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Abstract
The dialogue strategies used by a spoken di-
alogue system strongly influence performance
and user satisfaction. An ideal system would
not use a single fixed strategy, but wouldadapt
to the circumstances at hand. To do so, a sys-
tem must be able to identify dialogue proper-
ties that suggest adaptation. This paper focuses
on identifying situations where the speech rec-
ognizer is performing poorly. We adopt a
machine-learning approach to learn rules from
a dialogue corpus for identifying these situa-
tions. Our results show a significant improve-
ment over the baseline and illustrate that quan-
titative, qualitative and acoustic features all ef-
fect the learner's performance.

1 Introduction
Builders of spoken dialogue systems face a
number of fundamental design choices that
strongly influence both performance and user
satisfaction. Examples include choices be-
tween user, system, or mixed initiative, and be-
tween explicit and implicit confirmation of user
commands. An ideal system wouldn' t make
such choicesa priori, but rather wouldadapt
to the circumstances at hand. For instance, a
system detecting that a user is repeatedly un-
certain about what to say might move from user
to system initiative, and a system detecting that
speech recognition performance is poor might
switch to a dialogue strategy with more explicit
prompting, an explicit confirmation mode, or
keyboard input mode. Any of these adapta-
tions might have been appropriate in dialogue
D1 from the Annie system (Kamm et al., 1998),
in Figure 1.

In order to improve performance through

such adaptation, a system must first be able
to identify, in real time, salient properties of
an ongoing dialogue that call for some use-
ful change in system strategy. In other words,
adaptive systems should try toautomatically
identify actionableproperties of ongoing dia-
logues.

Previous work has shown that speech recog-
nition performance is an important predictor
of user satisfaction, and that changes in dia-
logue behavior impact speech recognition per-
formance (Walker et al., 1998; Litman et al.,
1998; Kamm et al., 1998). Therefore, in this
work, we focus on the task of automatically
detecting poor speech recognition performance
in several spoken dialogue systems at AT&T
Labs. Rather than hand-crafting rules that clas-
sify speech recognition performance in an on-
going dialogue, we take a machine-learning ap-
proach. We begin with a collection of system
logs from actual dialogues that were labeled
by humans as having had “good” or “bad”
speech recognition (the training set). We then
apply standard machine-learning algorithms to
this training set in the hope of discovering, in
a principled manner, classifiers that can auto-
matically detect poor speech recognition during
novel dialogues.

In order to train such classifiers, we must
provide them with a number of salient prop-
erties or “features” of dialogues derived from
the system logs that might allow the system to
automatically identify poor recognition perfor-
mance. In addition to identifying features that
provide the best quantitative solutions, we are
also interested in comparing the performance of
classifiers derived solely from “acoustic” fea-
tures or from “high-level” dialogue features



Actual Dialogue ASR Interpretation ASR Confidence
A1: Annie here.
U1: Hello Annie, could you give me the information on a meeting I have tomorrow? REJECT -4.84
A2: What was that?
U2: I need to find out uh, a meeting time and place. Kim sent me a message on it. REJECT -4.20
A3: For all options say help me out.
U3: Help me out. REJECT -6.35
A4: Annie here.
U4: Help. help -1.74
A5: Help. Say call or say send a message, followed by a label or a number.

Or say get my messages...
U5: Get messages.(user interrupts A5) get me sips -3.33
A6: Speech and Image Processing Lab.
U6: Help help -1.78
A7: Help. Say the first and last name ...
U7: Kim. annie -3.81

. . .

Figure 1: Example dialogue excerpt D1 with Annie.

Since the dialogue systems we examine use
automatic speech recognition (ASR), one ob-
vious feature available in the system log is a
per-utterance score from the speech recognizer
representing its “confidence” in its interpreta-
tion of the user's utterance (Zeljkovic, 1996).
For dialogue D1, the recognizer's output and
the associated confidence scores are in the last
two columns of Figure 1. These confidence
measures are based solely on acoustic infor-
mation and are typically used by the dialogue
manager to decide whether it believes it has
correctly understood the user's utterance. Note
that since our classification problem is defined
by speech recognition performance, it might be
argued that this confidence feature (or features
derived from it) suffices for accurate classifica-
tion.

However, an examination of the transcript in
D1 suggests that other useful features might be
derived from global or high-level properties of
the dialogue history, such as features represent-
ing the system's repeated use of diagnostic er-
ror messages (utterances A2 and A3), or the
user's repeated requests for help (utterances U4
and U6).

Although the work presented here focuses
exclusively on the problem of automatically
detectingpoor speech recognition, a solution
to this problem clearly suggests systemreac-
tion, such as the strategy changes mentioned
above. In this paper, we report on our initial ex-
periments, with particular attention paid to the
problem definition and methodology, the best

performance we obtain via a machine-learning
approach, and the performance differences be-
tween classifiers based on acoustic and higher-
level dialogue features.

2 Systems, Data, Methods
This section describes experiments that use
the machine learning programRIPPER(Cohen,
1996) to automatically induce a “poor speech
recognition performance” classification model
from a corpus of spoken dialogues. Our cor-
pus consists of a set of 544 dialogues (over
40 hours of speech) between humans and one
of three dialogue systems:ANNIE (Kamm et
al., 1998), an agent for voice dialing and mes-
saging;ELVIS (Walker et al., 1998), an agent
for accessing email; andTOOT (Litman et
al., 1998), an agent for accessing online train
schedules. Each agent was implemented us-
ing a general-purpose platform for phone-based
spoken dialogue systems (Kamm et al., 1997).
The dialogues were obtained in controlled ex-
periments designed to evaluate dialogue strate-
gies for each agent. The experiments required
users to complete a set of application tasks
in conversations with a particular version of
the agent. The experiments resulted in both a
digitized recording and an automatically pro-
duced system log for each dialogue. In addi-
tion, each user utterance was manually labeled
as to whether it had been semantically misrec-
ognized, by listening to the recordings while
examining the system log. If the recognizer's
output did not correctly capture the task-related



information in the utterance, it was labeled as a
misrecognition. The dialogue recordings, sys-
tem logs, and utterance labelings were pro-
duced independently of the machine-learning
experiments described here.

RIPPER (like other learning programs, e.g.,
C5.0 andCART) takes as input the names of a
set ofclassesto be learned, the names and pos-
sible values of a fixed set offeatures, training
dataspecifying the class and feature values for
each example in a training set, and outputs a
classification modelfor predicting the class of
future examples. InRIPPER, the classification
model is learned using greedy search guided by
an information gain metric, and is expressed as
an ordered set of if-then rules.

Our corpus is used to construct the machine-
learning inputs as follows. Each dialogue is as-
signed a class of eithergoodor bad, by thresh-
olding on the percentage of user utterances that
are labeled as ASR misrecognitions. We use a
threshold of 11% to balance the classes in our
corpus.

Our classes thus reflectrelative goodness
with respect to a corpus. Our threshold yields
283 good and 261 bad dialogues. Dialogue D1
in Figure 1 would be classified as “bad”, be-
cause U5 and U7 (29% of the user utterances)
are misrecognized.

Each dialogue is represented in terms of the
23 features in Figure 2. InRIPPER, feature
values are continuous (numeric), set-valued,
or symbolic. Feature values are automati-
cally computed from system logs, based on
five knowledge sources: acoustic, dialogue ef-
ficiency, dialogue quality, experimental vari-
ables, and lexical. Previous work correlating
misrecognition rate with acoustic information,
as well as our own hypotheses about the rele-
vance of other types of knowledge, contributed
to our features.

The acoustic, dialogue efficiency, and dia-
logue quality features are all numeric-valued.
The acoustic features are computed from each
utterance's confidence (log-likelihood) scores
(Zeljkovic, 1996).Mean confidencerepresents
the average log-likelihood score for utterances
not rejected during ASR. The fourpmisrecs%
(predicted percentage of misrecognitions) fea-
tures represent different (coarse) approxima-

� Acoustic Features

– mean confidence, pmisrecs%1, pmisrecs%2, pmis-
recs%3, pmisrecs%4

� Dialogue Efficiency Features

– elapsed time, system turns, user turns

� Dialogue Quality Features

– rejections, timeouts, helps, cancels, bargeins (raw)

– rejection%, timeout%, help%, cancel%, bargein% (nor-
malized)

� Experimental Variable Features

– system, user, task, condition

� Lexical Features

– ASR text

Figure 2: Features for spoken dialogues.

tions to thedistributionof log-likelihood scores
in the dialogue. Eachpmisrecs%feature uses
a fixed threshold value to predict whether a
non-rejected utterance is actually a misrecog-
nition, then computes the percentage of user ut-
terances that correspond to thesepredictedmis-
recognitions. (Recall that our dialogue classi-
fications were determined by thresholding on
the percentage ofactualmisrecognitions.) For
instance,pmisrecs%1predicts that if a non-
rejected utterance has a confidence score be-
low �2 then it is a misrecognition. The four
thresholds used for the fourpmisrecs%features
are�2;�3;�4;�5, and were chosen by hand
from the entire dataset to be informative.

The dialogue efficiency features include
elapsed time(the dialogue length in seconds),
andsystem turnsanduser turns(the number of
turns for each dialogue participant).

The dialogue quality features assess the nat-
uralness of the dialogue.Rejectionsrepresents
the times that the system plays special rejec-
tion prompts, e.g., utterances A2 and A3 in
dialogue D1. This occurs whenever the ASR
confidence score falls below a threshold asso-
ciated with the ASR grammar for each sys-
tem state (where the threshold was chosen by
the system designer). Therejections feature
differs from thepmisrecs%features in several



ways. First, thepmisrecs%thresholds are used
to determine misrecognitions rather than rejec-
tions. Second, thepmisrecs%thresholds are
fixed across all dialogues and are not depen-
dent on system state. Third, a system rejection
event directly influences the dialogue via the re-
jection prompt, while thepmisrecs%thresholds
have no corresponding behavior.

Timeoutsrepresents the times that the system
plays special timeout prompts because the user
hasn' t responded.Helpsrepresents the number
of times that the system responds to a user re-
quest with a (context-sensitive) help message.
Cancelsrepresents the user's requests to undo
the system's previous action.Bargeinsrepre-
sents the number of user attempts to interrupt
the system while it is speaking.1 In addition to
raw counts, each feature is represented in nor-
malized form by expressing the feature as a per-
centage. For example,rejection% represents
the number of rejected user utterances divided
by the total number of user utterances.

The experimental variable features each have
a different set of user-defined symbolic values.
For example, the value of the featuresystemis
either “annie”, “elvis”, or “toot”. These fea-
tures capture the conditions under which the di-
alogue was collected.

The lexical featureASR textis set-valued,
and represents the transcript of the user's utter-
ances as output by the ASR component.

The final input for learning is training data,
i.e., a representation of a set of dialogues in
terms of feature and class values. In order to
induce classification rules from a variety of fea-
ture representations our training data is rep-
resented differently in different experiments.
Our learning experiments can be roughly cat-
egorized as follows. First, examples are rep-
resented using all of the features in Figure 2
(to evaluate the optimal level of performance).
Figure 3 shows how Dialogue D1 from Fig-
ure 1 is represented using all 23 features. Next,
examples are represented using only the fea-
tures in a single knowledge source (to com-
paratively evaluate the utility of each knowl-
edge source for classification), as well as using
features from two or more knowledge sources

1This feature was hand-labeled.

(to gain insight into the interactions between
knowledge sources). Finally, examples are rep-
resented using feature sets corresponding to hy-
potheses in the literature (to empirically test
theoretically motivated proposals).

The output of each machine-learning experi-
ment is a classification model learned from the
training data. To evaluate these results, the er-
ror rates of the learned classification models
are estimated using the resampling method of
cross-validation(Weiss and Kulikowski, 1991).
In 25-fold cross-validation, the total set of ex-
amples is randomly divided into 25 disjoint test
sets, and 25 runs of the learning program are
performed. Thus, each run uses the examples
not in the test set for training and the remaining
examples for testing. An estimated error rate
is obtained by averaging the error rate on the
testing portion of the data from each of the 25
runs.

3 Results
Figure 4 summarizes our experimental re-
sults. For each feature set, we report accu-
racy rates and standard errors resulting from
cross-validation.2 It is clear that performance
depends on the features that the classifier has
available. TheBASELINE accuracy rate results
from simply choosing the majority class, which
in this case means predicting that the dialogue
is always “good”. This leads to a 52%BASE-
LINE accuracy.

The REJECTION% accuracy rates arise from
a classifier that has access to the percentage
of dialogue utterances in which the system
played a rejection message to the user. Previ-
ous research suggests that this acoustic feature
predicts misrecognitions because users modify
their pronunciation in response to system rejec-
tion messages in such a way as to lead to fur-
ther misunderstandings (Shriberg et al., 1992;
Levow, 1998). However, despite our expec-
tations, theREJECTION% accuracy rate is not
better than theBASELINE.

Using the EFFICIENCY features does im-
prove the performance of the classifier signif-

2Accuracy rates are statistically significantly differ-
ent when the accuracies plus or minus twice the standard
error do not overlap (Cohen, 1995), p. 134.



mean confidence pmisrecs%1 pmisrecs%2 pmisrecs%3 pmisrecs%4 elapsed time system turns user turns
-2.7 29 29 0 0 300 7 7
rejections timeouts helps cancels bargeins rejection% timeout% help%
3 0 2 0 1 43 0 29
cancel% bargein% system user task condition
0 14 annie mike day1 novices without tutorial
ASR text
REJECT REJECT REJECT help get me sips help annie

Figure 3: Feature representation of dialogue D1.

Features Used Accuracy (Standard Error)
BASELINE 52%

REJECTION% 54.5 % (2.0)
EFFICIENCY 61.0 % (2.2)

EXPERIMENT VARS 65.5 % (2.2)
DIALOGUE QUALITY (NORMALIZED) 65.9 % (1.9)

MEAN CONFIDENCE 68.4 % (2.0)
EFFICIENCY + NORMALIZED QUALITY 69.7 % (1.9)

LEXICAL 72.0 % (1.7)
BEST ACOUSTIC 72.6 % (2.0)

EFFICIENCY + QUALITY + EXPERIMENT VARS 73.4 % (1.9)
ALL FEATURES 77.4 % (2.2)

Figure 4: Accuracy rates for dialogue classifiers using different feature sets, 25-fold cross-
validation on 544 dialogues.

icantly above theBASELINE (61%). These fea-
tures, however, tend to reflect the particular ex-
perimental tasks that the users were doing.

The EXPERIMENT VARS(experimental vari-
ables) features are even more specific to this
dialogue corpus than the efficiency features:
these features consist of the name of the sys-
tem, the experimental subject, the experimen-
tal task, and the experimental condition (dia-
logue strategy or user expertise). This infor-
mation alone allows the classifier to substan-
tially improve over theBASELINE classifier, by
identifying particular experimental conditions
(mixed initiative dialogue strategy, or novice
users without tutorial) or systems that were run
with particularly hard tasks (TOOT) with bad di-
alogues. Since these features are specific to this
corpus, we wouldn' t expect them to generalize.

The normalizedDIALOGUE QUALITY fea-
tures result in a similar improvement in per-
formance (65.9%).3 However, unlike the effi-
ciency and experimental variables features, the

3The normalized versions of the quality features did
better than the raw versions.

normalization of the dialogue quality features
by dialogue length means that rules learned on
the basis of these features are more likely to
generalize to other systems.

if (cancel%� 6) then bad
if (elapsed time� 282 secs)̂ (rejection%� 6) then bad
if (elapsed time� 90 secs)then bad
default isgood

Figure 5:EFFICIENCY + NORMALIZED QUAL-
ITY rules.

Adding the efficiency and normalized quality
feature sets together (EFFICIENCY + NORMAL-
IZED QUALITY ) results in a significant perfor-
mance improvement (69.7%) overEFFICIENCY
alone. Figure 5 shows that this results in a clas-
sifier with three rules: one based on quality
alone (percentage of cancellations), one based
on efficiency alone (elapsed time), and one that
consists of a boolean combination of efficiency
and quality features (elapsed time and percent-
age of rejections). The learned ruleset says that
if the percentage of cancellations is greater than



6%, classify the dialogue asbad; if the elapsed
time is greater than 282 seconds, and the per-
centage of rejections is greater than 6%, clas-
sify it asbad; if the elapsed time is less than 90
seconds, classify it asbad4; otherwise classify
it as good. When multiple rules are applica-
ble, RIPPER applies a conflict resolution strat-
egy; when no rules are applicable, the default
is used.

We discussed our acousticREJECTION% re-
sults above, based on using the rejection thresh-
olds that each system was actually run with.
However, a posthoc analysis of our experimen-
tal data showed that our systems could have re-
jected substantially more misrecognitions with
a rejection threshold that was lower than the
thresholds picked by the system designers. (Of
course, changing the thresholds in this way
would have also increased the number of rejec-
tions ofcorrect ASR outputs.) Recall that the
PMISRECS% experiments explored the use of
different thresholds to predict misrecognitions.
The best of these results is given in Figure 4
as BEST ACOUSTIC accuracy (72.6%). This
classifier learned that if the predicted percent-
age of misrecognitions using the threshold for
that feature was greater than 8%, then the dia-
logue was predicted to be bad, otherwise it was
good. This classifier performs significantly bet-
ter than theBASELINE, REJECTION% andEF-
FICIENCY classifiers.

Similarly, MEAN CONFIDENCE is another
acoustic feature, which averages confidence
scores over all the non-rejected utterances in
a dialogue. Since this feature is not tuned to
the applications, we did not expect it to per-
form as well as the bestPMISRECS% feature.
However, the accuracy rate for theMEAN CON-
FIDENCE classifier (68.4%) is not statistically
different than that for theBEST ACOUSTICclas-
sifier. Furthermore, since the feature does not
rely on picking an optimal threshold, it could be
expected to better generalize to new dialogue
situations.

The classifier trained on (noisy) ASR lexi-

4This rule indicates dialogues too short for the user
to have completed the task. Note that this rule could not
be applied to adapting the system's behavior during the
course of the dialogue.

cal output (LEXICAL ) has access only to the
speech recognizer's interpretation of the user's
utterances. TheLEXICAL classifier achieves
72% accuracy, which is significantly better than
theBASELINE, REJECTION% andEFFICIENCY
classifiers. Figure 6 shows the rules learned
from the lexical features alone. The rules in-
clude lexical items that clearly indicate that a
user is having trouble e.g.help and cancel.
They also include lexical items that identify
particular tasks for particular systems, e.g. the
lexical itemp-m identifies a task inTOOT.

if (ASR text containscancel ) then bad
if (ASR text containsthe ) ^ (ASR text containsget ) ^ (ASR text
containsTIMEOUT) then bad
if (ASR text containstoday ) ^ (ASR text containson) then bad
if (ASR text containsthe ) ^ (ASR text containsp-m) then bad
if (ASR text containsto ) then bad
if (ASR text containshelp ) ^ (ASR text containsthe ) ^ (ASR text
containsread ) then bad
if (ASR text containshelp ) ^ (ASR text containsprevious ) then
bad
if (ASR text containsabout ) then bad
if (ASR text containschange-strategy ) then bad
default isgood

Figure 6:LEXICAL rules.

if (cancel%� 4)^ (system = toot)then bad
if (system turns� 26)^ (rejection%� 5 ) then bad
if (condition = mixed)̂ (user turns� 12 ) then bad
if (system = toot)̂ (user turns� 14 ) then bad
if (cancels� 1)^ (timeout%� 11 ) then bad
if (elapsed time� 87 secs)then bad
default isgood

Figure 7:EFFICIENCY + QUALITY + EXPERI-
MENTAL VARS rules.

Note that the performance of many of the
classifiers is statistically indistinguishable, e.g.
the performance of theLEXICAL classifier is
virtually identical to theBEST ACOUSTICclas-
sifier and theEFFICIENCY + QUALITY + EX-
PERIMENTAL VARS classifier. The similarity
between the accuracies for a range of classifiers
suggests that the information provided by dif-
ferent feature sets is redundant. As discussed
above, each system and experimental condi-
tion resulted in dialogues that contained lexical
items that were unique to it, making it possi-
ble to identify experimental conditions from the
lexical items alone. Figure 7 shows the rules



that RIPPER learned when it had access to all
the features except for the lexical and acoustic
features. In this case,RIPPERlearns some rules
that are specific to theTOOT system.

Finally, the last row of Figure 4 suggests
that a classifier that has access toALL FEA -
TURES may do better (77.4% accuracy) than
those classifiers that have access to acoustic
features only (72.6%) or to lexical features only
(72%). Although these differences are not sta-
tistically significant, they show a trend (p<
.08). This supports the conclusion that dif-
ferent feature sets provide redundant informa-
tion, and could be substituted for each other to
achieve the same performance. However, the
ALL FEATURES classifier does perform signifi-
cantly better than theEXPERIMENT VARS, DIA -
LOGUE QUALITY (NORMALIZED), andMEAN
CONFIDENCE classifiers. Figure 8 shows the
decision rules that theALL FEATURES classifier
learns. Interestingly, this classifier does not find
the features based on experimental variables to
be good predictors when it has other features to
choose from. Rather it combines features rep-
resenting acoustic, efficiency, dialogue quality
and lexical information.

if (mean confidence� -2.2)^ (pmisrecs%4� 6 ) then bad
if (pmisrecs%3� 7 )^ (ASR text containsyes ) ^ (mean confidence
� -1.9) then bad
if (cancel%� 4) then bad
if (system turns� 29 )^ (ASR text containsmessage ) then bad
if (elapsed time� 90) then bad
default isgood

Figure 8:ALL FEATURES rules.

4 Discussion
The experiments presented here establish sev-
eral findings. First, it is possible to give
an objective definition for poor speech recog-
nition at the dialogue level, and to apply
machine-learning to build classifiers detecting
poor recognition solely from features of the
system log. Second, with appropriate sets of
features, these classifiers significantly outper-
form the baseline percentage of the majority
class. Third, the comparable performance of
classifiers constructed from rather different fea-
ture sets (such as acoustic and lexical features)

suggest that there is some redundancy between
these feature sets (at least with respect to the
task). Fourth, the fact that the best estimated
accuracy was achieved using all of the features
suggests that even problems that seem “inher-
ently” acoustic may best be solved by exploit-
ing “higher-level” information.

This work also differs from previous work in
focusing on behavior at the (sub)dialogue level,
rather than on identifying single misrecog-
nitions at the utterance level (Smith, 1998;
Levow, 1998; van Zanten, 1998). The ratio-
nale is that a single misrecognition may not
warrant a global change in dialogue strategy,
whereas a user's repeated problems commu-
nicating with the system might warrant such
a change. In addition, while (Levow, 1998)
applied machine-learning to identifying single
misrecognitions, we are not aware of any other
work that has applied machine-learning to de-
tecting patterns suggesting that the user is hav-
ing problems over the course of a dialogue.

We are interested in the extension and gen-
eralization of these findings in a number of
directions. These include incorporating such
classifiers into systems that adapt according
to recognition performance, and investigating
which features are appropriate for other dia-
logue classification tasks. More generally, in
the same way that learning methods have found
widespread use in speech processing and other
fields where large corpora are available, we
believe that the construction and analysis of
spoken dialogue systems is a ripe domain for
machine-learning applications.
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