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1 Introduction

In this paper, we study the extension of Valiant's learning model [32] in which
the positive or negative classi�cation label provided with each random example
may be corrupted by random noise. This extension was �rst examined in the
learning theory literature by Angluin and Laird [1], who formalized the simplest
type of white label noise and then sought algorithms tolerating the highest
possible rate of noise. In addition to being the subject of a number of theoretical
studies [1, 22, 31, 17], the classi�cation noise model has become a common
paradigm for experimental machine learning research.

Angluin and Laird provided an algorithm for learning boolean conjunctions
that tolerates a noise rate approaching the information-theoretic barrier of 1=2.
Subsequently, there have been some isolated instances of e�cient noise-tolerant
algorithms [20, 27, 29], but little work on characterizing which classes can be
e�ciently learned in the presence of noise, and no general transformations of
Valiant model algorithms into noise-tolerant algorithms. The primary contri-
bution of the present paper is in making signi�cant progress in both of these
areas.

We identify and formalize an apparently rather weak su�cient condition
on learning algorithms in Valiant's model that permits the immediate deriva-
tion of noise-tolerant learning algorithms. More precisely, we de�ne a natural
restriction on Valiant model algorithms that allows them to be reliably and
e�ciently simulated in the presence of arbitrarily large rates of classi�cation
noise. This allows us to obtain e�cient noise-tolerant learning algorithms for
practically every concept class for which an e�cient learning algorithm in the
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original noise-free Valiant model is known. A notable exception is the class of
parity concepts, whose properties we investigate in some detail.

Our su�cient condition is formalized by the introduction of a new model
of learning from statistical queries, in which the standard Valiant model oracle
EX (f;D) (giving random examples of the target concept f with respect to an
input distribution D over X) is replaced by the weaker oracle STAT (f;D). This
oracle, rather than supplying the learning algorithm with individual random
examples, instead provides accurate estimates for probabilities over the sample
space generated by EX (f;D). Taking as input a query of the form (�; �),
where � = �(x; `) is any boolean function over inputs x 2 X and ` 2 f0; 1g,
STAT(f;D) returns an estimate for the probability that �(x; f(x)) = 1 (when
x is drawn according to D). This estimate is accurate within additive error
� 2 [0; 1], which we call the allowed approximation error of the query.

The natural notion of e�ciency in such a model should assign high cost to
queries in which � is computationally expensive to evaluate, and to queries in
which � is small. We shall formalize this shortly (Sections 2, 3 and 4 de�ne the
Valiant, classi�cation noise and statistical query models respectively), and the
result will be a model which is weaker than the standard Valiant model, in the
sense that statistical query algorithms can be trivially simulated given access to
the noise-free examples oracle EX (f;D).

In the statistical query model, we are e�ectively restricting the way in which
a learning algorithmmay use a random sample, and we thus capture the natural
notion of learning algorithms that construct a hypothesis based on statistical
properties of large samples rather than on the idiosyncrasies of a particular
sample. Note that algorithms in this model may also estimate conditional prob-
abilities by expanding the conditional probability as the ratio of two simple
probabilities.

One of our main theorems, given in Section 5, is that any class e�ciently
learnable from statistical queries is also e�ciently learnable with classi�cation
noise. The theorem holds even with respect to particular distributions or classes
of distributions. This latter property is important since many of the most
powerful positive results in the Valiant model hold only for special but natural
distributions, thus allowing us to obtain e�cient noise-tolerant algorithms for
these same distributions.

We give many applications of this result in Section 6. In addition to unifying
all previous analyses of learning with noise in the Valiant model (since all of
the proposed algorithms for noise-tolerant learning can be shown to fall into the
statistical query model), we use our new model to obtain e�cient noise-tolerant
learning algorithms for many concept classes for which no such algorithm was
previously known. Examples include learning perceptrons (linear separators)
with noise with respect to any radially symmetric distribution; learning con-
junctions with noise with only a logarithmic sample size dependence on the
number of irrelevant variables; learning n-dimensional axis-aligned rectangles
with noise; learning AC0 with noise with respect to the uniform distribution in
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time O(npoly(logn)) (for which the algorithm of Linial, Mansour and Nisan [23]
can be shown to fall into the statistical query model without modi�cation); and
many others.

The fact that practically every concept class known to be e�ciently learnable
in the Valiant model can in fact be learned from statistical queries (and thus
with classi�cation noise) raises the natural question of whether the two models
are equivalent. We answer this question negatively in Section 7 by proving that
the class of parity concepts, known to be e�ciently learnable in the Valiant
model, cannot be e�ciently learned from statistical queries. The class of parity
concepts is also notorious for having no known e�cient noise-tolerant algorithm.

In Section 8 we investigate query complexity in our model. Our interest here
centers on the tradeo� between the number of statistical queries that must be
made, and the required accuracy of these queries. For instance, translation of
Valiant model sample size lower bounds [7, 9] into the statistical query model
leaves open the possibility that some classes might be learned with just a sin-
gle statistical query of su�ciently small allowed approximation error. Here we
dismiss such possibilities, and provide a much stronger lower bound by proving
that for any concept class of Vapnik-Chervonenkis dimension d, there is a dis-
tribution on which a statistical query algorithm must make at least 
(d= logd)
queries, each with allowed approximation error at most O(�), in order to obtain
a hypothesis with error less than �.

In Section 9 we show the equivalence of learning in the classi�cation noise
model and learning in a more realistic model with a variable noise rate, and
Section 10 concludes with some open problems.

We note that since the original conference publication of these results, a great
many results have been obtained using the statistical query model, including
work by Aslam and Decatur [2, 3]. The noise simulation result presented here
has also appeared in more tutorial form [21].

2 The Valiant Learning Model

Let F be a class of f0; 1g-valued functions (also called concepts) over an input
space X. In trying to design a learning algorithm for the class F , we assume
that there is a �xed but arbitrary and unknown target distribution D over X
that governs the generation of random examples. More precisely, when executed
on the target concept f 2 F , a learning algorithm will be given access to an
oracle EX (f;D) that on each call draws an input x randomly and independently
according to D, and returns the (labeled) example hx; f(x)i.

Once we have �xed the target concept f and target distribution D, there
is a natural measure of the error of any other concept h with respect to f and
D. Thus, we de�ne error(h) = Prx2D[f(x) 6= h(x)] (throughout the paper, the
notation x 2 D indicates that x is drawn randomly according to the distribution
D). Notice that we have dropped the dependence of error(h) on f and D for
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notational brevity.
We assume that all inputs x are of some common length n. Here the length

of inputs is typically measured by the number of components; the most common
examples of n are the boolean hypercube f0; 1gn and n-dimensional real space
Rn. We also assume a mapping size(f) that measures the size or complexity
of representing each f 2 F in some �xed encoding scheme. Thus, size(f) will
measure the size of the smallest representation (there may be many) of the
target concept f in the representation scheme H used by the learning algorithm
1, and we will allow the algorithm running time polynomial in the input length
n and size(f).

De�nition 1 (Learning in the Valiant Model) Let F be a class of concepts over
X, and let H be a class of representations of concepts over X. We say that F
is e�ciently learnable using H in the Valiant model if there exists a learning
algorithm L and a polynomial p(�; �; �; �) such that for any f 2 F over inputs of
length n, for any distribution D over X, and for any 0 < � � 1 and 0 < � � 1,
the following holds: if L is given inputs �, �, n and size(f), and L is given
access to EX (f;D), then L will halt in time bounded by p(1=�; 1=�; n; size(f))
and output a representation in H of a concept h that with probability at least
1 � � satis�es error(h) � �. This probability is taken over the random draws
from D made by EX (f;D) and any internal randomization of L. We call � the
accuracy parameter and � the con�dence parameter.

3 The Classi�cation Noise Model

The well-studied classi�cation noise model [1, 22, 17, 31, 20, 27, 29] is an ex-
tension of the Valiant model intended to capture the simplest type of white
noise in the labels seen by the learner. We introduce a parameter 0 � � < 1=2
called the noise rate, and replace the oracle EX (f;D) with the faulty oracle
EX �

CN (f;D) (where the subscript is the acronym for Classi�cation Noise). On
each call, EX �

CN (f;D) �rst draws an input x randomly according to D (just as
in the noise-free case). The oracle then ips a coin whose probability of heads
is 1� � and whose probability of tails is �. If the outcome is heads, the oracle
returns the uncorrupted example hx; f(x)i; but if the outcome is tails, the oracle
returns the erroneous example hx;:f(x)i. Note that in this model, errors occur
only in the labels given to the learner; the inputs x given to the learner remain
independently distributed according to D. Other models allowing corruption of
the input as well as the label have been studied previously [33, 17], with con-
siderably less success in �nding e�cient error-tolerant algorithms. Here we will

1The choice of representation used by the learning algorithm can sometimes be quite sig-
ni�cant, as previous results have demonstrated concept classes F for which the choice of
hypothesis representation can mean the di�erence between intractability and e�cient learn-
ing [25, 18].
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concentrate primarily on the classi�cation noise model, although in Section 9
we will examine a more realistic extension of this model.

Despite the noise in the labels, the learning algorithm's goal remains that of
�nding a hypothesis concept h satisfying error(h) = Prx2D[f(x) 6= h(x)] � �.
Furthermore, we would like the algorithm to tolerate the highest possible noise
rate. Obviously, as � approaches 1=2 learning becomes more di�cult because
the label seen by the learner approaches an unbiased coin ip. Thus we must
allow learning algorithms to have a polynomial time dependence on the quantity
1=(1� 2�), which is simply proportional to the inverse of the distance of � from
1=2.

One �nal issue is what information the learner should be provided about the
exact value of �. For simplicity in the current paper, we adopt the convention of
Angluin and Laird [1] and assume that the learning algorithm is given only an
upper bound �b (where 1=2 > �b � �), and is given polynomial time dependence
on 1=(1� 2�b). For all of the results presented here, even this assumption can
be removed using a technique due to Laird [22].

De�nition 2 (Learning with Noise) Let F be a class of concepts over X, and
let H be a class of representations of concepts over X. We say that F is e�-
ciently learnable with noise using H if there exists a learning algorithm L and a
polynomial p(�; �; �; �; �) such that for any f 2 F over inputs of length n, for any
distribution D over X, for any noise rate 0 � � < 1=2, and for any 0 < � � 1
and 0 < � � 1, the following holds: if L is given inputs �b (where 1=2 > �b � �),
�, �, n and size(f), and L is given access to EX �

CN (f;D), then L will halt in
time bounded by p(1=(1� 2�b); 1=�; 1=�; n; size(f)) and output a representation
in H of a concept h that with probability at least 1 � � satis�es error(h) � �.
This probability is taken over the random draws from D, the random noise bits
of EX �

CN (f;D) and any internal randomization of L.

4 The Statistical Query Model

We now introduce a new learning model that is related to but apparently weaker
than the Valiant model, and is designed to limit the ways in which the learning
algorithm can use the random examples it receives from the oracle EX (f;D).
The restriction we would like to enforce is that learning be based not on the
particular properties of individual random examples, but instead on the global
statistical properties of large samples. Such an approach to learning seems intu-
itively more robust than algorithms that are willing to make radical alterations
to their hypotheses on the basis of individual examples.

To formalize this restriction, we introduce a new oracle STAT(f;D) that will
replace the standard examples oracle EX (f;D). It will be helpful throughout
the paper to think of STAT(f;D) as an intermediary oracle (standing between
the learning algorithm and the examples oracle EX (f;D)) whose goal is to
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enforce the restriction on the learner's use of examples described above. Unlike
EX (f;D), STAT (f;D) is an oracle that the learner interacts with. The oracle
STAT(f;D) takes as input a statistical query of the form (�; �). Here � is any
mapping of a labeled example to f0; 1g (thus � : X � f0; 1g ! f0; 1g) and
� 2 [0; 1].

We interpret a query (�; �) as a request for the valueP� = Prx2D[�(x; f(x)) =
1]; we will abbreviate the right side of this equation by PrEX (f;D)[� = 1] to em-
phasize that the distribution on examples is simply that generated by the oracle
EX (f;D). Thus, each query is a request for the probability of some event on
the distribution generated by EX (f;D). However, the oracle STAT(f;D) will
not return the exact value of P� but only an approximation, and the role of �
is to quantify the amount of error the learning algorithm is willing to tolerate
in this approximation. More precisely, on query (�; �) the oracle STAT (f;D)
is allowed to return any value P̂� that satis�es P��� � P̂� � P�+�. We refer
to � as the allowed approximation error of the query.

At this point, it should be clear that given access to the oracle EX (f;D), it
is a simple matter to simulate the behavior of the oracle STAT (f;D) on a query
(�; �) with probability at least 1��: we draw fromEX (f;D) a su�cient number
of random labeled examples hx; f(x)i and use the fraction of the examples for
which �(x; f(x)) = 1 as our estimate P̂� of P�. The number of calls to EX (f;D)
required will be polynomial in 1=� and log(1=�), and the time required will be
polynomial in the time required to evaluate �, and in 1=� and log(1=�). To
ensure that e�cient algorithms for learning using STAT (f;D) can be e�ciently
simulated using EX (f;D), we must place natural restrictions on � (namely,
that it is an inverse polynomial in the learning problem parameters) and on �
(namely, that it can be evaluated in polynomial time). Thus we require that
algorithms only ask STAT (f;D) for estimates of su�ciently simple probabilities,
with su�ciently coarse resolution. This is done in the following de�nition, which
formalizes the model of learning from statistical queries. The intuition that
algorithmswith access to STAT (f;D) can be simulated given access to EX (f;D)
is then formalized in greater detail as Theorem 1 below.

De�nition 3 (Learning from Statistical Queries) Let F be a class of concepts
over X, and let H be a class of representations of concepts over X. We say
that F is e�ciently learnable from statistical queries using H if there exists a
learning algorithm L and polynomials p(�; �; �), q(�; �; �) and r(�; �; �) such that for
any f 2 F over inputs of length n, for any distribution D over X, and for any
0 < � � 1, the following holds: if L is given inputs �, n and size(f), and L is
given access to STAT (f;D), then (1) for every query (�; �) made by L, � can be
evaluated in time q(1=�; n; size(f)) and 1=� is bounded by r(1=�; n; size(f)), and
(2) L will halt in time bounded by p(1=�; n; size(f)) and output a representation
in H of a concept h that satis�es error(h) � �.

Later in the paper, we will also consider the variant of the statistical query
model in which the learner is provided with access to unlabeled inputs according
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to D, in addition to the oracle STAT (f;D). This is because unlabeled inputs are
sometimes crucial for learning (for instance, to estimate the important regions of
the distribution), and our main theorem (Theorem 3) still holds for this variant.
This is most easily seen by noting that algorithms in the noise model still have
access to D simply by ignoring the noisy labels returned by EX �

CN (f;D).
In the statistical query model, it will sometimes be helpful to identify the

class of queries from which a learning algorithm chooses. Thus, we say that
F is e�ciently learnable from statistical queries using H with query space Q if
the above de�nition can be met by an algorithm that only makes queries (�; �)
satisfying � 2 Q.

Remark 1: No Con�dence Parameter. Note that the con�dence parameter �
is absent in this de�nition of learning. This is because the main purpose of � in
the Valiantmodel is to allow the learning algorithm a small probability of failure
due to an unrepresentative sample from EX (f;D). Since we have now replaced
EX (f;D) by the oracle STAT (f;D), whose behavior is always guaranteed to
meet the approximation criterion P� � � � P̂� � P� + �, we no longer need to
allow this failure probability 2.

Remark 2: Conditional Probabilities. Note that although the statistical
query model only provides the learner with an oracle for estimating proba-
bilities, one can also design algorithms that estimate conditional probabilities
PrEX (f;D)[�1 = 1j�2 = 1], by expanding the conditional probability as a ra-
tio of two simple probabilities, and obtaining su�ciently accurate estimates
of the numerator and denominator to yield an additively accurate estimate of
the ratio. Such algorithms must be prepared for the case that the probability
PrEX (f;D)[�2 = 1] of the conditioning event is too small; but this is typically not
a restriction, since an algorithm with access to EX (f;D) would also be unable
to obtain an estimate for the conditional probability in this case. Some of the
algorithms we discuss will take advantage of this way of estimating conditional
probabilities. The estimation of conditional probabilities in the statistical query
model is also discussed by Aslam and Decatur [2, 3].

Before we proceed with the technical portion of the paper, some �nal com-
ments regarding all of the models we have de�ned are in order. First of all, for
M representing any of the three models (Valiant, noise or statistical query) we
will simply say that F is e�ciently learnable in model M to mean that F is
learnable using H for some H in which each hypothesis over inputs of length n
can be evaluated in time polynomial in n.

Secondly, we will have occasion to study some common variants of these
models. For some classes we do not know a polynomial-time learning algorithm
but instead have an algorithm with at least a nontrivial time bound; in such
cases we drop the modi�er \e�cient" and instead say that the class is learnable
in model M within some explicitly stated time bound. For some classes we

2We could still keep � in order to allow for a probability of failure in randomized learning
algorithms, but for simplicity choose not to do so since all the algorithms we discuss are
deterministic.
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have an e�cient algorithm only for a particular distribution D (or a class of
distributions); in such cases we say that the class is learnable with respect to D
(or with respect to the class of distributions) in model M .

Finally, we will need the following standard de�nition. For any concept class
F and a set of inputs S = fx1; : : : ; xdg, we say that F shatters S if for all of the
2d possible binary labelings of the points in S, there is a concept in F that agrees
with that labeling. The Vapnik-Chervonenkis dimension of F is the cardinality
of the largest set shattered by F [34].

5 Simulating Statistical Queries Using Noisy Ex-

amples

Our �rst theorem formalizes the intuition given above that learning from sta-
tistical queries implies learning in the noise-free Valiant model. The proof of
this theorem is omitted for brevity, but employs standard Cherno� bound and
uniform convergence analyses [7]. The key idea in the simulation is to draw
a single large sample with which to estimate all probabilities requested by the
statistical query algorithm.

Theorem 1 Let F be a class of concepts over X, and let H be a class of rep-
resentations of concepts over X. Suppose that F is e�ciently learnable from
statistical queries using H by algorithm L. Then F is e�ciently learnable using
H in the Valiant model, and furthermore:
� (Finite Q case) If L uses a �nite query space Q and � is a lower bound on
the allowed approximation error for every query made by L, then the number of
calls to EX (f;D) required to learn in the Valiant model is O(1=�2 log(jQj=�)).
� (Finite VC dimension case) If L uses a query space Q of Vapnik-Chervonenkis
dimension d and � is a lower bound on the allowed approximation error for ev-
ery query made by L, then the number of calls to EX (f;D) required to learn in
the Valiant model is O(d=�2 log(1=�)).

Note that in the statement of Theorem 1, the sample size dependence on �
is hidden in the sense that we expect � and possibly the query class to depend
on �.

Theorem 1 shows that the statistical query model identi�es one approach
to learning in the noise-free Valiant model. We now derive a less obvious and
considerably more useful result: namely, that algorithms for learning from sta-
tistical queries can in fact be reliably and e�ciently simulated given access only
to the noisy example oracle EX �

CN (f;D). The key to this result is the following
lemma, which describes how any probability PrEX (f;D)[� = 1] can be expressed
in terms of probabilities over the sample space generated by EX �

CN (f;D).
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Lemma 2 Let � : X � f0; 1g ! f0; 1g. Then for any 0 � � < 1=2, the
probability PrEX (f;D)[� = 1] can be written as an expression involving only �
and probabilities over the sample space generated by EX �

CN (f;D).

Proof: The key idea of the proof is to de�ne a partition of the input space
X into two disjoint regions X1 and X2 as follows: X1 consists of those points
x 2 X such that �(x; 0) 6= �(x; 1), and X2 consists of those points x 2 X such
that �(x; 0) = �(x; 1). Thus, X1 is the set of all inputs such that the label
matters in determining the value of �, and X2 is the set of all inputs such that
the label is irrelevant in determining the value of �. Note that X1 and X2 are
disjoint and X1 [X2 = X.

Having de�ned the regions X1 and X2, we can now de�ne the induced dis-
tributions on these regions. Thus, if we let p1 = D[X1] and p2 = D[X2] (so
p1 + p2 = 1), then for any subset S � X1 we de�ne D1[S] = D[S]=p1 and for
any subset S � X2 we de�ne D2[S] = D[S]=p2. Throughout the proof, we will
use the following abbreviated notation: P� will denote PrEX (f;D)[� = 1], PCN

�

will denote PrEX �

CN
(f;D)[� = 1], P 1

� will denote PrEX (f;D1)[� = 1], and P 2
� will

denote PrEX (f;D2)[� = 1]. Notice that for PCN
� , the label given as the second

input to � is potentially noisy.
In a moment we will derive an expression for P� (which is the quantity we

would like to estimate) involving only �, p1, p2, PCN
� , and P 2

�. We �rst argue
that all these quantities (excluding �, which we shall deal with separately) can
in fact be estimated from the noisy oracle EX �

CN (f;D).
First, note that it is easy to estimate PCN

� from calls to EX �
CN (f;D), because

this probability is already de�ned with respect to the noisy oracle.
Next, note that it is easy to estimate p1 (and therefore p2 = 1�p1) using only

calls to EX �
CN (f;D): given a potentially noisy example hx; `i fromEX �

CN (f;D),
we ignore the label ` and test whether �(x; 0) 6= �(x; 1). If so, then x 2 X1,
otherwise x 2 X2. Thus for a large enough sample the fraction of the x falling
in X1 will be a good estimate for p1 via a standard Cherno� bound analysis.

Finally, P 2
� can be estimated from EX �

CN (f;D): we simply sample pairs
hx; `i returned by the noisy oracle, keeping only those inputs x that fall in X2

(using the membership test �(x; 0) = �(x; 1)). For such an x, the value of �
is invariant to the label, so we can just compute the fraction of the sampled
x 2 X2 for which �(x; 0) = �(x; 1) = 1 as our estimate for P 2

� .
Now to derive the desired expression for P�, consider the probability that

� is 1 when the input to � is obtained from the noisy oracle EX �
CN (f;D) with

noise rate �. We may write

PCN
� = (1� �)P� + �(p1Prx2D1;` :f(x)[�(x; `) = 1]

+p2Prx2D2;` :f(x)[�(x; `) = 1]): (1)

The intuition behind this expression is as follows: on a call to EX �
CN (f;D),

with probability 1 � � there is no misclassi�cation, in which case the call to
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EX �
CN (f;D) behaves identically to a call to EX (f;D). With probability �,

however, there is a misclassi�cation. Now given that a misclassi�cation occurs,
the label provided is :f(x), and there is probability p1 that the input is drawn
from X1 (and thus is distributed according to D1), and probability p2 that the
input is drawn fromX2 (and thus is distributed according to D2). We now derive
alternative expressions for three of the terms in Equation (1) for substitution.

First, note that we may write Prx2D1;` :f(x)[� = 1] = PrEX (f;D1)[� =
0] = 1 � P 1

� because in X1, reversing the label and computing � is equivalent
to leaving the label unaltered and reversing the value of �.

Second, we may also write Prx2D2;` :f(x)[� = 1] = P 2
� because in X2 the

label is unimportant for the value of �.
Third, we may make the expansion P� = p1P

1
� + p2P

2
�.

Making these substitutions into Equation (1), some simple algebra yields

PCN
� = (1� �)(p1P

1
� + p2P

2
�)

+�(p1(1� P 1
�) + p2P

2
�)

= (1� 2�)p1P
1
� + p2P

2
� + �p1: (2)

By solving Equation (2) for P 1
� we obtain:

P 1
� = (1=(1� 2�)p1)(P

CN
� � p2P

2
� � �p1): (3)

Finally, again using the expansion P� = p1P
1
� + p2P

2
� and substituting for P 1

�

using Equation (3) we obtain

P� = (1=(1� 2�))PCN
� + (1 � 1=(1� 2�))p2P

2
�

�(�=(1� 2�))p1: (4)

Equation (4) has the desired form: an expression for P� in terms of PCN
� , p1,

p2, P 2
� and �. (Lemma 2)

Equation (4) suggests an approach for simulating the oracle STAT (f;D)
using only the noisy oracle EX �

CN (f;D): given any query (�; �) for STAT (f;D),
use EX �

CN (f;D) to obtain su�ciently accurate estimates of each quantity on
the right hand side of Equation (4), and then solve to get an accurate estimate
for P�. This is exactly the approach taken in the theorem that follows, which
is one of our main results. The main details to be worked out are a sensitivity
analysis of Equation (4) to ensure that additively accurate estimates of each
quantity on the right hand side provide a su�ciently accurate estimate of P�,
the related issue of guessing a good approximation to the noise rate, and an
analysis of the required sample sizes.

Theorem 3 Let F be a class of concepts over X, and let H be a class of rep-
resentations of concepts over X. Suppose that F is e�ciently learnable from
statistical queries using H by algorithm L. Then F is e�ciently learnable with
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noise using H, and furthermore:
� (Finite Q case) If L uses a �nite query space Q and � is a lower bound on
the allowed approximation error for every query made by L, then the number of
calls to EX �

CN (f;D) required to learn with noise is

O((1=�(1� 2�b))
2 log(jQj=�) + 1=�2 log(1=��(1� 2�b))):

� (Finite VC dimension case) If L uses a query space Q of Vapnik-Chervonenkis
dimension d and � is a lower bound on the allowed approximation error for every
query made by L, then the number of calls to EX �

CN (f;D) required to learn with
noise is

O(d(1=�(1� 2�b))
2 log(1=�) + 1=�2 log(1=��(1� 2�b))):

Proof: Let �b be the given bound on �, and suppose we wish to simulate a
query (�; �) for the oracle STAT (f;D). What is needed �rst is a sensitivity
analysis of the right hand side of Equation (4). We have already sketched in
the proof of Lemma 2 how to obtain estimates with small additive error for p1,
p2, PCN

� , and P 2
�. We will use �b to get a good estimate �̂ for � in a way to be

described momentarily; for now we analyze how accurate �̂ must be in order to
allow substituting 1=(1 � 2�̂) for 1=(1 � 2�) without incurring too much error
in Equation (4).

Lemma 4 Let 0 � �; �̂ < 1=2 and 0 � � � 1 satisfy � �� � �̂ � � +�. Let
0 � � � 1. Then there exists a constant c such that if � � (c�=2)(1 � 2�)2,
then

1=(1� 2�)� � � 1=(1� 2�̂) � 1=(1� 2�) + �: (5)

Proof: Taking the extreme allowed values for �̂ gives

1=(1� 2(� ��)) � 1=(1� 2�̂) � 1=(1� 2(� +�)):

Taking the leftmost inequality of this equation, we see that the leftmost inequal-
ity of Equation (5) will be satis�ed if we have 1=(1� 2�)�� � 1=(1� 2(� ��)).
Solving for constraints on � gives

2� � 1=(1=(1� 2�)� �)� (1� 2�):

If we set x = 1=(1� 2�) and f(x) = 1=x we obtain 2� � f(x � �) � f(x).
This suggests analysis via the derivative of f . Now f 0(x) = �1=x2 and we may
write f(x � �) � f(x) + c�=x2 for some constant c > 0, for all x 2 [1;1].
(This is the range of interest for x = 1=(1 � 2�), corresponding to � = 0 and
� = 1=2.) This gives � � c�=2x2 = (c�=2)(1�2�)2. An identical analysis gives
the same bound on � for achieving the rightmost inequality in Equation (5).

(Lemma 4)
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Thus, assume for the moment that we have found a value �̂ satisfying ��� �
�̂ � � +� where � = (c�=2)(1� 2�b)2 � (c�=2)(1 � 2�)2 as in the statement
of Lemma 4. Then provided we have estimates for p1, p2, PCN

� and P 2
� that

have additive error bounded by �(1�2�b), it can be shown using Lemma 4 and
some algebra that solution of Equation (4) using these estimates provides an
estimate P̂� of P� with additive error O(�). As in Theorem 1, we can use a
single shared sample to estimate all queries made to STAT(f;D), resulting in
only logarithmic dependence on the query space cardinality or linear dependence
on its Vapnik-Chervonenkis dimension; this dependence is obtained via standard
techniques [7].

To �nd the assumed value �̂, we simply try all values �̂ = i� for i =
1; 2; : : :; 1=2� 3. Clearly for one of these tries, � will be within � of the true
noise rate �, and the above simulation will yield (with high probability) esti-
mates for all queries to STAT (f;D) accurate to within the desired additive error
�. Also note that for each �, the quantities p1, p2, PCN

� and P 2
� do not depend

on �, so our simulation needs to estimate these quantities only once. Given these
estimates, we then run L repeatedly, each time using the same �xed estimates
but a di�erent guess for �̂ to solve Equation (4) on each query. This will result
in a series of hypotheses h1; : : : ; h1=2� output by the runs of L, one of which
has error smaller than � with high probability. It is not di�cult to show that
given a su�ciently large sample from EX �

CN (f;D), the hi that best agrees with
the noisy examples has error smaller than �. (Theorem 3)

We again note that the assumption of an upper bound �b on the noise rate
can be eliminated [22].

To summarize, Theorem 3 shows that if we can �nd an algorithm for e�cient
learning in the statistical query model, we immediately obtain an algorithm for
e�cient learning in the noise model. Furthermore, examination of the proof
shows that the theorem holds even with respect to speci�c distributions (that
is, e�cient statistical query learning for a particular distribution implies e�cient
learning with noise for the same distribution), and also for the variant of the
statistical query model in which the learner is given access to an oracle for
unlabeled inputs from D in addition to access to the oracle STAT (f;D) (see
Remark 3 following De�nition 3). These stronger statements of the theorem
will both be used in the applications given in the following section.

6 E�cient Noise-Tolerant Learning Algorithms

In this section, we give evidence of the power of Theorem 3 by outlining some
of its many applications. Perhaps the most important message to be gleaned is
that the model of learning from statistical queries appears to be quite general, in
the sense that it encompasses practically all of the concept classes known to be
e�ciently learnable in the Valiant model (and the Valiant model with restricted

3An improved method for �nding �̂ has recently been given by Aslam and Decatur [3].
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distributions). Thus, practically every class known to be e�ciently learnable
is in fact e�ciently learnable with noise. One of the few and notable apparent
exceptions to this phenomenon is examined in the following section.

We �rst give a partial list of the many algorithms in the Valiant model liter-
ature that can be modi�ed to obtain algorithms in the statistical query model
with relatively modest e�ort. Among others, the list includes Valiant's algo-
rithm for conjunctions [32] and Angluin and Laird's noise-tolerant variant [1]
of it; the algorithm of Linial, Mansour and Nisan [23] for learning AC 0 in time
O(npoly(logn)) with respect to the uniform distribution in the Valiant model
(and its subsequent generalization with respect to product distributions due
to Furst, Jackson and Smith [11]); several e�cient algorithms for learning re-
stricted forms of DNF with respect to the uniform distribution in the Valiant
model [18]; and e�cient algorithms for learning unbounded-depth read-once for-
mulae with respect to product distributions in the Valiant model [28, 13]. For
all of these classes we can obtain e�cient algorithms for learning with noise
by Theorem 3; in this list, only for conjunctions [1] and Schapire's work on
read-once circuits [28] were there previous noise analyses.

As further evidence for the generality of the statistical query model and to
give a avor for the methods involved, we now spend the remainder of this
section describing in high-level detail three cases in which new statistical query
algorithms can be obtained with more involved analysis than is required for the
above algorithms. As mentioned earlier, without loss of generality we assume
these algorithms can obtain estimates for conditional probabilities (see Remark
2 following De�nition 3).

6.1 Covering Algorithms and Few Relevant Variables

A number of algorithms for learning in the Valiant model use some variant of
a fundamental approach that we shall call the covering method . Very briey
and informally, the basic idea is to gradually construct an approximation to
the target concept by �nding a small set of candidate subfunctions with the
property that each candidate covers a signi�cant fraction of the current sample,
while not incurring too much error on the portion covered. The hypothesis
is then obtained by greedy selection of candidate subfunctions. We will see a
somewhat detailed example of this approach momentarily.

A partial list of the e�cient algorithms employing some version of this ap-
proach is: Rivest's algorithm for learning decision lists [26]; Haussler's algorithm
for learning boolean conjunctions with few relevant variables [14]; the algorithm
of Blumer et al. for learning a union of axis-aligned rectangles in the Euclidean
plane; and the algorithm of Kearns and Pitt [19] for learning pattern languages
with respect to product distributions.

In its original form, the covering method is not noise-tolerant, and indeed
with the exception of decision lists [20, 27], until now there have been no known
e�cient noise-tolerant algorithms for the above classes. It is possible to give
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a general variant of the covering method that works in the statistical query
model, thus yielding e�cient noise-tolerant learning algorithms for all of these
problems. For brevity here, we outline only the main ideas for the particular
but representative problem of e�ciently learning boolean conjunctions with few
relevant variables.

In this problem, the target concept f is some conjunction of an unknown
subset of the boolean variables x1; : : : ; xn (we assume that f is a monotone
conjunction without loss of generality [18]). The expectation is that the number
of variables k (not necessarily constant) appearing in f is considerably smaller
than the total number of variables n (k << n), and we would like to �nd an
e�cient algorithmwhose sample complexity has the mildest possible dependence
on n (note that we cannot avoid time complexity that is at least linear in n since
it takes this much time just to read an example).

A solution to this problem in the Valiant model was given by Haussler [14],
who made use of the covering method and obtained a sample size with only
logarithmic dependence on n. This is of some philosophical interest, since it
demonstrates that explicit external mechanisms for \focusing the attention"
of the learning algorithm on the relevant variables are not required to learn
e�ciently with small sample sizes. We are interested in knowing if the same
statement holds in the presence of large amounts of noise.

The idea of Haussler's covering approach is to take su�ciently large sets S+

and S� of positive and negative examples of f , respectively. The algorithm
proceeds in two phases, the �rst to guarantee consistency with S+ and the
second to guarantee consistency with S�.

In the �rst phase, the candidate set of variables, which is initially all vari-
ables, is pruned to eliminate any xi which is set to 0 in some positive example
in S+; such a variable directly contradicts the data. This phase ensures that
any conjunction of candidate variables will be consistent with the set S+.

In the second phase, a subset of the remaining candidates is chosen that
\covers" S�. To do this, we associate with each candidate xi the set S

�
i = fx 2

S� : xi = 0g. Note that by conjuncting xi to our hypothesis, we guarantee that
our hypothesis will correctly label the examples in S�i negatively (that is, we
cover S�i ), and thus these can now be removed from S�. Haussler's algorithm
simply greedily covers S� using the S�i ; note that the smallest cover has at
most k elements. The sample size bound of his analysis depends linearly on k,
but only logarithmically on n.

Our goal is to obtain a similar sample size bound even in the presence of
noise; to do this we provide an algorithm for learning from statistical queries
along with an analysis of the number of queries required and their allowed
approximation error (since it is these two quantities that dictate how many
noisy examples are required to simulate the statistical query algorithm).

To modify Haussler's algorithm for the statistical query model, note that the
�rst phase of the algorithm may be thought of as computing a coarse estimate
of the probability that xi = 0 in a positive example; Haussler's algorithm elimi-
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nates any variable with a non-zero estimate. This almost but does not quite fall
into the statistical query model, since the implicit allowed approximation error
is too small. Instead we will make calls to STAT(f;D) to estimate for each i the
conditional probability PrEX (f;D)[xi = 0jf(x) = 1] with allowed approximation
error O(�=r), where r will be determined by the analysis. Only variables for
which the returned estimate is O(�=r) are retained as candidates.

To obtain such estimates, we take the ratio of estimates in the conditional
expansion. Note that we may assume without loss of generality that the denom-
inator PrEX (f;D)[f(x) = 1] is at least � (otherwise the trivial hypothesis that
always outputs 0 is already su�ciently accurate). After estimating this denom-
inator within approximation error O(�), it su�ces to estimate the numerator
PrEX (f;D)[xi = 0; f(x) = 1] within approximation error O(�2=r). Thus, in the
�rst phase of the algorithm we require 1 query of approximation error O(�) and
n queries of approximation �2=r; of course, in the simulation of the latter queries
from noisy examples we may use a single sample as suggested in Theorem 3.

To modify the second phase, note that if at stage i Haussler's algorithm
has already chosen variables x1; : : : ; xi then for each j > i the fraction of the
remaining elements of S� that are covered by S�j can be thought of as an
estimate of the probability

pj;i = PrEX (f;D)[xj = 0jf(x) = 0; x1 = � � � = xi = 1]

(that is, the probability that xj = 0 given that f is negative but the current
hypothesis is positive; note that if the conditioning event has too small a prob-
ability, then the current hypothesis already su�ces). This probability has a
natural interpretation: it is the fraction of the currently \uncovered" distri-
bution of negative examples that would become covered if we added xj to the
conjunction. Since we know there are at most k variables that would completely
cover the distribution of negative examples (namely, the variables appearing in
the target conjunction), there must always be a choice of xj for which this prob-
ability pj;i is at least 1=k. As long as we choose to add an xj for which pj;i is at
least some constant times 1=k, we will make rapid progress towards covering the
negative distribution. Thus, it su�ces to estimate the pj;i within approximation
error O(1=k). Note that in the simulation from noisy examples, we can use a
common sample to simultaneously estimate all of the pj;i for a �xed value of
i, but since the conditioning event depends on the variables selected so far, we
must draw a fresh sample for each i.

How many variables must we select in the second phase before all but � of
the negative distribution is covered? Since we cover at least a fraction 1=k with
each variable added, we solve (1 � (1=k))r < � to give r = O(k log(1=�)). To
determine the sample complexity of simulating this statistical query algorithm
from noisy examples, we apply Theorem 3 to the following accounting of the
required queries:

� In the �rst phase, 1 query of approximation error � and n queries of ap-
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proximation error �2=r, where r = O(k log(1=�)). These queries may all
be estimated from a common noisy sample, as in Theorem 3.

� In the second phase, at most r stages, each of which requires at most n
queries of approximation error 1=k. The queries within a phase may be
simulated from a common noisy sample.

Applying Theorem 3 to just the queries from the �rst phase, we obtain a sample
size whose dependence on n is only log(n), on k is k2, and on � is 1=�4. (The
dependence on the noise rate and con�dence parameters are simply those given
in Theorem 3.) For the second stage, the dependence on n is log(n), and on
k is k3. The important aspect of the overall bound is its modest logarithmic
dependence on the total number of variables. However, despite the logarithmic
dependence on n, our algorithmdepends cubically on k, as opposed to Haussler's
linear bound. It would be interesting to improve our bound, or prove that it is
optimal in the noisy computationally bounded setting. The same remarks apply
to the strong dependence on �.

6.2 Learning Perceptrons on Symmetric Distributions

Here the class Fn consists of all linear half-spaces passing through the origin
in Rn. Thus without loss of generality, the target concept can be represented
by its normal vector ~u 2 Rn lying on the unit sphere, and ~x 2 Rn is a positive
example of ~u if and only if ~u�~x � 0 (this is simply the class of perceptrons
with threshold 0). The distribution D we consider is the uniform distribution
on the unit sphere (or any other radially symmetric distribution). There is a
voluminous literature on learning perceptrons in general (see the work of Minsky
and Papert [24] for a partial bibliography) and with respect to this distribution
in particular [30, 4, 12]. Here we give a very simple and e�cient algorithm
for learning from statistical queries (and thus an algorithm tolerating noise).
Recent papers have provided more general solutions, again in the statistical
query setting [5, 8].

The sketch of the main ideas is as follows: for any vector ~v 2 Rn, the error of
~v with respect to the target vector ~u is simply error(~v) = PrEX (~u;D)[sign(~v�~x) 6=
sign(~u�~x)]. The estimation of such a probability clearly falls into the statistical
query model by setting �~v(~x; `) = 1 if and only if sign(~v�~x) agrees with the
label `. Now it is not di�cult to show that for radially symmetric distributions,
error(~v) = �(~u;~v)=�, where �(~u;~v) is the angle between ~u and ~v. Thus by
obtaining accurate estimates of error(~v) we obtain accurate estimates of the
projection of the target ~u onto ~v. Thus, our algorithm is to choose n linearly
independent vectors ~v1; : : : ; ~vn and use the oracle STAT (~u;D) to estimate the
coordinates of ~u in the ~vi system in the way suggested. It is not hard to show
that if our estimates are accurate within an additive factor of �=n, then the
resulting hypothesis vector ~u0 will satisfy error(~u0) � �. Since this is an e�cient
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algorithm for learning from statistical queries, we immediately have an e�cient
algorithm for learning with noise.

6.3 Learning Rectangles in High Dimension

We now give an e�cient statistical query algorithm for the class of axis-aligned
rectangles in n-dimensional space. This class was �rst studied by Blumer et
al. [7], who analyzed the algorithm that takes the smallest axis-aligned rectangle
consistent with a large sample. Note that this algorithm is not noise-tolerant,
since in the presence of noise there may be no axis-aligned rectangle separating
the positive examples from the negative examples.

Here we need to use the variant of the statistical query model in which we are
given access toD in addition to STAT (f;D) (see Remark 3 followingDe�nition 3
and the comments following the proof of Theorem 3). Our algorithm begins by
samplingD and using the inputs drawn to partition n-dimensional space. More
precisely, for each dimension i, we use the sample to divide the xi-axis into d=�
intervals with the property that the xi component of a random point from D is
approximately equally likely to fall into any of the intervals. This can be done
using methods similar to those of Kearns and Schapire [20].

We now estimate the boundary of the target rectangle separately for each
dimension using STAT (f;D). Note that if the projection of the target rect-
angle onto the xi-axis does not intersect an interval I of that axis, then the
conditional probability pI that the label is positive given that the input has
its xi component in I is 0. On the other hand, if the target's projection onto
I is nonzero and there is signi�cant probability that a positive example of the
target has its xi component in I, then pI must be signi�cantly larger than 0.
Thus our algorithm can start from the left, and moving to the right, place the
left xi-boundary of the hypothesis rectangle at the �rst interval I such that
pI is signi�cant (at least polynomial in �=n); note that estimating pI can be
done solely with calls to STAT (f;D) once the intervals are de�ned for each
coordinate. The analogous computation is done from the right, and for each
dimension. The result is an e�cient (polynomial in 1=� and n) algorithm for
learning n-dimensional rectangles from statistical queries, immediately implying
a noise-tolerant learning algorithm.

A combination of the ideas given here and those in the subsection above
on covering algorithms yields an e�cient noise-tolerant learning algorithm for
unions of rectangles in the Euclidean plane.

7 A Hard Class for Learning from Statistical

Queries

The results of the last section might tempt us to conjecture that any class
e�ciently learnable in the Valiant model is e�ciently learnable from statistical
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queries. In this section, we prove this conjecture to be false, by showing that
the class of all parity concepts (where each potential target concept is the parity
of some unknown subset of the boolean variables x1; : : : ; xn), which is known
to be e�ciently learnable in the Valiant model via the solution of a system of
linear equations modulo 2 [10, 15], is not e�ciently learnable from statistical
queries. The fact that the separation of the two models comes via this class is
of particular interest, since the parity class has no known e�cient noise-tolerant
algorithm.

Theorem 5 Let Fn be the class of all parity concepts over n boolean vari-
ables, and let F =

S
n�1Fn. Then F is not e�ciently learnable from statistical

queries.

Proof: We prove that it is impossible to learn Fn from statistical queries
in time polynomial in n even in the case that the target concept f is drawn
randomly from Fn and the target distribution D is uniform over f0; 1gn.

We begin by �xing any mapping � : f0; 1gn�f0; 1g ! f0; 1g. Our immediate
goal is to show that a query for STAT (f;D) on any such � reveals essentially no
information about f ; this will be accomplished by computing an upper bound
on the variance of P�(f). Let us use P�(f) to denote PrEX (f;D)[� = 1] in
order to make explicit the dependence of P� on f ; in the case of the uniform
distribution, we simply have P�(f) = (1=2n)

P
x2f0;1gn �(x; f(x)). Now let

Ef [P�(f)] denote the expected value of P�(f), where the expectation is taken
over the random draw of a parity concept f uniformly from Fn. Then by
additivity of expectations we may write

Ef [P�(f)] = (1=2n)
X

x2f0;1gn

Ef [�(x; f(x))]

= (1=2n)
X

x2f0;1gn

Q(x) (6)

where we de�ne Q(x) = 0 if �(x; 0) = �(x; 1) = 0 (let Q0 denote set of all
such x), Q(x) = 1 if �(x; 0) = �(x; 1) = 1 (let Q1 denote the set of all such
x), and Q(x) = 1=2 if �(x; 0) 6= �(x; 1) (let Q1=2 denote the set of all such x).
Equation (6) follows from the fact that for any �xed x 2 f0; 1gn, a randomly
chosen parity concept f is equally likely to satisfy f(x) = 0 and f(x) = 1. Now
let q0; q1 and q1=2 denote the cardinalities of Q0; Q1 and Q1=2, respectively, so
q0+ q1+ q1=2 = 2n. Then from Equation (6) and the de�nition of Q(x) we may
write

Ef [P�(f)] = (1=2n)(q1 + (1=2)q1=2): (7)

We may also write

Ef [P�(f)
2] = (1=22n)

X

x;y2f0;1gn

Ef [�(x; f(x))�(y; f(y))]:
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For a set S � f0; 1gn, let us introduce the shorthand notation

�(S) =
X

x2S;y2f0;1gn

Ef [�(x; f(x))�(y; f(y))]:

Then we may further decompose the above sum by writing

Ef [P�(f)
2] = (1=22n)(�(Q0) + �(Q1) + �(Q1=2)):

The summation �(Q0) is simply 0, since �(x; f(x)) = 0 here. �(Q1) simpli�es
to q1

P
y2f0;1gn Ef [�(y; f(y))] since �(x; f(x)) = 1, and this simpli�es further

to be q1(q1 + (1=2)q1=2) by Equations (6) and (7). For the summation �(Q1=2)
we also need to consider the possible cases of y. If y = x (which occurs for only
a single value of y), then �(x; f(x))�(y; f(y)) = �(x; f(x))2 will be 1 if and only
if f(x) = bx for the value bx 2 f0; 1g such that �(x; b) = 1. This will occur with
probability 1=2 for randomly drawn parity concept f . If y falls in Q0 (which
occurs for q0 values of y), �(x; f(x))�(y; f(y)) = 0. If y falls in Q1 (which occurs
for q1 of the values of y), then �(x; f(x))�(y; f(y)) = �(x; f(x)) and again this
is 1 if and only if f(x) = bx, which again will occur with probability 1=2 for a
random parity concept f . Finally, if y falls into Q1=2 but is not the same as x
(which occurs for q1=2 � 1 of the values of y), then �(x; f(x))�(y; f(y)) = 1 if
and only if f(x) = bx and f(y) = by, where bx is as before and by 2 f0; 1g is the
value satisfying �(y; by) = 1. Since for any �xed x and y, all four labelings of x
and y are equally likely for a randomly chosen parity concept f , this will occur
with probability 1=4.

Putting this all together, we write

Ef [P�(f)
2] = (1=22n)(q1(q1 + (1=2)q1=2) + (8)

q1=2(1=2 + (1=2)q1 + (1=4)(q1=2� 1))):

Now from Equation (7) we may write

Ef [P�(f)]
2 = (1=22n)(q1 + (1=2)q1=2)

2:

By combining this equality with Equation (8), some simple algebra then gives

Varf [P�(f)] = Ef [P�(f)
2]� Ef [P�(f)]

2

= q1=2=(4 � 2
2n)

� 1=(2n+2)

since q1=2 � 2n. Thus we have shown that for any �, the variance of P� is
exponentially small with respect to the random draw of target concept. Now
suppose for contradiction that parity concepts are e�ciently learnable from
statistical queries by an algorithm L. Fix � to be any constant smaller than 1=4
(note that with respect to the uniform distribution, any two parity concepts

19



di�er with probability 1=2). Assume without loss of generality that � is a lower
bound on the allowed approximation error of L's queries, where � = 1=p(n) for
some polynomial p(�) since � is constant.

Although the queries made by L may be dynamically chosen, L makes some
�rst query (�1; �). Let �1; : : : ; �r(n) be the sequence of queries made by L when
the answer returned to each query (�i; �) is simply Ef [P�i(f)]. Here r(n) is
polynomial since L is e�cient. Then it is not hard to show using Chebyshev's
inequality and the above bound on Varf [P�i(f)] that with high probability, a
randomly chosen parity concept f 0 will be consistent with the query responses
received by L | that is, with high probability f 0 satis�es

Prf [P�i(f)] � � � P�(f
0) � Prf [P�i(f)] + �

for all 1 � i � r(n). Since many parity concepts are consistent with the re-
sponses received by L, the error of L's hypothesis must be large with respect to
the random draw of the target f 0; this follows from the fact if h agrees with one
parity concept with probability at least 1� �, it must disagree with any other
parity concept with probability at least 1=2� �. (Theorem 5)

Note that the proof of Theorem 5 shows that the class of parity concepts
is not e�ciently learnable from statistical queries for information-theoretic rea-
sons. Thus while it can be shown that in the absence of constraints on compu-
tation time or the allowed approximation accuracy, the Valiant and statistical
query models are equivalent, Theorem 5 demonstrates that the requirement that
an algorithmmake only a polynomial number of queries, each of at least inverse
polynomial allowed approximation error, separates the models with no unproven
complexity assumptions.

Theorem 5 has recently been strengthened and generalized [6] to show that
the number of statistical queries required for learning any class is determined
by the number of \nearly orthogonal" concepts contained in the class.

8 A Lower Bound on Query Complexity

The proof of Theorem 5 is of particular interest because it demonstrates that
while the Vapnik-Chervonenkis dimension of a concept class characterizes the
number of random examples required for learning in the Valiant model [7], it
cannot provide even a rough characterization of the number of queries required
for learning in the statistical query model: the Vapnik-Chervonenkis dimension
of the class of parity concepts is �(n), and we have shown that the number
of statistical queries required is exponential in n. This demonstrates that the
Vapnik-Chervonenkis dimension cannot provide good general upper bounds on
query complexity, but the possibility of a good general lower bound remains,
and is the subject of this section.

It is important to carefully specify what we desire from a lower bound on
the number of statistical queries, due to the potential tradeo� between the
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number of queries made and the allowed approximation error of those queries.
More precisely, from Theorem 1 and the lower bound on sample sizes for the
Valiant model given by Ehrenfeucht et al. [9], we can easily derive an initial
but unsatisfying bound on the number of queries required in the statistical
query model: since we know that an algorithm using r queries, each of allowed
approximation error at least �, can be simulated to obtain an algorithm in
the Valiant model using r=�2 examples (ignoring the dependence on �), the
Ehrenfeucht et al. bound indicates that r=�2 = 
(d=�) must hold, where d is
the Vapnik-Chervonenkis dimension of the concept class. Thus we have r =

(d�2=�). This bound allows the possibility that there is a concept class of
VC dimension d which can be learned from just a single statistical query of
approximation error

p
�=d. Similarly, since we have � = O(

p
�r=d) the bound

also allows the possibility that d=� queries of allowed approximation error 1 could
always su�ce for learning. This latter possibility is ludicrous, since allowed
approximation error 1 allows the oracle STAT (f;D) to return arbitrary values
in [0; 1], rendering learning impossible in any number of queries.

We now give a considerably better bound, in which the the number of queries
made is bounded from below and the allowed approximation error of these
queries is bounded from above simultaneously.

Theorem 6 Let F be any concept class, let d be the Vapnik-Chervonenkis
dimension of F , and let L be an algorithm for learning F from statistical
queries. Then for any �, there is a distribution D such that L must make
at least 
(d= logd) queries with allowed approximation error O(�) to the oracle
STAT(f;D) in order to �nd a hypothesis h satisfying error(h) � �.

Proof: The proof begins by using the standard hard distribution for learn-
ing in the Valiant model [7, 9]. Thus, given the target error value �, we let
fx0; x1; : : : ; xd0g be a shattered set (where d0 = d � 1), and let D give weight
1� 2� to x0 and weight 2�=d0 to each of x1; : : : ; xd0 . We let F 0 be a �nite sub-
class of F in which f(x0) = 0 for all f 2 F 0, and for each of the 2d

0

labelings of
x1; : : : ; xd0 there is exactly one representative concept in F 0. The target concept
f will be chosen randomly from F 0.

Now under these settings, a number of simplifying assumptions regarding
the nature of L's queries to STAT(f;D) can be made. First, for any � we must
have either P� � 2� or P� � 1 � 2� regardless of the target f due to the large
weight given to x0. Thus we can immediately conclude that any query (�; �)
made by L in which � � 2� reveals no information about f (since an adversary
generating the answers of STAT (f;D) can always return either the value 2� or
the value 1� 2� on such queries).

Secondly, if we regard the target concept f as a length d0 bit vector f =
(f(x1); : : : ; f(xd0 )), and we even allow L to make queries with allowed approxi-
mation error � = 0, then P� is determined by the Hamming distances �(f; g0)
and �(f; g1), where gb is the vector of length d0 in which the ith bit is 1 if and
only if �(xi; b) = 1 and �(xi;:b) = 0.
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We can thus reduce the problem of learning from statistical queries in this
setting to the following simpler learning problem: the target is a d0-dimension
bit vector f , and the learner L makes vector queries g and receives the Hamming
distance �(f; g) from f to g. The learner must eventually output another bit

vector h satisfying (2�=d0)
Pd0

i=1 fi � hi � �. To prove the theorem it su�ces to
lower bound the number of vector queries made by L in this model.

Let Fi�1 denote the class of concepts consistent with the answers received
by L on its �rst i�1 query vectors g1; : : : ; gi�1, so Fi�1 = ff 0 2 F 0 : �(f 0; gj) =
�(f; gj); 1 � j � i � 1g. Then the ith query vector gi partitions Fi�1 into
d0 + 1 = d pieces Fj

i�1 = ff 0 2 Fi�1 : �(f
0; gi) = jg for 0 � j � d0.

Now it is easy to show using a Bayesian argument that rather than choosing
the target concept f randomly from F 0 before L makes its vector queries, it is
equivalent to choose a new target concept f i after every vector query gi�1 by
drawing f i randomly from Fi�1 (in the sense that for all i, the expected error
of L's hypothesis after i vector queries with respect to the current target is the
same in both cases). In the latter model, based on the random draw of f i, the
class Fi is F

j
i�1 with probability jFj

i�1j=jFi�1j.
It is not hard to see that for any natural number r � 1, we have Pr[jFij �

(1=dr)jFi�1j] � 1� 1=r, where this probability is taken over the random choice
of f i. Thus we have that for any sequence of r vector queries, with probability
at least (1�1=r)r (which is lower bounded by a constant for r su�ciently large)
we have jFrj � (1=dr)r2d

0

. Solving for conditions on r to satisfy 2d
0=2 � jFrj �

(1=dr)r2d
0

yields r = 
(d= logd). For r smaller, the �nal target concept fr+1 is
drawn randomly from a set of vectors whose size is (with constant probability)
at least 2d

0=2. It can then be shown by a simple counting argument that the
expected Hamming distance between L's �nal hypothesis h and the �nal target
f = fr+1 is 
(d) (here the expectation is taken over the draw of fr+1 from
Fr). This implies that the expected error of h is at least a constant times �, so
learning cannot be complete. (Theorem 6)

9 Handling a Variable Noise Rate

One objection to the classi�cation noise model we have investigated is its as-
sumption of the existence of a �xed noise rate �: independent of any previous
misclassi�cations, the probability of the next example being misclassi�ed is al-
ways exactly �. In this section, we would like to formalize a more realistic model
in which the noise rate � may uctuate over time, but in which it is still fair to
regard any misclassi�cations as noise in the sense that they are independent of
the input drawn. It appears that relaxing this latter condition severely limits
the cases for which e�cient learning is possible, and results in a perhaps overly
pessimistic noise model [31, 17], unless the dependence of the noise on the input
has natural structure that can be exploited by the learner [20].

To formalize the new model, we allow an adversary to choose an in�nite bias
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sequence �1; �2; : : : ; �m; : : :; we require that this sequence be �xed in advance,
and thus not dependent on the actual examples drawn, as discussed above. Each
�i 2 [0; 1] is interpreted as the probability that the ith example drawn by the
learner has its label corrupted. The only restriction on the �i is that for any
valuem we must have 1=m

Pm
i=1 �i � �, where 0 � � < 1=2 is the e�ective noise

rate. Thus, we simply demand that for any sample size m, the e�ective noise
rate for this sample size is bounded by �. As usual, we assume without loss
of generality that a learning algorithm is given an upper bound � � �b < 1=2
and is allowed time polynomial in 1=(1 � 2�b) and the usual parameters. Now
when learning a target concept f with respect to distribution D, for any i the
ith example requested by the learner is chosen as follows: x is drawn randomly
according to D, and a coin with probability 1 � �i of heads is tossed. If the
outcome is heads, the example is hx; f(x)i; otherwise it is hx;:f(x)i. We shall
refer to this model as the variable noise rate model , and we say that F can be
learned in this model if there is an e�cient algorithm tolerating any e�ective
noise rate � < 1=2.

Several comments regarding this model are in order. First of all, note that
the adversary may choose �i = 0, �i = 1 or any value in between. Thus, the
adversary may deterministically specify at which times there will be misclassi-
�cations. Secondly, it is no longer true that the probability of misclassi�cation
at a given time is independent of the probability at other times, since the bias
sequence is arbitrary (subject to the averaging condition). These two properties
make variable noise rates a good model for noise bursts, in which a normally
functioning system will have no misclassi�cations, but an occasional malfunc-
tion will cause a concentrated stream of consecutive misclassi�cations. Finally,
however, note that despite these allowed dependences, the probability that any
particular input is misclassi�ed at any particular time is the same for all inputs,
since the bias sequence must be speci�ed by the adversary before the examples
are drawn.

The following theorem states that learning in the variable noise rate model is
in fact no more di�cult than learning in the standard classi�cation noise model.

Theorem 7 Let F be a class of concepts over X, and let H be a class of repre-
sentations of concepts over X. Then F is e�ciently learnable with noise using
H if and only if F is e�ciently learnable with variable noise rate using H.

Proof: Variable noise rate learning trivially implies learning in the standard
noise model. For the converse, let L be an e�cient algorithm for learning F
in the standard noise model. Let m be an appropriate sample size determined
by the analysis, and let us �rst ip m coins of biases �1; : : : ; �m to determine
the noise bits b1; : : : ; bm used in generating the sample given to L. Now for m
su�ciently large, the number of 1's (denoting misclassi�cations) generated in
this sequence is bounded by (� + (1 � 2�)=4)m with overwhelming probability
via a standard Cherno� or Hoe�ding bound analysis. Thus, we can immediately
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reduce our analysis to that of a binary bias sequence with e�ective noise rate
bounded by (� + (1� 2�)=4) < 1=2. Let 0 � r � m denote the actual number
of misclassi�cations in the bit sequence.

The main trick is to draw m examples for L (which are then given noisy
labels according to the bits bi), but to give L a random permutation of these
m examples. In this way we almost simulate a standard classi�cation noise
process with noise rate r=m. The only di�erence is that whereas such a process
would be binomially distributed with a mean of r misclassi�cations, we are
generating only the slice of this distribution with exactly r misclassi�cations.
However, this slice constitutes a signi�cant fraction of the binomial distribution
(the probability of falling on the mean is easily seen to be lower bounded by
an inverse polynomial in m), and without loss of generality the dependence of
L's sample size on the con�dence parameter � is only log(1=�) via standard
\con�dence boosting" arguments. We can thus set the con�dence parameter
value given to L to be �0 = O(�=m), which forces L to perform correctly on 1��
of the r-slice of the binomial distribution with a mean of r misclassi�cations.
The modest log 1=� dependence allows us to do this while keeping the required
sample size m polynomial. (Theorem 7)

As an immediate corollary, we obtain that e�cient learning from statisti-
cal queries implies e�cient learning with variable noise rate. Note that the
equivalence given by Theorem 7 holds for distribution-speci�c learning as well.

10 Open Problems

In addition to the long-standing problems of �nding e�cient distribution-free
noise-tolerant learning algorithms for the classes of perceptrons and parity con-
cepts (or proving that none exist), several equivalences between the models
studied here are open. For instance, is e�cient learning with noise equivalent
to e�cient learning from statistical queries? Even stronger, is any class e�-
ciently learnable in the Valiant model also e�ciently learnable with noise? Note
that any counterexamples to such equivalences should not depend on syntactic
hypothesis restrictions, but should be representation independent [16].
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