simply letting the compu-
tation of the hard distribution ensemble D be part of
the target function.
From Theorem 1 and Lemma 2, we can now easily

obtain a bit generator from a learning problem that is
hard with respect to some input distribution ensemble.

Corollary 3 Let F be a class of boolean functions,
(R; E) a representation scheme for F , P a distribu-

tion ensemble over R, and D a distribution ensemble
over f0; 1g�. Let (R; E) be evaluated by the circuit se-
quence E, let P be uniformly generated by the circuit
sequence P , and let D be uniformly generated by the
circuit sequence D. Then if F is not weakly predictable
on average with respect to P and D, there is a CSPRBG
computed by the uniform circuit sequence (E�D)m(n)�P
for some �xed polynomial m(n).

3.2 Improved Expansion via Nisan-
Wigderson

The pseudorandom generator just described takes
p(n)+m �n truly random input bits to m �n+m output
bits, giving expansion e(n) = m � p(n). While we can
let e(n) attain any desired value by choosing m = m(n)
as large as necessary, the expansion ratio (the number
of output bits divided by the number of input bits) can
never exceed 1+1=n; this is because we always require n
input bits for each n+1 output bits. There are standard
methods which can be used to amplify the expansion of
any generator. However, these methods iterate the gen-
erator and therefore signi�cantly increase the resulting
circuit depth.
By applying a result due to Nisan and Wigderson [11]

we can improve our generator to obtain a much greater
expansion ratio without a correspondingly large in-
crease in circuit depth (or size). In order to prove
security, we must increase our intractability assump-
tion for learning. Rather than just assuming that the
class of functions is hard to weakly predict on aver-
age, we assume that it is hard to weakly predict on
average even when the learning algorithm is provided
with membership queries. We now describe how this
stronger intractability assumption allows us to modify
our generator to obtain an expansion ratio on the order
of n2 rather than just O(1) as before.
Informally, the new CSPRBG Gn takes as input a

random string of p(n) + n2 bits. Here, as before, p(n)
is the number of random input bits required by the cir-
cuit Pn for generating a representation of a function
f according to the hard distribution Pn over the func-
tion class. (For simplicity we assume that the hard
distribution Dn over the inputs f0; 1gn is the uniform
distribution; similar improvements can be given for the
general case as was done above.) Call the additional n2

input bits v = v1; : : : ; vn2 . It is described by Nisan and
Wigderson [11] how to uniformly construct a family of
n4 sets S1; : : : ; Sn4 such that: (1) Si � fv1; : : : ; vn2g;
(2) jSij = n for all i; and (3) jSi

T
Sjj � logn for all

i 6= j.
Our new generator will work as follows: as before, the

�rst p(n) bits are used to generate a function f 2 Fn

according the the distribution Pn, and the remaining
n2 bits v are copied to the �rst n2 output bits. Now,
however, if we let fi denote the function f applied to
the subset of v1; : : : ; vn2 indicated by the set Si, the
(n2+ i)th output bit is fi(v). Thus, Gn takes p(n)+n2

input bits and gives g(n) = n2 + n4 output bits, for

an expansion ratio of
(n2). Note that the sets Si are
�xed as part of the generator description and thus are
known to any potential adversary.
We now sketch the argument that if F is not weakly

predictable on average even with membership queries,
then Gn is a CSPRBG. To see this, suppose the contrary
that Gn is not a CSPRBG. By standard arguments,
there is an 1 � i � n4 and a polynomial time algorithm
T such that

Pr
f2Pn;v2f0;1gn

2
[T (v; f1(v); : : : ; fi(v)) = fi+1(v)]

exceeds 1=2 + 1=q(n) for some polynomial q(n).
The function fi+1 only depends on the bits in Si+1

which without loss of generality we call v1; : : : ; vn. By
an averaging argument we can �nd a �xed setting

z = zn+1; : : : ; zn2 2 f0; 1gn2�n of the remaining bits
vn+1; : : : ; vn2 such that

Pr
f2Pn;v2f0;1gn

[T (vz; f1(v; z); : : : ; fi(v; z)) = fi+1(v; z)]

exceeds 1=2 + 1=q(n) for some polynomial q(n).
Now we describe how a learner who can make mem-

bership queries can weakly predict F on average. By
the Nisan-Wigderson construction, each fj other than
fi+1 is actually a function of only logn bits in v1; : : : ; vn
(all other bits have been �xed) and we know which logn
bits since the sets Si are �xed as part of the generator
description. Thus the entire truth table of each fj is of
size polynomial in n, and can be determined by making
only n membership queries to f (the queries simply let
the variables in Sj

Tfv1; : : : ; vng assume all n possible
settings while the remaining variables have their values
�xed according to z). To predict f(v) on a challenge
input v the learner looks up the values of fj(vz) for
1 � j � i and then outputs T (vz; f1(vz); : : : ; fi(vz)).
This weakly predicts fi+1(vz) = f(v), and by contra-
diction proves our assertion that Gn is a CSPRBG.

3.3 A One-Way Function Based on
Hardness for Strong Prediction

We now show that under the weaker assumption that
a class of functions is hard to strongly predict on aver-
age, we can construct a one-way function whose circuit
depth is again comparable to that of the function class
plus that of the hard distributions. A related result is
given by Impagliazzo and Levin [5].

De�nition 7 Let F = fFng be a uniform sequence of
circuits Fn : f0; 1gn ! f0; 1gs(n) for some polynomial
s(n). We say that F is a one-way function if there
exists a polynomial q(n) such that for any polynomial
time algorithm T , there exists an n0 such that for all
n � n0,

Pr
x2f0;1gn

[Fn(T (Fn(x))) 6= Fn(x)] � 1=q(n):

Theorem 4 Let F be a class of boolean func-
tions, (R; E) a representation scheme for F (Rn �
f0; 1gr(n)), P a distribution ensemble over R, and D a
distribution ensemble over f0; 1g�. Let (R; E) be eval-
uated by the circuit sequence E, P be generated by the
circuit sequence P , and D be generated by the circuit
sequence D. Then if F is not strongly predictable on
average with respect to P and D, there is a one-way
function F computed by the uniform circuit sequence
Em(n) � (P;Dm(n)) for some �xed polynomial m(n).

Proof: (Sketch) The construction is similar to that of
the bit generator; the main di�erences are the polyno-
mial m(n) and the analysis. The input to the one-way
function Fn will consist of p(n) + m � d(n) bits, where
p(n) is the number of inputs to Pn and d(n) is the
number of inputs to Dn. The �rst p(n) bits are fed
to Pn to produce a representation �f 2 Rn of a func-
tion f 2 Fn. The remaining m � d(n) input bits are
regarded as m blocks w1; : : : ; wm 2 f0; 1gd(n). Each wi

is fed to a parallel copy of Dn in order to produce an
xi 2 f0; 1gn; if the wi are selected randomly, then the
xi are distributed according to Dn. Finally, each xi is
given along with �f to a parallel copy of En in order
to obtain En(�f ; xi) = f(xi). The output of Fn is then
x1; : : : ; xm followed by f(x1); : : : ; f(xm).
We begin the analysis by noting that if v; v0 2

f0; 1gp(n) and w1; : : : ; wm; w
0
1; : : : ; w

0
m 2 f0; 1gd(n) are

such that

Fn(v; w1; : : : ; wm) = Fn(v
0; w0

1; : : : ; w
0
m)

we must have Dn(wi) = Dn(w
0
i) for all i. Let xi =

Dn(wi). Now although it is not necessarily true that
v = v0, if we let �f = Pn(v) and �f 0 = Pn(v0) be the
representations in Rn of the functions f; f 0 2 Fn, by
construction of Fn it must be the case that f(xi) =
f 0(xi) for all i.
Let q(n) be such that F is not 3=q(n)-predictable

(with respect to P and D). For any �xed f 2 Fn,
the probability over m random examples from Dn

that there exists a function f 0 2 Fn agreeing with f
on those examples, but that has error greater than
1=q(n) with respect to f and D, is at most jFnj(1 �
1=q(n))m. This probability is smaller than 1=q(n) for
m =
(q(n)[log jFnj + log q(n)]), (which is polynomial
in n since log jFnj � r(n)). We set m such that this is
the case.
Thus, suppose that F is not a one-way func-

tion. Then there exists an algorithm T with prob-
ability at least 1 � 1=q(n) of �nding an inverse
for Fn(v; w1; : : : ; wm) on random inputs. So given
a test input ~x 2 Dn and m examples hxi; f(xi)i
of f drawn according to Dn, we can simply give
the string x1; : : : ; xm; f(x1); : : : ; f(xm) to T . There
is then probability at least 1 � 1=q(n) that T re-
turns v0; w0

1; : : : ; w
0
m such that Fn(v0; w0

1; : : : ; w
0
m) =

x1; : : : ; xm; f(x1); : : : ; f(xm). If this occurs, then by the
argument above there is probability at least 1� 1=q(n)

that Pn(v0) represents a function f 0 with error at most
1=q(n), and we can simply compute f 0(~x). The proba-
bility that f 0(~x) = f(~x) is at least 1� 3=q(n), violating
the assumption that F is not 3=q(n)-predictable.

3.4 A Private-Key CryptosystemBased
on Hardness for Weak Prediction

In section we informallydescribe a quite simple and nat-
ural mapping from hard learning problems to private-
key cryptosystems. This mapping has the property that
the complexity of evaluating the representation (R; E)
maps directly onto the complexity of decrypting, and
that plus the complexity of generating examples from
the distribution ensemble D maps onto the complexity
of encrypting. So, if a simple function representation
(for instance, DNF formulas) is hard to learn over a sim-
ple distribution (for instance, uniform) then encrypting
and decrypting are both easy.
A private-key cryptosystem is a tuple (G;E;D) of

three probabilistic polynomial time algorithms 1. The
key generator G takes as input 1n, and outputs a key k
of length n. The encryption algorithm E takes as input
a message m and a key k, and produces ciphertext as
output. The decryption algorithmD takes as input ci-
phertext and a key and produces a message. We require
that D(E(m; k); k) = m.
A chosen message query is a query in which a string

s is given to E, and an encryption of s using k is re-
turned. A chosen ciphertext query is a query in which
a string s is given to D and D(s; k) is returned. A
one bit challenge to an algorithm T is an encryption
of a random bit, and we say that T responds correctly
to the challenge if it correctly guesses which bit was
encrypted.
The private-key cryptosystems we will discuss are

probabilistic schemes that encrypt one bit at a time,
encrypting each bit independently from the previous
ones. We say such a scheme is secure against chosen
message attack if for any polynomial-time \breaking"
algorithm T and any polynomials m(n) and q(n), for
su�ciently large n, the following holds: after making
m(n) bits of chosen message queries, the probability
that T responds correctly to a one bit challenge is less
than 1=2+1=q(n). We similarly de�ne the notion of be-
ing secure against chosen message and ciphertext attack
(T may make both kinds of queries). Because we are
encrypting single bits in a manner independent of pre-
vious encryptions, this security notion is equivalent to
saying that the machine T cannot correctly distinguish
the encryptions of two messages of its own choosing.
So far, we have considered the complexity of a rep-

resentation scheme to be that of the associated eval-
uation function En(�; x). In this section, it will be

1Here we depart from our policy of describing primitives as
uniform circuit families since we intend to describe the private-
key system informally. However, it is a straightforwardexercise to
express the circuit complexity in terms of the circuit complexity
of the hard-to-learn functions and distributions as we have been
doing.

convenient to also speak of the function En;�, where
En;�(x) = En(�; x). For example, if (R; E) is a repre-
sentation for DNF formulas, then En is a circuit that
takes a string representing a DNF formula f and some
x, and produces f(x) as output. En;� may be much
simpler, however; it is just a depth-2 circuit.
Suppose F is a class of boolean functions, (R; E) a

representation scheme for F , P a distribution ensemble
over R, and D a distribution ensemble over f0; 1g�. In
addition, suppose (R; E) is evaluated by the uniform
circuit sequence E, and P and D are generated by the
uniform circuit sequences P and D respectively. We
assume below that the probability a random example
from Dn is positive for a random function f from Pn is
in the range [12� 1

n
; 12+

1
n
]. Notice that if this is not the

case for in�nitely many n, then F is weakly predictable
on average with respect to P and D since a prediction
algorithm could simply draw a large sample and pre-
dict on the test example based on whether positive or
negative examples were more prevalent.
The cryptosystem we create given F , P, and D is

as follows. The key generator G takes as input 1n and
uses this to generate Pn. It then feeds p(n) random bits
into Pn to produce a string � 2 Rn. String � is the key
given to the encryption and decryption algorithms (so,
technically, the security parameter is r(n)). Let f be
the function represented by �.
The encryption algorithmE begins by generating cir-

cuits Dn and En, and evaluating En on the private key
to create En;�. It encrypts a 1 by sending a random
(according to D) positive example of f and encrypts a
0 by sending a random (according to D) negative exam-
ple of f . This requires running Dn on d(n) random bits
to create an example x, and then computing En;�(x) to
see if the example is of the appropriate type, repeating
the procedure if this is not the case. Notice that the
expected number of calls to Dn and En;� is just 2+o(1)
by our assumption on D. (This could be improved by
encrypting many bits at a time).
Decryption is even simpler than encryption. The de-

cryption algorithm D begins by generating En;�, and
then decrypts strings x by computing En;�(x).

Theorem 5 If F is not weakly predictable on aver-
age with respect to P and D, then the cryptosystem
(G;E;D) described above is secure against chosen mes-
sage attack. If furthermore F is not weakly predictable
with membership queries with respect to P and D, then
(G;E;D) is secure against chosen message and cipher-
text attack.

Proof: (Sketch) Suppose algorithm M is able to
break (G;E;D) with chosen message attack for in-
�nitely many n, and asks for the encryption of m(n)
message bits. The learning algorithm simply requests
3m(n) labeled examples (which with high probability
will result in at least m(n) positive examples and at
least m(n) negative examples) and uses them to simu-
late E for M 's message queries. It then feeds the test

input ~x to M and uses M 's response as the prediction.
Since r(n) is polynomial in n, andM responds correctly
with probability at least 1=2+1=poly(r(n)), this will be
a weak prediction algorithm (for F with respect to P
and D).
IfM makes chosen ciphertext queries, the learning al-

gorithm, if it is allowed membership queries, can answer
these in the obvious way as membership and ciphertext
queries are equivalent here. Thus, if (G;E;D) is vul-
nerable to chosen message and ciphertext attack, then
F is weakly predictable with membership queries with
respect to P and D.

4 A Bit Generator Based on
Parity Functions with Noise

Let Sn denote the set of all parity functions over
f0; 1gn; speci�cally, for each of the 2n subsets S =
fxi1 ; : : : ; xikg � fx1; : : : ; xng there is a function fS 2
Sn de�ned by

fS(x1; : : : ; xn) = xi1 � � � � � xik :

Let S = fSng.
In this section we describe a simple bit generator

whose security is based on the assumption that the class
S is hard to learn in the presence of classi�cation noise.
This means that we add a parameter 0 < � < 1=2 to
our learning model called the noise rate, and now a
learning algorithm, rather than always receiving a la-
beled example hx; f(x)i of the target function f , will
instead receive a noisy labeled example hx; `i. Here
` = f(x) with probability 1 � � and ` = :f(x) with
probability � where this choice is made independently
for each requested example. We will in addition require
the learning algorithm to actually reconstruct the tar-
get function with high probability.

The Parity Assumption: For some �xed constant
0 < � < 1=2, there is no algorithm taking � and n as
input that runs in time polynomial in 1=� and n, and
that for in�nitely many n, will for any function fS 2 Sn
(given access to random noisy examples of fS from the
uniform Un distribution on f0; 1gn with noise rate �)
produce the set S with probability at least 1� �.

It should be apparent that (modulo the assump-
tion of in�nitely many n) the parity assumption is no
stronger than an assumption that parity with noise is
hard to learn under the uniform distribution in the
Valiantmodel. Note that in comparison with our de�ni-
tions in earlier sections, we have increased the demands
on a learning algorithm (and have thus decreased the
strength of our assumption) in a number of important
ways. First, on those values of n for which a learning
algorithm \succeeds", it must succeed for every func-
tion in Sn. We have thus eliminated the assumption of
a distribution Pn. Second, the learning algorithm must

now actually �nd the target concept with arbitrarily
high con�dence. Third, the learning algorithm must
learn with a possibly large rate of noise in the labels.

We now briey discuss the status of this assump-
tion, which appears to be closely related to the prob-
lem of e�ciently decoding random linear codes, which
is a long-standing open problem. It is known that the
problem of �nding the parity function that minimizes
the number of disagreements with an input set of la-
beled examples is NP-hard [2] (and easy to show it is
MAX-SNP hard), and this optimization problem was
used by McEliece [10] as the core of a proposed public-
key cryptosystem with informal security arguments in
which the matrix of examples must be carefully cho-
sen. Our assumption appears to be somewhat stronger
than just the intractability of the optimization prob-
lem since we use an average-case setting; however, the
arguments given below suggest (but do not formally
prove) that our assumption may not be considerably
stronger. Recent results [7] provide some evidence in
favor of the parity assumption by proving that parity
functions cannot be learned using a certain class of sta-
tistical algorithms that include all known noise-tolerant
learning algorithms in the Valiant model.

Based on the (unproven) parity assumption, we now
propose a rather simple and natural pseudorandom bit
generator. Our generator is quite similar to a pro-
posed one-way function due to Goldreich, Krawczyk
and Luby [3], who then obtain a generator by running
the one-way function through a generic transformation.
Essentially, our contribution is to prove that the out-
put of this one-way function is already pseudorandom.
This stronger assertion is apparently already known to
some researchers in the cryptography community as a
\folk theorem".

For brevity, we will describe this generator and its
attendant theorem somewhat less formally than in pre-
vious sections; many of the ideas and arguments we use
should be familiar to the reader by now.

The input seed to the generator G will consist of
s(n) = n + m � n + H(�) � m random bits, regarded
as a block sf of n bits, followed by m blocks x1; : : : ; xm
of n bits each, followed by a block sr of H(�) �m bits.
Here m will be determined by the analysis, and H(�)
is the binary entropy of the noise rate � in the parity
assumption.

The block sf encodes a parity function fS 2 Sn; each
1 in sf indicates a variable included in the subset S. As
in our previous generator, x1; : : : ; xm are regarded as
inputs to fS . The new element in the seed is the block
sr , which intuitively encodes a longer noise vector: sr
is an H(�) �m-bit vector encoding an m-bit vector s0r,
where s0r has exactly b� �mc 1's. Such an encoding can
be shown to require sr to be of length only H(�) �m,
and this encoding can be done in a number of standard
ways. Thus, if we randomly choose sr among all H(�) �
m-bit vectors, then we randomly choose s0r from among
all m-bit vectors with exactly b� �mc 1's.

G thus works as follows: it �rst uses sf to obtain the
represented parity function fS . It then expands sr to
obtain s0r. It next computes f(x1); : : : ; f(xm), and for
each i lets `i = f(xi) if the ith bit of s0r is 0, and lets
`i = :f(xi) if the ith bit of s0r is 1. The output of G is
x1; : : : ; xm, followed by `1; : : : ; `m.
Thus, we may consider the output of G to be a noisy

sample of fS , but the number of noisy labels will be
exactly b� � mc, rather than determined by m ips of
a coin of bias � as in the parity assumption; this dis-
crepancy will be dealt with in the proof of the coming
theorem.
As for the expansion of G, it takes s(n) = n+m �n+

H(�) �m random bits as input, and outputs t(n) = m �
n+m bits, for expansion t(n)�s(n) = m(1�H(�))�n.
Thus we get expansion provided we choose m > (1=(1�
H(�))�n. Note that expansion becomes more di�cult as
� approaches the information-theoretic limit 1=2 (and
thusH(�) approaches 1). Thus the generator G achieves
expansion by exploiting the fact that the noise vector
can be compressed in the manner discussed above.

Theorem 6 Under the parity assumption, G is a pseu-
dorandom bit generator.

Proof: (Sketch) We only outline the main ideas. The
overall strategy is to show that the parity assumption in
fact implies the stronger assumption (let us call this the
strong parity assumption) that parity functions are not
even weakly predictable on average (in the presence of
noise rate �) with respect to the uniformdistribution Pn

over Sn and the uniform distribution Un over f0; 1gn.
The security of G can then be shown from arguments
similar to that for the general bit generator outlined
earlier. We must additionally show that the di�culty
of learning with noise rate � implies the di�culty of
learning when them examples requested by the learning
algorithm contain exactly b� �mc errors.
We show that the parity assumption implies the

strong parity assumption in three steps: �rst, we show
that performance on average in fact implies worst-case
performance; second, we show that the con�dence of the
weak prediction algorithm can be e�ciently ampli�ed
to any desired value 1��; and third, we show how given
a weak prediction algorithm, to e�ciently produce the
target parity function.
First, to see that performance on average with re-

spect to uniform Pn implies worst-case performance
over Sn, note that for any �xed parity function fS , if we
choose a subset of variables S0 � fx1; : : : ; xng at ran-
dom, then the function fS�S0 is uniformly distributed
in Sn. Furthermore, for any x 2 f0; 1gn, fS�S0 (x) =
fS(x)�fS0 (x) and so fS�S0(x)�fS0 (x) = fS(x). Thus,
we could weakly predict the value of any �xed fS on a
test input ~x by choosing S0 randomly, running the pre-
diction on average algorithm using (noisy) examples of
fS�S0 (which we can generate from (noisy) examples of
fS), then recovering the prediction for fS(~x) as indi-
cated.

Second, the con�dence of the weak prediction algo-
rithm (which we now may assume works for all func-
tions in Sn) can be e�ciently ampli�ed to any desired
value by the standard technique of repeated runs fol-
lowed by hypothesis testing using noisy examples.
Third, we use the weak prediction algorithm to �nd

the relevant variables of the unknown target function
fS (that is, we �nd S) as follows. To test if xi appears
in S, we run the weak prediction algorithm using the
noisy examples provided, but with xi always replaced
by a random bit rather than the one provided. There
are two cases.
In the �rst case, xi 62 S. In this case, the resulting

distribution we create on noisy examples is indistin-
guishable from the original distribution, and thus the
weak prediction algorithm will still do better than ran-
dom guessing. In the second case, xi 2 S. In this case,
in the resulting distribution we create on noisy exam-
ples, there is no correlation between the input and the
label (the noise does not a�ect this argument since it is
independent). Thus it is information-theoretically im-
possible to do better than random guessing.
We thus distinguish the two cases by testing the pre-

dictive performance of the weak prediction algorithm
against the noisy examples to determine if it is better
than random guessing or not, and thus whether xi is
relevant.
Finally, we must address the fact that our genera-

tor is always injecting a �xed fraction of label errors
rather than using a coin of bias �. Suppose that the
learning problem became easy provided that the noise
model always injected exactly b� � mc errors into any
sample of size m requested by the learning algorithm.
We could then run this \�xed-fraction" algorithmmany
times on its requested sample size m, where the m ex-
amples come from a source with probability � of noise
independently on each example. The probability that
exactly � � m labels are noisy is certainly
(1=m) re-
gardless of the value of �. So one of the runs of the
�xed-fraction algorithm must succeed with high prob-
ability, and we can determine which run by hypothesis
testing.

Acknowledgements

We are grateful to Russell Impagliazzo and Steven
Rudich for many insightful comments and suggestions
on this research.

References
[1] Dana Angluin and Michael Kharitonov. When won't mem-

bership queries help? In Proceedings of the Twenty-Third
Annual ACM Symposium on Theory of Computing, pages
444{454, May 1991.

[2] E. Berlekamp, R. McEliece, and H. van Tilborg. On the
inherent intractability of certain coding problems. IEEE
Transactions on Information Theory, 24, 1978.

[3] O. Goldreich, H. Krawczyk, and M. Luby. On the existence
of pseudorandom generators. In 29th Annual Symposium
on Foundations of Computer Science, pages 12{21, October
1988.

[4] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. How
to construct random functions. Journal of the ACM,
33(4):792{807, October 1986.

[5] R. Impagliazzo and L. Levin. No better ways to generate
hardNP instances than picking uniformlyat random. In 31st
Annual Symposium on Foundations of Computer Science,
October 1990.

[6] R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom
generation from one-way functions. In Proceedings of the
Twenty First Annual ACM Symposium on Theory of Com-
puting, May 1989.

[7] Michael Kearns. E�cient noise-tolerant learning from sta-
tistical queries. In Proceedings of the Twenty-Fifth Annual
ACM Symposium on the Theory of Computing, May 1993.

[8] Michael Kearns and Leslie G. Valiant. Cryptographic limita-
tions on learning Boolean formulae and �nite automata. In
Proceedings of the Twenty First Annual ACM Symposium
on Theory of Computing, pages 433{444, May 1989. To ap-
pear, Journal of the Association for Computing Machinery.

[9] M. Kharitonov. Cryptographic hardness of distribution-
speci�c learning. In Proceedings of the Twenty-Fifth Annual
ACM Symposium on the Theory of Computing, May 1993.

[10] R. J. McEliece. A Public-Key System Based on Algebraic
Coding Theory, pages 114{116. Jet Propulsion Lab, 1978.
DSN Progress Report 44.

[11] N. Nisan and A. Wigderson. Hardness vs. randomness. In
29th Annual Symposium on Foundations of Computer Sci-
ence, pages 2{12, October 1988.

[12] L. G. Valiant. A theory of the learnable. Communications

of the ACM, 27(11):1134{1142, November 1984.

[13] Andrew C. Yao. Theory and applications of trapdoor func-
tions. In 23rd Annual Symposium on Foundations of Com-
puter Science, pages 80{91, 1982.

5 Technical Appendix

There are several ways in which our de�nition of pre-
dictability on average departs from more standard
learning theory models such as Valiant's model [12].
For instance, as we have already discussed, we ease the
learning task by allowing an average-case rather than
worst-case choice of the target function. We also only
demand that the learning algorithm work for in�nitely
many values of n rather than all values of n. Further-
more, in our de�nition we fold the choice of a random
target function, a random labeled input sample and a
random test input into a single success probability for
the learning algorithm.
In contrast, a typical Valiant model variant might de-

mand the learning algorithm to succeed with high prob-
ability for all target functions and for all values of n.
Furthermore, success would be de�ned as producing a
hypothesis function with appropriately small predictive
error over the input distribution, as opposed to simply
passing a single random input test.
One �nal di�erence is that, for instance, for strong

learning we say that for each 1=q(n) allowed error rate
there exists an algorithm, rather than requiring an algo-
rithm for all error rates (and allowing time polynomial
in the inverse of the allowed error).
While some of the described di�erences between our

model and more standard models are largely cosmetic,
others seem to be forced on us by the assumptions and
properties required by cryptography. To clarify which
di�erences are super�cial and which are fundamental,

we now introduce another learning model that, while
retaining the aspects of our predictability on average
model that seem crucial for cryptography, appears more
similar to existing learning theory models.

De�nition 8 Let F be a class of boolean functions, P
a distribution ensemble over F , and D a distribution
ensemble over f0; 1g�. For any 0 < �; �; < 1 we say
that F is (�; �;)-predictable on average with respect
to P and D if there exists a polynomial time algorithm
M (taking a labeled sample hS; fi as input) and a poly-
nomial m(n) such that for in�nitely many n we have the
following property: with probability at least � over the
random draw of a target function f 2 Pn, there is prob-

ability at least � of drawing an input sample S 2 Dm(n)
n

such that the output of M , h = M (hS; fi), is a boolean
function satisfying Prx2D[f(x) 6= h(x)] � .

Thus, if in this de�nition we have �; � � 1 and � 0
then we ask that for an in�nite number of values of n,
for almost all functions (with respect to P) we almost
certainly �nd a hypothesis with very small error. Such
a learning criterion is very similar in spirit to that of
the Valiant model and its o�spring.
In the following simple lemma the �-predictability

model (which we �nd to be the most convenient to
use in the cryptographic setting) is related to the more
standard-looking (�; �;)-predictability.

Theorem 7 Let F be a class of boolean functions, P a
distribution ensemble over F , and D a distribution en-
semble over f0; 1g�. If F is �-predictable with respect to
P and D, then F is (1�2

p
�; 1��;

p
�)-predictable with

respect to P and D. Here 0 < � < 1 is an input, and the
resulting (1 � 2

p
�; 1 � �;

p
�)-prediction algorithm will

have a running time that is polynomial in 1=�, log 1=�
and the running time of the �-prediction algorithm.

Proof: (Sketch) Let M be the assumed �-prediction
algorithm. For any labeled sample hS; fi we can inter-
pret M as de�ning a function hhS;fi(x) = M (hS; fi; x).
From the fact that M is an �-prediction algorithm, the
probability of drawing an f and an S such that hhS;fi
has error larger than

p
� (with respect to f and D) is

at most
p
�. Similarly, if for each f , pf is the prob-

ability of drawing an S resulting in an hhS;fi of error

larger than
p
�, then the probability of drawing an f

such that pf exceeds 1� � is at most
p
�=(1� �) � 2

p
�.

This implies that F is (1� 2
p
�; �;

p
�)-predictable. We

can boost the sample con�dence parameter from � to
any desired value 1 � � by repeated runs of M along
with hypothesis testing.

