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Abstract

Recently, a number of authors have proposed treating dialogue systems as Markov
decision processes (MDPs). However, the practical application of MDP algorithms
to dialogue systems faces a number of severe technical challenges. We have built a
general software tool (RLDS, for Reinforcement Learning for Dialogue Systems)
based on the MDP framework, and have applied it to dialogue corpora gathered
from two dialogue systems built at AT&T Labs. Our experiments demonstrate that
RLDS holds promise as a tool for “browsing” and understanding correlations in
complex, temporally dependent dialogue corpora.

1 Introduction

Systems in which human users speak to a computer in order to achieve a goal are called
spoken dialogue systems. Such systems are some of the few realized examples of open-
ended, real-time, goal-oriented interaction between humans and computers, and are therefore
an important and exciting testbed for AI and machine learning research. Spoken dialogue
systems typically integrate many components, such as a speech recognizer, a database back-
end (since often the goal of the user is to retrieve information), and a dialogue strategy. In
this paper we are interested in the challenging problem of automatically inferring a good
dialogue strategy from dialogue corpora.

Research in dialogue strategy has been perhaps necessarily ad-hoc due to the open-ended
nature of dialogue system design. For example, a common and critical design choice is be-
tween a system that always prompts the user to select an utterance from fixed menus (system
initiative), and one that attempts to determine user intentions from unrestricted utterances
(mixed initiative). Typically a system is built that explores a few alternative strategies, this
system is tested, and conclusions are drawn regarding which of the tested strategies is best
for that domain [4, 6, 2]. This is a time-consuming process, and it is difficult to rigorously
compare and evaluate alternative systems in this fashion, much less design improved ones.

Recently, a number of authors have proposed treating dialogue design in the formalism of
Markov decision processes (MDPs)[1, 3, 6]. In this view, the population of users defines the
stochastic environment, a dialogue system’s actions are its (speech-synthesized) utterances
and database queries, and the state is represented by the entire dialogue so far. The goal is
to design a dialogue system that takes actions so as to maximize some measure of reward.
Viewed in this manner, it becomes possible, at least in principle, to apply the framework
and algorithms of reinforcement learning (RL) to find a good action-selection (i.e., dialogue)
strategy.

However, the practical application of RL algorithms to dialogue systems faces a number of



severe technical challenges. First, representing the dialogue state by the entire dialogue so
far is often neither feasible nor conceptually useful, and the so-called belief state approach
is not possible, since we do not even know what features are required to represent the belief
state. Second, there are many different choices for the reward function, even among systems
providing very similar services to users. Previous work [6] has largely dealt with these issues
by imposing a priori limitations on the features used to represent approximate state, and then
exploring just one of the potential reward measures.

In this paper, we further develop the MDP formalism for dialogue systems, in a way that does
not solve the difficulties above (indeed, there is no simple “solution” to them), but allows us
to attenuate and quantify them by permitting the investigation of different notions of approx-
imate state and reward. Using our expanded formalism, we give one of the first applications
of RL algorithms to real data collected from multiple dialogue systems. We have built a gen-
eral software tool (RLDS, for Reinforcement Learning for Dialogue Systems) based on our
framework, and applied it to dialogue corpora gathered from two dialogue systems built at
AT&T Labs, the TOOT system for voice retrieval of train schedule information [4] and the
ELVIS system for voice retrieval of electronic mail [6].

Our experiments demonstrate that RLDS holds promise not just as a tool for the end-to-end
automated synthesis of complicated dialogue systems from passive corpora — a “holy grail”
that we fall far short of here — but more immediately, as a tool for “browsing” and under-
standing correlations in complex, temporally dependent dialogue corpora. Such correlations
can point the way towards incremental but important improvements in existing systems.

2 The TOOT and ELVIS Spoken Dialogue Systems

The TOOT and ELVIS systems were implemented using a general-purpose platform devel-
oped at AT&T, combining a speaker-independent hidden Markov model speech recognizer,
a text-to-speech synthesizer, a telephone interface, and modules for specifying data-access
functions and dialogue strategies. In TOOT, the data source is the Amtrak train schedule web
site, while in ELVIS, it is the electronic mail spool of the user.

In a series of controlled experiments with human users, dialogue data was collected from
both systems, resulting in146 dialogues from TOOT and227 dialogues from ELVIS. The
TOOT experiments varied strategies for information presentation, confirmation (whether and
how to confirm user utterances) and initiative (system vs. mixed), while the ELVIS experi-
ments varied strategies for information presentation, for summarizing email folders, and ini-
tiative. Each resulting dialogue consists of a series of system and user utterances augmented
by observations derived from the user utterances and the internal state of the system. The
system’s utterances (actions) give requested information, ask for clarification, provide greet-
ings or instructions, and so on. The observations derived from the user’s utterance include
the speech-recognizer output, the corresponding log-likelihood score, the semantic labels as-
signed to the recognized utterances (such as the desired train departure and arrival cities in
TOOT, or whether the user prefers to hear their email ordered by date or sender in ELVIS);
indications of user barge-ins on system prompts; and many more. The observations derived
from the internal state include the grammar used by the speech recognizer during the turn,
and the results obtained from a query to the data source. In addition, each dialogue has an
associated survey completed by the user that asks a variety of questions relating to the user’s
experience. See [4, 6] for details.

3 Spoken Dialogue Systems and MDPs

Given the preceding discussion, it is natural to formally view a dialogue as a sequenced

d = (a1; ~o1; r1); (a2; ~o2; r2); : : : ; (at; ~ot; rt):



Hereai is the action taken by the system (typically a speech-synthesized utterance, and less
frequently, a database query) to start theith exchange (orturn, as we shall call it),~oi consists
of all the observations logged by the system on this turn, as discussed in the last section,
andri is the reward received on this turn. As an example, in TOOT a typical turn might
indicate that the actionai was a system utterance requesting the departure city, and the~oi
might indicate several observations: that the recognized utterance was “New York”, that the
log-likelihood of this recognition was�2:7, that there was another unrecognized utterance as
well, and so on. We will used[i] to denote the prefix ofd that ends following theith turn, and
d � (a; ~o; r) to denote the one-turn extension of dialogued by the turn(a; ~o; r). The scope of
the actionsai and observations~oi is determined by the implementation of the systems (e.g.
if some quantity was not logged by the system, we will not haveaccess to it in the~oi in the
data). Our experimental results will use rewards derived from the user satisfaction surveys
gathered for the TOOT and ELVIS data.

We may view any dialogued as a trajectory in a well-definedtrue MDP M . The states1

of M are all possible dialogues, and the actions are all the possible actions available to the
spoken dialogue system (utterances and database queries). Now from any state (dialogue)d
and actiona, the only possible next states (dialogues) are the one-turn extensionsd � (a; ~o; r).
The probabilityof transition fromd tod�(a; ~o; r) is exactly the probability, over the stochastic
ensemble of users, that~o andr would be generated following actiona in dialogued.

It is in general impractical to work directly onM due to the unlimited size of the state (di-
alogue) space. Furthermore,M is not known in advance and would have to be estimated
from dialogue corpora. We would thus like to permit a flexible notion ofapproximatestates.
We definestate estimatorse to be a mapping from any dialogued into some spaceS. For
example, a simple state estimator for TOOT might represent the dialogue state with boolean
variables indicating whether certain pieces of information had yet been obtained from the
user (departure and arrival cities, and so on), and a continuous variable tracking the average
log-likelihood of the recognized utterances so far. Thense(d) would be a vector represent-
ing these quantities for the dialogued. Once we have chosen a state estimatorse, we can
transform the dialogued into anS-trajectory, starting from the initial empty states0 2 S:

s0 !a1 se(d[1])!a2 se(d[2])!a3 � � � !at se(d[t])

where the notation!ai
se(d[i]) indicates a transition tose(d[i]) 2 S following action

ai. Given a set of dialoguesd1; : : : ; dn, we can construct theempiricalMDP M̂se. The state
space ofM̂se isS, the actions are the same as inM , and the probability of transition froms to
s0 under actiona is exactly the empirical probability of such a transition in theS-trajectories
obtained fromd1; : : : ; dn. Note that we can build̂Mse from dialogue corpora, solve for its
optimal policy, and analyze the resulting value function.

The point is that by choosingse carefully, we hope that the empirical MDP̂Mse will be a
good approximation ofM . By this we mean that̂Mse renders dialogues (approximately)
Markovian: the probability inM of transition from any dialogued to any one-turn extension
d � (a; ~o; r) is (approximately) the probability of transition fromse(d) to se(d � (a; ~o; r)) in
M̂se. We hope to find state estimatorsse which render dialogues approximately Markovian,
but for which the amount of data and computation required to find good policies inM̂se will
be greatly reduced compared to working directly in dialogue space.

While conceptually appealing, this approach is subject to at least three important caveats:
First, the approach is theoretically justified only to the extent that the chosen state estima-
tor renders dialogues Markovian. In practice, we hope that the approach is robust, in that
“small” violations of the Markov property will still produce useful results. Second, while

1These are not to be confused with the internal states of the spoken dialogue system(s) during the
dialogue, which in our view merely contribute observations.



state estimators violating the Markov property may lead to meaningful insights, they can-
not be directly compared. For instance, if the optimal value function derived from one state
estimator is larger than the optimal value function for another state estimator, wecannotnec-
essarily conclude that the first is better than the second. (This can be demonstrated formally.)
Third, even with a Markovian state estimatorse, data that is sparse with respect tose limits
the conclusions we can draw; in a large spaceS, certain states may be so infrequently visited
in the dialogue corpora that we can say nothing about the optimal policy or value function
there.

4 The RLDS System

We have implemented a software tool (written in C) called RLDS that realizes the above
formalism. RLDS users specify an input file of sample dialogues; the dialogues include the
rewards received at each turn. Users also specify input files definingS and a state estimator
se. The system has command-line options that specify the discount factor to be used, and
a lower bound on the number of times a states 2 S must be visited in order for it to be
included in the empirical MDP̂Mse (to control overfitting to sparse data). Given these inputs
and options, RLDS converts the dialogues intoS-trajectories, as discussed above. It then
uses these trajectories to compute the empirical MDPM̂se specified by the data — that is,
the data is used to compute next-state distributions and average reward in the obvious way.
States with too few visits are pruned from̂Mse. RLDS then uses the standard value iteration
algorithm to compute the optimal policy and value function [5] forM̂se, all using the chosen
discount factor.

5 Experimental Results

The goal of the experiments reported below is twofold: first, to confirm that our RLDS
methodology and software produce intuitively sensible policies; and second, to use the value
functions computed by the RLDS software to discover and understand correlations between
dialogue properties and performance. We have space to present only a few of our many
experiments on TOOT and ELVIS data.

Each experiment reported below involves choosing a state estimator, running RLDS using
either the TOOT or ELVIS data, and then analyzing the resulting policy and value function.
For the TOOT experiments, the reward function was obtained from a question in the user
satisfaction survey: the last turn in a dialogue receives a reward of+1 if the user indicated
that they would use the system again, a reward of0 if the user answered “maybe”, and a
reward of�1 if the user indicated that they would not use the system again. All turns other
than the last receive reward0 (i.e., a reward is received only at the end of a dialogue). For
the ELVIS experiments, we used a summed (over several questions) user-satisfaction score
to reward the last turn in each dialogue (this score ranges between8 and40).

Experiment 1 (A Sensible Policy):In this initial “sanity check” experiment, we created a
state estimator for TOOT whose boolean state variables track whether the system knows the
value for the following five informational attributes: arrival city (denoted AC), departure city
(DC), departure date (DD), departure hour (DH), and whether the hour is AM or PM (AP)2.
Thus, if the dialogue so far includes a turn in which TOOT prompts the user for their depar-
ture city, and the speech recognizer matches the user utterance with “New York”, the boolean
state variable GotDC? would be assigned a value of 1. Note that this ignores the actual values
of the attributes. In addition, there is another boolean variable called ConfirmedAll? that is
set to 1 if and only if the system took action ConfirmAll (which prompts the user to explicitly
verify the attribute values perceived by TOOT) and perceived a “yes” utterance in response.
Thus, the state vector is simply the binary vector

2Remember that TOOT can only track itsperceptionsof these attributes, since errors may have
occurred in speech recognition.



[ GotAC? , GotAP? , GotDC? , GotDD? , GotDH? , ConfirmedAll? ]

Among the actions (the system utterances) available to TOOT are prompts to the user to
specify values for these informational attributes; we shall denote these actions with labels
AskDC, AskAC, AskDD, AskDH, and AskAP. The system takes several other actions that
we shall mention as they arise in our results.

The result of running RLDS was the following policy, where we have indicated the action to
be taken from each state:
[0,0,0,0,0,0]: SayGreeting [1,0,0,0,0,0]: AskDC [1,0,1,0,0,0]: AskAP
[1,0,1,1,0,0]: AskDH [0,0,0,1,1,0]: AskAP [1,0,0,1,1,0]: AskAP
[0,1,0,1,1,0]: AskAll [1,1,0,1,1,0]: AskAll [1,0,1,1,1,0]: AskAP
[1,1,1,1,1,0]: ConfirmAll [1,1,1,1,1,1]: Close

Thus, RLDS finds a sensible policy, always asking the user for information which it has not
already received, confirming the user’s choices when it has all the necessary information, and
then presenting the closest matching train schedule and closing the dialogue (action Close).
Note that in some cases it chooses to ask the user for values for all the informational attributes
even though it has values for some of them. It is important to emphasize that this policy was
derived purely through the application of RLDS to the dialogue data, without any knowledge
of the “goal” of the system. Furthermore, the TOOT data is such that the empirical MDP
built by RLDS for this state estimator does include actions considerably less reasonable than
those chosen above from many states. Examples include confirming the values of specific
informational attributes such as DC (since we do not represent whether such confirmations
were successful, this action would lead to infinite loops of confirmation), and requesting
values for informational attributes for which we already have values (such actions appear
in the empirical MDP due to speech recognition errors). The mere fact that RLDS was
driven to a sensible policy that avoided these available pitfalls indicates a correlation between
the chosen reward measure (whether the user would use the system again) and the intuitive
system goal of obtaining a completely specified train trip. It is interesting to note that RLDS
finds it better to confirm values for all5 attributes when it has them, as opposed to simply
closing the dialogue without confirmation.

In a similar experiment on ELVIS, RLDS again found a sensible policy that summarizes the
user’s inbox at the beginning of the dialogue, goes on to read the relevant e-mail messages
until done, and then closes.
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Figure 1: a) Role of Confirmation. b) Role of Distress Features (indicators that the dialogue is in
trouble). See description of Experiments2 and3 respectively in the text for details.

Experiment 2 (Role of Confirmation): Here we explore the effect of confirming with the
user the values that TOOT perceives for the informational attributes — that is, whether the



trade-off between the increased confidence in the utterance and the potential annoyance to
the user balances out in favor of confirmation or not (for the particular reward function we
are using). To do so, we created a simple state estimator with just two state variables. The
first variable counts the number of the informational attributes (DC, AC, etc.) that TOOT
believes it has obtained, while the second variable counts the number of these that have been
confirmed with the user. Figure 1(a) presents the optimal value as a function of the number of
attributes confirmed. Each curve in the plot corresponds to a different setting of the first state
variable. For instance, the curve labeled with “I=3” corresponds to the states where the sys-
tem has obtained 3 informational attributes. We can make two interesting observations from
this figure. First, the value function grows roughly linearly with the number of confirmed
attributes. Second, and perhaps more startlingly, the value function has only a weak depen-
dence on the first feature — the value for states when some number of attributes have been
confirmedseems independent of how many attributes (the system believes) have beenob-
tained. This is evident from the lack of separation between the plots for varying values of the
state variable I. In other words, our simple (and preliminary) analysis suggests that for our
reward measure, confirmed information influences the value function much more strongly
than unconfirmed information. We also repeated this experiment replacing attribute confir-
mation with thresholded speech recognition log-likelihood scores, and obtained qualitatively
similar results.

Experiment 3 (Role of Distress Features):Dialogues often contain timeouts (user silence
when system expected response), resets (user asks for current context of dialogue to be aban-
doned and the system is reinitialized), user requests for help, and other indicators that the
dialogue is potentially in trouble. Do such events correlate with low value? We created a
state estimator for TOOT that, in addition to our variable I counting informational attributes,
counted the number of such distress events in the dialogue. Figure 1(b) presents the optimal
value as a function of the number of attributes obtained. Each curve corresponds to a differ-
ent number of distress features. This figure confirms that the value of the dialogue is lower
for states with a higher number of distress features.
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Figure 2:a) Role of Dialogue Length in TOOT. b) Role of Dialogue Length in ELVIS. See description
of Experiment 4 in the text for details.

Experiment 4 (Role of the Dialogue Length):All other things being equal (e.g. extent of
task completion), do users prefer shorter dialogues? To examine this question, we created a
state estimator for TOOT that counts the number of informational attributes obtained (vari-
able I as in Experiment 2), and a state estimator for ELVIS that measures “task progress”
(a measure analogous to the variable I for TOOT; details omitted). In both cases, a second
variable tracks the length of the dialogue.



Figure 2(a) presents the results for TOOT. It plots the optimal value as a function of the
number I of informational values; each curve corresponds to a different range of dialogue
lengths. It is immediately apparent that the longer the dialogue, the lower the value, and
that within the same length of dialogue it is better to have obtained more attributes3. Of
course, the effect of obtaining more attributes is weak for the longest dialogue length; these
are dialogues in which the user is struggling with the system, usually due to multiple speech
recognition errors.

Figure 2(b) presents the results for ELVIS from a different perspective. The dialogue length
is now the x-axis, while each curve corresponds to a different value of P (task progress). It is
immediately apparent that the value increases with task progress. More interestingly, unlike
TOOT, there seems to be an “optimal” or appropriate dialogue length foreach level of task
progress, as seen in the inverse U-shaped curves.

Experiment 5 (Role of Initiative): One of the important questions in dialogue theory is how
to choose between system and mixed initiative strategies (cf. Section 1). Using our approach
on both TOOT and ELVIS data, we were able to confirm previous results [4, 6] showing that
system initiative has a higher value than mixed initiative.

Experiment 6 (Role of Reward Functions): To test the robustness of our framework, we
repeated Experiments1–4 for TOOT using a new reward function based on the user’s per-
ceived task completion. We found that except for a weaker correlation between number of
turns and value function, the results were basically the same across the two reward functions.

6 Conclusion

This paper presents a new RL-based framework for spoken dialogue systems. Using our
framework, we developed RLDS, a general-purpose software tool, and used it for empirical
studies on two sets of real dialogues gathered from the TOOT and ELVIS systems. Our
results showed that RLDS was able to find sensible policies, that in ELVIS there was an
“optimal” length of dialogue, that in TOOT confirmation of attributes was highly correlated
with value, that system initiative led to greater user satisfaction than mixed initiative, and
that the results were robust to changes in the reward function.
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