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Abstract

In this paper we introduce and investigate a mathemati-
cally rigorous theory of learning curves that is based on ideas
from statistical mechanics. The advantage of our theory over
the well-established Vapnik-Chervonenkis theory is that our
bounds can be considerably tighter in many cases, and are
also more reective of the true behavior (functional form)
of learning curves. This behavior can often exhibit dra-
matic properties such as phase transitions, as well as power
law asymptotics not explained by the VC theory. The dis-
advantages of our theory are that its application requires
knowledge of the input distribution, and it is limited so far
to �nite cardinality function classes.

We illustrate our results with many concrete examples of
learning curve bounds derived from our theory.

1 Introduction

According to the Vapnik-Chervonenkis (VC) theory of learn-
ing curves [31, 30], minimizing empirical error within a func-
tion class F on a random sample of m examples leads to
generalization error bounded by ~O(d=m) (in the case that

the target function is contained in F) or ~O(
p
d=m) plus

the optimal generalization error achievable within F (in the
general case). 1 These bounds are universal: they hold for
any class of hypothesis functions F , for any input distribu-
tion, and for any target function. The only problem-speci�c
quantity remaining in these bounds is the VC dimension
d, a measure of the complexity of the function class F . It
has been shown that these bounds are essentially the best
distribution-independent bounds possible, in the sense that
for any function class, there exists an input distribution for
which matching lower bounds on the generalization error
can be given [6, 8, 26].

The universal VC bounds can give the impression that
the true behavior of learning curves is also universal, and es-

sentially described by the functional forms d=m and
p
d=m.

1Here for simplicity we are using the ~O(�) notation, which hides
logarithmic factors in the same way the O(�) notation hides constant
factors.

However, it is becoming clear that learning curves exhibit a
diversity of behaviors. For instance, some researchers have
attempted to �t learning curves from backpropagation ex-
periments with a variety of functional forms, including expo-
nentials [4]. Backpropagation experiments with handwritten
digits and characters indicate that good generalization error
is sometimes obtained for sample sizes considerably smaller
than the number of weights (presumed to be roughly the
same as the VC dimension) [20], though the VC bounds are
vacuous for m smaller than d. Discrepancies between the
VC bounds and actual learning curve behavior have also
been pointed out and analyzed in other machine learning
work [23, 21].

Of course, the VC bounds might simply be inapplica-
ble to these experiments, because backpropagation is not
equivalent to empirical error minimization. Vapnik has con-
jectured that backpropagation can access only a limited por-
tion of the function space, so that the \e�ective dimension"
is much smaller than the VC dimension. According to this
type of reasoning, learning curves are heavily a�ected by
the speci�cs of the algorithm. Another possibility is that
the VC bounds are applicable, but sometimes fail to cap-
ture the true behavior of particular learning curves because
of their independence from the distribution. Hence some
theorists have sought to preserve the functional form of the
VC bounds, but to replace the VC dimension in this func-
tional form by an appropriate distribution-speci�c quantity,
such as the VC entropy (which is the expectation of the log-
arithm of the number of dichotomies realized by the function
class) [30, 17, 3]. Work on the \empirical VC dimension"
has tried to measure the dependence of learning curves on
both the algorithm and the distribution via backpropagation
experiments [29].

Perhaps the most striking evidence for the fact that the
VC bounds can sometimes fail to model the true behavior of
learning curves has come from statistical physics. In recent
years, the tools of statistical mechanics have been applied
to analyze learning curves with rather curious and dramatic
behavior (See the survey of Watkin, Rau and Biehl and the
references therein [32]). This has included learning curves
exhibiting \phase transitions" (sudden drops in the gener-
alization error) at small sample sizes, as well as asymptotic
power law behavior 2 in which the power law exponent is
neither 1 nor 1/2. Although these learning curves do not
contradict the VC bounds, it seems fair to say that their
behavior is qualitatively di�erent. The theoretical revisions
of the VC theory mentioned above cannot explain such be-

2By a power law, we mean the functional form (a=m)b , where
a; b > 0 are constants.



havior, because they conservatively modify only with the
constant factors of the same power laws.

In this paper, we show that ideas from statistical me-
chanics (namely, the annealed approximation [18, 24, 1, 27]
and the thermodynamic limit [27]) can be used as the basis
of a mathematically precise and rigorous theory of learning
curves. 3 This theory will be distribution-speci�c, but will
not attempt to force a power law form on learning curves.
Speaking coarsely, there are two main ideas behind our the-
ory that are novel to someone familiar with the VC theory.
The �rst new idea is related to the annealed approxima-
tion. It is based on the simple observation that in the VC
theory and its proposed distribution-dependent variants, all
hypotheses of generalization error greater than � are treated
equally by the analysis | for instance, by assigning (1��)m
to all such hypotheses as an upper bound on the probability
of being consistent with m random examples. We undertake
a more re�ned analysis that decomposes the function class
into error shells that actually attribute the correct general-
ization error to each hypothesis, and give uniform conver-
gence bounds on each shell. The resulting bounds already
predict learning curve behavior not explained by the VC
theory, but are di�cult to interpret.

The second new idea is to formalize a particular mathe-
matical limit known to statistical physicists as the thermo-
dynamic limit . The goal of this limit is to express the error
shell decomposition bounds in a form that is both useful
and intuitive. The thermodynamic limit accomplishes this
goal by introducing the notion of the correct scale at which
to analyze a learning curve, and by expressing the learning
curve as a competition between an entropy function (mea-
suring the logarithm of number of hypotheses as a function
of their generalization error �) and an energy function (mea-
suring the probability of minimizing the empirical error on
a random sample as a function of generalization error).

The resulting theory provides a formalized variant of
the statistical physics approach that is able to predict and
explain many nontrivial behavioral phenomena of learning
curves, including phase transitions. It is far from being the
last word on learning curves, and indeed, the task of provid-
ing a truly universal theory of learning curves | one that
applies to all function classes, input distributions, and target
functions, and is furthermore tight in all cases | appears to
be a daunting if not unreasonable task. Furthermore, this
paper concentrates on the case of �nite cardinality function
classes (although we provide some discussion of possible ex-
tensions to the in�nite case). For someone familiar with the
VC theory, it may be somewhat surprising that we devote so
much e�ort to the �nite case, since in the VC theory a power
law uniform convergence bound can be obtained trivially for
�nite classes. Briey, it turns out that in our formalism, it
can be nontrivial to translate a collection of separate uniform

3Aside to the statistical physicist: the annealed approximationwas
previously used to approximate the learning curve of a Gibbs learner,
which chooses a hypothesis from a Gibbs distribution with the em-
pirical error as energy. Here we adopt a microcanonical rather than a
canonical ensemble, enabling us to obtain rigorous upper bounds from
the annealed theory, rather than approximations. These bounds hold
for all empirical error minimization algorithms, including the zero
temperature limit of the Gibbs algorithm. Because of our desire for
rigor, we have not used the replica method [11] in this paper. Engel,
van den Broeck, and Fink have used the replica method to calculate
the maximum deviation between empirical and generalization error
in the function class, and the maximum generalization error in the
version space [10, 9]. Although the replica method produces exact
results when used correctly, it rests upon an interchange of limits for
which no rigorous justi�cation has been found.

convergence bounds, one for each error shell, into a learning
curve bound, even in the �nite case. By concentrating on
this translation step, our methods can yield much tighter
learning curve bounds than the VC theory in some cases.

The reader should regard the current paper as having
three primary goals. First, we aim to derive from �rst prin-
ciples a formal theory retaining the spirit of the statistical
mechanics approach. Second, we aim to provide evidence
in the form of speci�c examples and a general lower bound
that the new theory truly is closer to modeling the actual
behavior of learning curves than the standard VC theory.
Third, we aim to precisely relate the statistical mechanics
approach to the VC theory.

2 The Finite and Realizable Case

We begin with the most basic model of learning an unknown
boolean target function. We assume that the target function
f is chosen from a known class F of f0; 1g-valued functions
over an input space X. We refer to this as the realizable
setting, since the learning algorithm knows a class of func-
tions that contains or realizes the target function. We also
assume that F has �nite cardinality.

The learning process consists of giving a learning algo-
rithm a �xed �nite number m of independent random train-
ing examples of f . Thus, let D be any �xed probability dis-
tribution over X. The learning algorithm receives as input
a training sample S = fhxi; f(xi)ig1�i�m. Each input xi in
the training sample is chosen randomly and independently
according to the �xed distribution D. For any boolean func-
tion h, the generalization error of h is the probability of dis-
agreement between h and f : �gen(h) = Prx2D[h(x) 6= f(x)].
Note that the training sample S depends on f and m and
�gen(h) depends on f and D. Throughout the paper we will
consider these quantities as �xed and suppress such depen-
dencies.

If we let h denote the hypothesis function output by a
\reasonable" learning algorithm following training on m ex-
amples, what is the behavior of �gen(h) as a function of the
sample size m? In this paper, \reasonable" will essentially
mean any algorithm that chooses a hypothesis function that
is consistent with the training sample (or one that chooses
a hypothesis with minimum empirical error on the sample
in the unrealizable case). This notion is both natural and
mathematically convenient, because it allows us to give an
analysis of the behavior of �gen(h) that ignores the details
of the learning algorithm, and to instead concentrate exclu-
sively on the expected error of any consistent hypothesis.

2.1 Relating the version space to the �-ball

For any sample S, we de�ne the version space by

VS(S) = fh 2 F : 8hx; f(x)i 2 S; h(x) = f(x)g:
Thus, VS(S) � F is simply the subclass of all functions h
that are consistent with the target function f on the sample
S. The �-ball about the target function f is de�ned as the
set of all functions with generalization error not exceeding
�:

B(�) = fh 2 F : �gen(h) � �g:
Thus, VS(S) is a sample-dependent subclass of F , and B(�)
is a sample-independent subclass of F , and both contain the
target f .
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The goal of this subsection is to examine the relation-
ship between VS(S) and B(�). More speci�cally, for a sam-
ple S of size m, we would like to calculate the probability
that VS(S) is contained in B(�). This probability is sig-
ni�cant for learning, because it allows us to bound the er-
ror of any consistent learning algorithm: we can always as-
sert that with probability at least PrS[VS(S) � B(�)], any
consistent hypothesis has generalization error less than �.
Here the probability is taken over the m independent draws
from D used to obtain S. We now derive a lower bound
on PrS[VS(S) � B(�)], or equivalently, an upper bound on
PrS[VS(S) 6� B(�)].

The probability that a function h of generalization er-
ror �gen(h) remains in the version space after m examples
decays exponentially with m:

PrS[h 2 VS(S)] = (1� �gen(h))
m:

Since the rate of decay is slower for small �gen(h), the version
space should consist only of hypotheses with small general-

ization error. Let B(�) = F �B(�), the functions in F with
generalization error greater than �. Since the probability of
a disjunction of events is upper bounded by the sum of the
probabilities of the events, we �nd that

PrS[VS(S) 6� B(�)] = PrS[9h 2 B(�) : h 2 VS(S)](1)

�
X

h2B(�)

PrS [h 2 VS(S)] (2)

=
X

h2B(�)

(1� �gen(h))
m (3)

which proves the following theorem.

Theorem 1 PrS[V S(S) � B(�)] � 1� �, where

� =
X

h2B(�)

(1� �gen(h))
m:

We will refer Theorem 1 as the union bound . It is closely
related to the annealed approximation, which has been used
by physicists to study the performance of the Gibbs learning
algorithm. Note that the sum in the union bound has a
direct interpretation, being the average number of surviving
hypotheses that lie outside B(�).

We can restate Theorem 1 in the following alternate
form, in which we regard � as given and then bound the
achievable �.

Corollary 2 Let F be any �nite boolean function class. For
any 0 < � � 1, with probability at least 1�� any function h 2
F consistent withm random examples of a target function in
F obeys �gen(h) � �, where � is the smallest value satisfyingP

h2B(�)
(1 � �gen(h))

m � �.

2.2 The standard cardinality bound

Since �gen(h) > � for all h 2 B(�), the union bound can be
further transformed byX
h2B(�)

(1 � �gen(h))
m �

X
h2B(�)

(1� �)m � jFj(1� �)m: (4)

By applying Theorem 1 to this bound, we obtain the stan-
dard result that with probability 1 � �, any consistent hy-
pothesis h obeys �gen(h) � (ln(jFj=�))=m. Since the only
dependence of this bound on the learning problem is through
the cardinality of the function class F , we will refer to it as
the cardinality bound. In particular, it depends neither on
the input distribution D nor on the target function f .

Although this bound is powerful because of its generality,
there is no reason to believe that it is tight for speci�c distri-
butions. Its tightness depends on the chain of inequalities
beginning with Equation (1) and those given in Equation
(4), and any link in this chain can be weak.

Most of the work of this paper will be directed toward
�nding tighter alternatives to Equation (4). We will slice

B(�) into many shells with di�erent error levels rather than
lump all of them together at �, as was done in Equation (4).
Furthermore, our calculations will make use of all the shell
cardinalities, not just the crude measure of total cardinality
of the function class. This more re�ned bookkeeping can
lead to learning curves that have radically di�erent behavior
than that predicted by the simple cardinality bound.

On the other hand, we will generally rely on the union
bound as is. It is tight if the survivals of di�erent hypotheses
are mutually exclusive events. In fact, when hypotheses have
small disagreement, their survivals are often positively corre-
lated instead. Nevertheless, for the �nite function classes ex-
amined here, the crudeness of Equation (1) will not weaken
our bounds too severely. In particular, we will exhibit ex-
amples of distribution-speci�c bounds that are much tighter
than the distribution-free VC bounds.

It is only for in�nite function classes that the union
bound fails spectacularly, for here the bound diverges and
becomes useless. The VC dimension, VC entropy, and ran-
dom covering number [30, 22, 7, 16] are the known tools for
dealing with the correlations neglected by the union bound.
These tools have previously been applied to the function
class as a whole. In our current research e�orts, we are
attempting to re�ne these tools by applying them to error
shells. In Section 4 we discuss an alternative approach that
reduces the in�nite case to a sequence of �nite problems.

2.3 Decomposition into error shells

Since we are assuming F to be a �nite class of functions,
there are only a �nite number of possible values that �gen(h)
can assume. Let us name and order these possible error val-
ues 0 = �1 < �2 < � � � < �r � 1. Thus, r � jFj, and for each
1 � i � r there exists an hi 2 F such that �gen(hi) = �i.
Then for each index 1 � j � r we can de�ne the cardinality
of the jth error shell Qj = jff 0 2 F : �gen(f

0) = �jgj. Thus
Qj is the number of functions in F whose generalization er-
ror is exactly �j, and

Pr

j=1 Qj = jFj. Hence we arrive at

the shell decomposition of the union bound:

X
h2B(�i)

(1� �gen(h))
m =

rX
j=i

Qj(1� �j)
m (5)

Together with Theorem 1, we can obtain the following bound
on �gen(h) for consistent learning algorithms.

Theorem 3 For any �xed sample size m and con�dence
value �, with probability at least 1� � any h 2 VS(S) obeys
�gen(h) � �i, where �i is the smallest error value satisfyingPr

j=iQj(1� �j)
m � �.

3



In other words, if we �x the con�dence � then Theorem 3
provides the bound

�gen(h) � min

(
�i :

rX
j=i

Qj(1� �j)
m � �

)
(6)

with probability at least 1 � � for any consistent h. While
this bound is clearly a function of m, its behavior is not
especially easy to understand in its current form. For this we
rely on a particular limit popular in the statistical mechanics
literature known as the thermodynamic limit .

2.4 The thermodynamic limit method

There are two basic ideas or assumptions behind the ther-
modynamic limit method as we formalize it. The �rst idea
is that we are often interested in the learning curve of a
parametric class of functions, and in such cases the number
of functions in the class at any given error value may have a
limiting asymptotic behavior as the number of parameters
becomes large. The second idea is to exploit this limiting
behavior in order to describe learning curves as a competi-
tion between the logarithm of the number of functions at a
given error value (an entropy term) and the error value itself
(an energy term).

As we shall see, the most important step in applying the
thermodynamic limit method, both technically and concep-
tually, is to �nd the right scaling with which to analyze the
learning curve, and to �nd the best entropy bound for this
scaling. The thermodynamic limit method assumes that an
appropriate scaling and entropy bound are given, and then
provides a learning curve analysis for them, much in the
same way that VC theory assumes that the VC dimension
is known and then provides learning curve upper bounds.
Thus the real work of the user in applying the thermody-
namic limit method (which may be considerable) lies in �nd-
ing the best scaling and entropy bound.

In order to properly de�ne and use the thermodynamic
limit method, we cannot limit our attention to a �xed �nite
class F of functions, but must instead assume an in�nite
sequence of �nite function classes (of presumably increasing
but always �nite cardinality). As we have already suggested,
it will be convenient to think of this sequence as being ob-
tained in some uniform manner by increasing the number
of parameters in a parametric class of functions. Thus,
let F1;F2; : : : ;FN ; : : : be any in�nite sequence of classes of
functions, where each FN is a class of boolean functions over
an input space XN and obeys jFN j � 2N . We may think of
N as just an abstract indexing obeying N � log jFN j, and
thus representing the number of bits or parameters required
to encode functions in FN . Let DN be a �xed probability
distribution over XN . A typical example of these objects
is where we let XN be N -dimensional Euclidean space, DN

be the uniform distribution over the unit sphere in XN , and
FN be the class of all N -dimensional perceptrons in which
each weight is constrained to be either 1 or �1.

Now suppose that for each class FN we also choose a
�xed target function fN 2 FN , thus yielding an in�nite se-
quence of target functions f1; f2; : : : ; fN ; : : :. Our goal now
is to provide a framework in which we can analyze the lim-
iting generalization error, as N !1, of any algorithm that
always chooses a hypothesis consistent with m random ex-
amples of fN drawn according to DN .

There are a number of problems with this proposal. Fore-
most among these is the question of whether there actually

exists any interesting limiting behavior. For instance, in our
discussion so far we have been suggesting that all the classes
FN are \similar" in the sense of being obtained through
some nice uniform parametric process, with only the number
of parameters varying. If this assumption is grossly violated,
and each FN looks radically di�erent than the last, it may be
nonsensical to analyze the limiting behavior of a consistent
algorithm's error. Similarly, even if the FN are generated in
a uniform fashion, a highly nonuniform sequence of target
functions fN may render the limit meaningless.

There is no de�nitive solution to such obstacles: there
do exist function class, distribution and target function se-
quences for which there is no limiting generalization error
for consistent algorithms, and obviously no theory can as-
sign a tight asymptotic limit in such cases. The thermody-
namic limit method survives these problems by only provid-
ing an upper bound on the asymptotic generalization error.
In those cases where the limit does not exist, this upper
bound may be weak or even vacuous. However, we hope
to show through examples that in many natural cases the
limiting behavior is both well-de�ned and captured by our
theory, and that the resulting upper bound correctly pre-
dicts learning curve behavior that is radically di�erent from
that predicted by more standard methods.

A second and more technical objection to our proposal
is that if we �x a sample size m and let N !1, we should
not expect to obtain any nontrivial bound on the general-
ization error, since the function classes are becoming larger
but the sample size remains �xed. This is exactly right, and
for this reason the thermodynamic limit method examines
the learning curve behavior as both m ! 1 and N ! 1,
but at some �xed rate. This allows us to meaningfully in-
vestigate, for instance, the asymptotic generalization error
when the number of examples is 1=2 the number of param-
eters, twice the number of parameters, 10 times the number
of parameters, and so on. This is frequently the language in
which experimentalists discuss learning curves.

Returning to the development, once we �x target func-
tion sequence fN 2 FN , we can again de�ne the error levels
0 = �N1 < �N2 < � � � < �Nr(N) � 1 for FN with respect to DN ,
where r(N) � jFN j is the number of error levels for this FN ,
DN and fN , and for clarity we have included a superscript
on the error levels indicating N . Recall that by Theorem 3,
we can reduce the problem of bounding the error of a hy-
pothesis from FN consistent with m examples of fN drawn
according to DN to the problem of �nding the smallest er-
ror level �Ni such that the right-hand sum in Equation (6) is
bounded by � (where, in the thermodynamic limit, � will go
to 0). The �rst step of the thermodynamic limit method is
to simply rewrite this sum in a more convenient but entirely
equivalent exponential form:

r(N)X
j=i

QN
j (1� �Nj )

m =

r(N)X
j=i

elogQ
N
j
+m log(1��N

j
): (7)

Notice that in each term of this sum, the exponent term
logQN

j is positive, and the exponent term m log(1 � �Nj ) is
negative. Thus, informally speaking, the contribution of the
jth term in the sum is largely determined by the competition
between these two quantities: if logQN

j � �m log(1 � �Nj )
then the contribution of the jth term is large (and thus,
to make the overall sum smaller than �, we must eliminate
terms by increasing i and consequently weakening our bound
on the error), and if logQN

j � �m log(1 � �Nj ) then the
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contribution of the jth term is negligible.
In particular, if the sample size m is such that logQN

j �
�m log(1 � �Nj ) for all j then we cannot give a nontrivial

bound on the error, and if logQN
j � �m log(1� �Nj ) for all

j, and r(N) is not too large, then the error should be close
to 0. Such cases are uninteresting. In general, the values of
the sample size m for which it will be most interesting to
analyze the learning curve are those for which there is some
real competition between the logQN

j and the �m log(1��Nj ).
Thus we need to �nd the right scale at which to examine
the learning curve. At the same time, we would like to re-
place the competition between these two discrete quantities
by the competition between two continuous functions of a
single real parameter �. The obvious choice for a continuous
approximation to the �m log(1� �Nj ) is simply m log(1� �).

The choice of a continuous approximation to the logQN
j de-

pends on their behavior, which may be quite complex, and
which we now try to capture.

Thus the next and crucial step of the thermodynamic
limit method is to choose the appropriate scaling function
and to provide an associated entropy bound . As mentioned
already, these are functions that are assumed to be given in
the thermodynamic limit method. Let t(N) be any mapping
from the natural numbers to the natural numbers such that
t(N) ! 1 as N ! 1, and let s : [0; 1] ! <+ be any
continuous function. Then we say that s(�) is a permissible
entropy bound with respect to t(N) if there exists a natural
number N0 such that for all N � N0 and for all 1 � j �
r(N), (1=t(N)) logQN

j � s(�Nj ).
We refer to t(N) as a scaling function. The intention

is that when t(N) is properly chosen it captures the scale
at which the learning curve is most interesting, and that
the entropy bound s(�) tightly captures the behavior of the
(1=t(N)) logQN

j . We will see that we obtain our best up-
per bounds on generalization error for a given scaling func-
tion when the thermodynamic limit method is used with the
smallest possible permissible entropy bound for this scaling
function.

Given a scaling function t(N) and a permissible entropy
bound s(�), for N � N0 we may now rewrite and bound our
sum:

r(N)X
j=i

elogQ
N
j
+m log(1��N

j
) (8)

=

r(N)X
j=i

et(N)[(1=t(N)) logQN
j
+(m=t(N)) log(1��N

j
)] (9)

�
r(N)X
j=i

et(N)[s(�N
j
)+� log(1��N

j
)] (10)

where we de�ne � = m=t(N), and in taking our limit m;N !
1, � will remain constant. Before doing so, however, let
us pause to notice the bene�ts of our de�nitions in the �-
nal summation: each exponent's dependence on N has been
isolated in the factor t(N), and the remaining factor is the
continuous function s(�)+� log(1��), evaluated at only the
discrete points �Nj .

Let us now let m;N ! 1 (and thus t(N)! 1) but let
m=t(N) = � > 0 remain constant. De�ne �� 2 [0; 1] to be
the largest � 2 [0; 1] such that s(�) � �� log(1 � �). Note
that both s(�) and �� log(1� �) are non-negative functions,

and 0 = �� log(1� �) � s(�) for � = 0. Thus �� is simply
the rightmost crossing point of these functions (we de�ne
�� = 1 if s(�) stays above �� log(1� �) for all 0 � � < 1).
We wish to argue that provided we examine our sum only
for terms in which � > ��, then under certain conditions the
thermodynamic limit of the sum is 0. In other words, in the
thermodynamic limit we can bound the generalization error
of any consistent hypothesis by ��. Intuitively, the reason for
this is that if s(�) < �� log(1��) then et(N)[s(�)+� log(1��)] !
0 as t(N)!1.

More precisely, let � 2 (0; 1] be an arbitrarily small quan-
tity, and for each N , de�ne the index iN;� to be the smallest
satisfying �NiN;� � �� + � . Let us de�ne � by

� = minf�� log(1� �)� s(�) : � 2 [�� + �; 1]g: (11)

Note that � is well-de�ned since the quantify

�� log(1� �)� s(�)

is strictly positive for all � 2 [�� + �; 1]. We can now write

r(N)X
j=iN;�

et(N)[s(�N
j
)+� log(1��N

j
)] (12)

�
r(N)X
j=iN;�

e�t(N)� (13)

� (r(N)� iN;� )e
�t(N)� (14)

� r(N)e�t(N)� (15)

where the �rst inequality follows from the fact that for all
iN;� � j � r(N) we have �Nj 2 [�� + �; 1]. The expression

r(N)e�t(N)� will go to 0 in the thermodynamic limit, as de-

sired, provided r(N) is o(et(N)�) (this condition is easily met
by all of the examples we shall analyze, but for completeness
its relaxation is discussed in the Appendix in Section A.1).

We have shown:

Theorem 4 Let s(�) be any continuous function that is a
permissible entropy bound with respect to the scaling function
t(N), and suppose that r(N) = o(et(N)�) for any positive
constant �. Then as m;N ! 1 but � = m=t(N) remains
constant, for any positive � we have

PrS[VS(S) � B(�� + �)]! 1: (16)

Here the probability is taken over all samples S of size m =
�t(N) for the target function in f 2 FN , and �� is the
rightmost crossing point of s(�) and �� log(1� �). In other
words, in the thermodynamic limit any hypothesis h con-
sistent with �t(N) examples will have generalization error
�gen(h) � �� + � with probability 1.

We can �nally see in Theorem 4 the roles of the scal-
ing function t(N) and the entropy bound s(�). The scaling
function t(N) de�nes the units by which we shall measure
learning curves, since the sample size in the thermodynamic
limit is always a constant times t(N). Given the scaling
function, the smaller the the entropy bound s(�), the smaller
the rightmost crossing �� will be, and consequently the bet-
ter the bound obtained from Theorem 4.
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2.5 Extracting scaled learning curves from the thermody-
namic limit method

Theorem 4 gives a bound on the limiting generalization er-
ror of consistent algorithms on a sample size m that is a
�xed constant � times the scaling function t(N). However,
the real value of the thermodynamic limit method emerges
only when we now allow the value of � to vary, taking the
thermodynamic limit by applying Theorem 4 to each value,
and examine the learning curve as a function of increasing
�. As we shall now see, it is in such scaled learning curves
(we refer to them as scaled because they are expressed as a
function of the multiple � of t(N) rather than in the more
traditional absolute number of examples) that interesting
behavior such as phase transitions appears. We shall also
see that the thermodynamic limit method permits an intu-
itive and highly visual derivation of scaled learning curves.

We �rst illustrate the derivation of scaled learning curves
using several arti�cial examples. By arti�cial we mean that
rather than de�ning natural function class, target function
and distribution sequences FN , fN and DN , and then deriv-
ing an appropriate scaling function t(N) and entropy bound
s(�), instead we will simply start with a given s(�) and carry
the analysis forward. However, the lower bound provided in
Section 2.8 demonstrates that there do exist function class
and distribution sequences whose true scaled learning curves
match the bounds we will give in this section. In the follow-
ing sections, we give examples of complete analyses (that
is, beginning with given FN , fN and DN) for some natural
function classes.

To start, suppose that for some scaling function t(N)
we have the permissible entropy bound s(�) = 1 (a rather
weak entropy bound). Then in Figure 1, we have plotted
both the constant entropy bound s(�) = 1, and the function
�� log(1� �) for three values � = �1; �2; �3. The resulting
rightmost intersections �1 = ��(�1); �2 = ��(�2); �3 = ��(�3)
are then identi�ed on the �-axis. Here we now adopt the
convention of writing �� as a function of �, since we no
longer regard � as a constant.

In Figure 2, we then plot the rightmost crossing ��(�) as
a continuous function of � (and identify the points (�i; �i)
for i = 1; 2; 3 from Figure 1). This plot is what we mean by
the scaled learning curve, and Theorem 4 tells us that in the
limit N ! 1, this scaled learning curve bounds the general-
ization error of consistent algorithms given �t(N) examples.

Note from Figure 1 that �� log(1� �) is essentially lin-
ear with slope �, and it is the rightmost intersection of this
roughly linear function with s(�) that gives the correspond-
ing point on the scaled learning curve. Furthermore, the
energy function is independent of the learning problem in
Theorem 4, and thus in general, for any entropy bound s(�),
to get the scaled learning curve we will be looking at the left-
ward progress of the rightmost intersection ��(�) between
the nearly-linear energy and s(�) as � grows. In the par-
ticular example s(�) = 1, this progress is quite uniform,
resulting in the familiar power law scaled learning curve of
Figure 2.

A less familiar and more interesting example occurs for
the single-peak entropy bound s(�) shown in Figure 3. 4

We shall shortly see in Section 2.6 that this entropy bound
actually occurs for a natural and well-studied learning prob-

4Throughout this section, we will refrain from giving the explicit
functions s(�) used to generate the plots, since some of them are
rather complicated, and it is their shape rather than their mathemat-
ical de�nitions that are of interest here.

lem. In this example we see that for small �, the leftward
progress of ��(�) is rather slow, due to the large negative
slope of s(�) on the right side of its peak. This for instance
is the case for � near the plotted value �1. For some larger
value of �, ��(�) moves over the peak of s(�) and thus begins
decreasing more rapidly.

Then something interesting happens. There is a critical
value �2 that gives the intersection ��(�2) = �2. For this
critical value, we see that the energy curve is barely inter-
secting the entropy curve. For � > �2 (for example, for the
plotted value �3), we see from Figure 3 that the rightmost
intersection is 0! Theorem 4 can be applied to obtain the
scaled learning curve bound of Figure 4, which exhibits a
phase transition from error �2 to perfect generalization (er-
ror 0) at � = �2.

A similar but more subtle example is shown for another
single-peak s(�) in Figures 5 and 6. Here again, leftward
progress of ��(�) for smaller � is slow due to the large neg-
ative slope of s(�) on the right-hand side of its peak (for
instance, at � = �1). Again, there is a critical value �2

which results in an intersection at �+2 = ��(�2), slightly to
the left of the peak of s(�). However, for � just larger than
�2 we do not transition to perfect learning, but to error ��2 .
The di�erence between this example and that of Figures 3
and 4 is that this time the entropy curve is su�ciently large
near ��2 to \catch" ��(�) for � above the critical value. Fol-
lowing the transition, the decrease of ��(�) resumes rather
gradual behavior (for instance, near �3). This is all clearly
seen in the scaled learning curve of Figure 6.

As our next example we consider a double-peak entropy
bound in Figures 7 and 8. Here we see there are two critical
values, �2 and �4. Initial progress of �

�(�) occurs at a steady
but controlled rate, for instance at �1. As � becomes larger
than �2, there is a sudden burst of generalization (a phase
transition), not to perfect generalization, but from error �+2
to ��2 on the right side of the left peak of s(�). Then progress
is slow, for instance at �3, until � becomes larger than �4,
at which point we have a transition to perfect generalization
(so for �5 the error is 0). One aspect of this example worth
noting is the fact that although the energy may intersect
s(�) many times, we are interested only in the rightmost
intersection.

As our �nal arti�cial example, we consider a three-peak
entropy bound in Figures 9 and 10. This example demon-
strates the interesting phenomenon of shadowing predicted
by our theory, because despite the change in s(�) from our
last example, we see that the scaled learning curve of Fig-
ure 10 is quite similar in form to that of Figure 8. Figure 9
shows the reason for this: by the time � becomes larger than
the �rst critical value �2, the energy curve is already above
the small middle peak of s(�), and thus the phase transition
is from �+2 to ��2 , completely bypassing the middle peak.
Thus, the small middle peak of s(�) is in the \shadow" of
the large rightmost peak. There is an intuitive explana-
tion for this phenomenon. Despite the fact that (relative to
the scaling function) there are a signi�cant number of func-
tions of generalization error approximately �0 (resulting in
the middle peak of s(�) centered at �0), by the time the sam-
ple size is large enough to eliminate the considerably larger
number of functions of generalization error approximately
�+2 from the version space, the functions at generalization
error �0 are already eliminated from the version space. Note
that if this middle peak were higher, there would be a brief
transition from �+2 to near �0, and then from there to a value
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on the right side of the left peak.
In all of these examples, we have concentrated on the

qualitative behavior (including coarse phenomena such as
phase transitions) of scaled learning curves at moderate val-
ues of �. Also of interest are the large � asymptotics of
the scaled learning curve, that is, the asymptotic rate of ap-
proach to generalization error 0. In our theory this rate is
obviously determined by the behavior of the entropy bound
s(�) for � � 0. It turns out that many natural examples of
s(�) fall into a few broad categories of behavior near 0, and
this is discussed in Section 3.5.

2.6 Analysis of the Ising perceptron

We now tackle some real examples of the application of our
theory, complete with determination of the appropriate scal-
ing function and a permissible entropy bound.

We �rst consider the class of Ising perceptrons [12, 14,
28]. Suppose that the function class FN consists of all ho-
mogeneous perceptrons in which the weights are constrained
to be �1. 5 Let the distribution DN be any spherically
symmetric distribution on <N , and let the target function
fN 2 FN be arbitrary. It will turn out that for this prob-
lem, the appropriate scaling function is simply t(N) = N .
We now derive a permissible entropy bound for this scaling
function, and then extract the associated scaled learning
curve.

An Ising perceptron is parametrized by a weight vector w
in the hypercube f�1; 1gN , and maps x 2 <N to sgn(w �x).
For a spherically symmetric distribution DN , the probability
of disagreement between two perceptrons is proportional to
the angle between them. Hence if w0 is the weight vector of
the target function,

�gen(w) =
1

�
cos�1 w �w0

N
=

1

�
cos�1

�
1� 2dH(w;w0)

N

�
(17)

where dH denotes the Hamming distance. The Hamming
distance layers the function class like an onion with N error
shells surrounding the target at the center. The number
of perceptrons at Hamming distance j from the target is
QN
j =

�
N
j

�
, and they all have generalization error �Nj =

(1=�) cos�1(1 � 2j=N). Since the binomial coe�cients are
bounded by

1

N
logQN

j � H
�
j

N

�
= H

�
sin2(��Nj =2)

�
(18)

where H(p) � �p log p � (1 � p) log(1 � p), a permissible
entropy bound for scaling function t(N) = N is

s(�) = H
�
sin2(��=2)

�
: (19)

We have acutally already discussed the resulting entropy-
energy competition for this problem in Section 2.5. Recall
that in Figure 3 we graph the competition, and in Figure 4
we graph the scaled learning curve obtained by applying
Theorem 4. Thus for this problem our theory predicts slow
initial learning, followed by a phase transition to perfect
generalization at �2 = 1:448. We remind the reader that a
sudden transition in our bound does not necessarily imply

5The designation \Ising" refers to the �1 constraint, which is
present in the original Ising model of magnetism with N interacting
spins.

a sudden transition in the true behavior of any consistent
learning algorithm. However, this bound does show that any
consistent learning algorithm must have reached zero error
with probability approaching 1 in the thermodynamic limit
for scaled sample size greater than 1:448. This bound on
the critical value was known from the work of Gardner and
Derrida [12], and extended to the case of boolean inputs by
Baum, Lyuu and Rivin [2, 19]. Here we are actually giving a
bound on the entire learning curve, and the behavior of our
bound is very similar in shape to learning curves obtained in
both simulations and non-rigorous replica calculations from
statistical physics [14, 28, 25, 9]. 6

In Figure 11, we graph the di�erence of the entropy and
energy curves shown in Figure 3, that is, we plot s(�) +
� log(1 � �) for the three values of �. This plot is simply
another way of visualizing the entropy-energy competition.
The zero crossings of the graphs in Figure 11 correspond
to the intersections of the entropy and energy curves in
Figure 3, and thus it is now the leftward progress of the
rightmost zero crossing of s(�)+ � log(1� �) that yields the
scaled learning curve as � increases. The quantity N [s(�)+
� log(1� �)] is the logarithm of the average number of sur-
viving hypotheses at distance � from the target, and is the
exponent in the sum of Equation (10). For � < �2, there are
two zero crossings. The right zero crossing yields the upper
bound on generalization error of Theorem 4. The left zero
crossing also has a meaning. With high probability, there
are no hypotheses in the version space with error less than
this left crossing except for the target itself. So the ver-
sion space minus the target is contained within an annulus
[9] whose inner and outer limits are the left and right zero
crossings.

It is instructive to compare our bounds with the cardi-
nality and VC bounds for this problem. Since both of these
latter bounds go like N=m, and the lowest error shell is at

�1 � 1=
p
N , the critical m for perfect learning is m � N3=2,

rather than m � N .

2.7 Analysis of monotone boolean conjunctions

In this example, the input space XN is the boolean hyper-
cube f0; 1gN . The class FN consists of the 2N functions
computed by the conjunction of a subset of the input vari-
ables x1; : : : ; xN , along with the empty (always 0) function
; and the universal (always 1) function f0; 1gN . The in-
put distribution DN is uniform over f0; 1gN . A similar sce-
nario has also been analyzed in the machine learning litera-
ture [23, 21].

We will examine the thermodynamic limit for two dif-
ferent choices of target functions fN . We begin with the
target function f = f0; 1gN , in which every input is a posi-
tive example. Any conjunction h of exactly i variables from
x1; : : : ; xN has generalization error

�gen(h) = Pr~x2DN
[h(~x) = 0] = 1� 1=2i:

Hence the error shells are 1=2 = �N1 < �N2 < � � � < �NN =
1�1=2N , where �Ni = 1�1=2i. The number of conjunctions

6According to calculations using the replica method of statistical
physics, for this problem the true scaled learning curve of the Gibbs
learning algorithm (which chooses a random consistent hypothesis
from the version space) exhibits a phase transition to perfect gener-
alization at � = 1:245. This picture is consistent with the results of
exhaustive enumeration by computer for up to N = 32.

7



in the ith shell is QN
i =

�
N
i

�
� N i. Since

lnQN
i

log2N
� i ln 2 = � ln(1� �Ni ) (20)

we choose the scaling function to be t(N) = logN and thus
the sample size is written as m = � logN . A permissible
entropy bound for t(N) is s(�) = � ln(1� �).

The competition between s(�) and �� log(1 � �) results
in a scaled learning curve that exhibits a sudden transition:
for any 0 � � < 1, the rightmost crossing ��(�) does not
exist and our bound on the generalization error is 1. But for
� � 1, s(�) is dominated by �� log(1� �), so ��(�) makes
a sudden transition to 0. In summary, our theory predicts
that in the thermodynamic limit, for � < 1 there is no
generalization, but for � > 1 there is perfect generalization.

Our bound can be checked by deriving the exact learning
behavior. In the problem described, every random example
is positive for fN , and every positive example ~x eliminates
from the version space any conjunction containing a variable
that is set to 0 in ~x. Since half of the remaining variables is
eliminated by each example, it should take roughly log2N
examples to eliminate all N variables and hence all conjunc-
tions, leaving only the target function.

A more precise calculation goes as follows. Since each
variable has probability 2�m of surviving m examples, the
number j of surviving variables obeys a binomial distribu-
tion:

P (j) =

�
N

j

��
1

2m

�j �
1� 1

2m

�N�j
(21)

The function with maximum generalization error in the ver-
sion space is a conjunction of all j surviving variables, so
that maxh2VS (S) �gen(h) = �Nj . Then Cherno� bounds on
the uctuations in j yield

1 � 2�N2�m(1��) � max
h2VS(S)

�gen(h) � 1� 2�N2�m(1+�)

(22)

with con�dence greater than 1�2e�N�2=3. Taking the ther-
modynamic limit with m = � log2N , then � ! 1 for any
� > 1, and � ! 0 for any � < 1 with con�dence approach-
ing 1.

For this model, the cardinality and VC bounds give a
learning curve of order N=m, which drops below the lowest
error level �N1 = 1=2 for m of order N . Hence these bounds
also predict perfect generalization, but with a bound on the
critical m of order N rather than logN .

Now let the target function be the empty function fN =
;. Since a conjunction h of i variables has �gen(h) = 1=2i,
the error shells are 1=2N = �N1 < �N2 < � � � < �NN = 1=2,
where �Ni = 1=2N�i+1. The number of conjunctions in the
ith shell is QN

i =
�

N
N�i
�
� NN�i. We again choose t(N) =

logN as the scaling function. Then

lnQN
i

log2N
� (N � i) ln 2 = � ln 2�Ni (23)

so that s(�) = � ln 2� is a permissible entropy bound for
t(N). The rightmost zero crossing of s(�) and �� log(1� �)
gives the scaled learning curve � � O(log �=�).

One interesting aspect of this learning problem is that
the scaled learning curve is highly dependent on the tar-
get function. Whereas learning the target functions fN =

f0; 1gN led to a sudden transition in generalization, learn-
ing the empty function fN = ; led to a slow power law
decrease. This is in marked contrast to the Ising perceptron
problem, where the learning curve is independent of which
weight vector is the target function.

2.8 The thermodynamic limit lower bound

In this section, we give a theorem demonstrating that Theo-
rem 4 is tight in a fairly general sense (modulo the given en-
tropy bound). More precisely, for any function s(�) meeting
certain mild conditions, we construct a family of function
classes F = fFNg such that s(�) is a permissible entropy
bound for the scaling function t(N) = N , and in the ther-
modynamic limit the rightmost crossing of the functions s(�)
and 2�� is a lower bound on the generalization error of worst
hypothesis in the version space. Note that although this
does not exactly match Theorem 4, which gives as an upper
bound the rightmost crossing of s(�) and �� log(1� �), the
qualitative behavior of the scaled learning curves obtained
by intersecting with 2�� and �� log(1� �) is essentially the
same. In particular, our lower bound shows that the various
scaled learning curve phenomena examined in Section 2.5
(such as phase transitions and shadowing) can actually oc-
cur for certain function classes and distributions.

In the same way that lower bounds for the VC theory
show that if the only parameter of the learning problem
we consider is the VC dimension, then the existing learning
curve upper bounds based on the VC dimension are essen-
tially the best possible, Theorem 5 shows that if the only
parameter of the learning problem we use is a given entropy
bound s(�), then Theorem 4 gives essentially the best pos-
sible learning curve upper bound. Thus, in the absence of
further information about the function class, distribution
and target function sequences, the scaled learning curves
derived in Section 2.5 are essentially the best possible. Sim-
ilarly, the lower bound shows that better learning curves for
the Ising perceptron and boolean conjunction problems that
depend only on the entropy bound cannot be obtained.

Theorem 5 Let s : [0; 1=2]! [0; 1] be any continuous func-
tion bounded away from 1 and such that s(0) = s(1) = 0.
Then there exists a function class sequence FN over XN

(where jFN j = 2N ), a distribution sequence DN over XN ,
and a target function sequence fN 2 FN such that: (1) s(�)
is a permissible entropy bound with respect to the scaling
function t(N) = N , and (2) For any � > 0, if �� 2 [0; 1=2]
is the largest value satisfying 2��� � s(��), then as N !1
there is constant probability that there exists a function h 2
FN consistent with m = �N random examples satisfying
�gen(h) � ��.

Proof: (Sketch) For every N , the class FN will contain the
function fN which is identically 0 on all inputs. For the lower
bound argument, for every value of N , fN will always be
the target function against which we measure generalization
error. The distribution DN will always be uniform over the
domain XN , which will always consist of 2N discrete points,
so XN = f1; 2; : : : ; 2Ng.

A high-level sketch of the main ideas follows. For any N ,
the class FN will be constructed so that there are exactly
N=2 error levels, namely �Nj = j=N for 1 � j � N=2. Now
let s : [0; 1=2] ! [0; 1] be any continuous function bounded
away from 1 and satisfying s(0) = s(1=2) = 0. The idea
is that for any N and any 1 � j � N=2, FN will contain
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exactly 2s(j=N)�N functions whose error with respect to fN
is j=N . Thus, for any �, as N !1, there will eventually be

arbitrarily close to 2s(�)�N functions of error arbitrarily close
to �. This ensures that s(�) will be a permissible entropy
bound with respect to the scaling function t(N) = N . Fur-
thermore, these functions will be specially chosen to force
the claimed lower bound.

In more detail, for every N and every 1 � j � N=2,
FN will contain a subclass of functions F j

N , where jF j
N j =

2s(j=N)�N . Note that this implies jFN j < (N=2)2N since

s(�) < 1. For every h 2 F j
N and every (2j=N)2N < x � 2N ,

h(x) = 0. In other words, on a fraction 1 � (2j=N) of the

input space, all the h 2 F j
N agree with the target function

fN .
However, on the points f1; 2; : : : ; (2j=N)2Ng each h 2

F j
N will behave as a unique parity function on a domain

of size (2j=N)2N . More precisely, we can de�ne an iso-
morphism between f1; 2; : : : ; (2i=N)2Ng and the hypercube

of the same size, and let each function in F j
N (when re-

stricted to f1; 2; : : : ; (2j=N)2Ng) be isomorphic to a unique
parity function on this hypercube. (Note that s(�) must

obey 2s(�)�N � 2� � 2N in order to ensure there are enough
unique parity functions. The condition s(�) < 1 is su�-

cient to give this asymptotically.) Thus, each h 2 F j
N has

�gen(h) = j=N since each parity function outputs 1 on half
of the hypercube inputs and fN is identically 0.

Now let us analyze, in the thermodynamic limit, the
largest generalization error of any function in the version
space of the constructed family FN (for target functions fN
and uniform distributions DN). By our construction, for any

�, as N !1 there are eventually 2s(�)�N functions in FN of
generalization error arbitrarily close to � (namely, �� 1=N).
Let the sample size m = �N . As N ! 1, the number of
sample points falling in the set f1; 2; : : : ; 2� � 2Ng becomes
sharply peaked at (2�)�N . The remaining sample points
fail to eliminate any of the functions of generalization error
� since they all agree with the target function fN on the
remaining points.

Now it is known [13] that in order to eliminate 2s(�)�N

parity functions over a uniform distribution, the sample size
m must obey m � s(�) �N ; for smaller m, there is a constant
probability that at least one parity function remains in the
version space. Thus, we obtain that if (2�)�N � s(�)N then
there is constant probability that the version space contains
a function of generalization error at least �. In other words,
2�� � s(�) is a condition for eliminating all functions of
generalization error � from the version space, thus proving
the theorem.

3 The Finite and Unrealizable Case

One highly restrictive aspect of all of our analysis so far is the
assumption that the labels of the examples are generated by
by some target function in F , and hence it is always possible
to obtain zero generalization error. We now consider the
relaxation of this restriction to the case where there may
exist no function in F with zero generalization error. We
call this case the unrealizable target case. This actually
covers two cases. In the �rst, the labels of the examples are
generated by some target function that is not in F . In the
second, and more general case, each labeled example hxi; yii
in S, 1 � i � m is generated independently according to a

distribution DN on XN � f0; 1g, which plays the role that
was played jointly by the distribution DN and the target
function in the realizable case. Here DN can model noise in
the examples as well. We pursue this second, more general
case here.

In analogy with the realizable case, for any function h 2
FN , �gen(h) = Prhx;yi2DN

[h(x) 6= y]. For simplicity we will
assume that there is a unique best hypothesis in FN

h� = argmin
h2F

�gen(h); (24)

although it is easy to generalize the arguments to handle
cases where there is a tie. (Since FN is �nite, we need not
worry about there being an in�nite sequence of better and
better hypothesis, with no best hypothesis in FN .) Our
goal in this section is to analyze the learning curve for this
unrealizable case in the same manner as for the realizable
case, providing a thermodynamic limit method and extract-
ing scaled learning curves. Of course, now the learning curve
approaches �min = �gen(h

�) rather than 0 as the the num-
ber of examples is increased. We shall see that interesting
technical di�erences from the realizable case are also forced
upon us in the analysis.

Recall that in the realizable case, we focused on bound-
ing the error of any consistent algorithm. In the unrealizable
case, we analyze an empirical error minimization algorithm.
We de�ne the training error or empirical error of a hypoth-
esis h to be the frequency of disagreement on a sample S:

�trn(h; S) =
1

m

mX
i=1

�[h(xi) 6= yi] (25)

where the indicator function � is 1 when its argument is true
and zero otherwise. An empirical error minimization algo-
rithm chooses a hypothesis from the version space, which we
now rede�ne to be the set of all functions that minimize the
training error �trn(h; S):

V S(S) = fh 2 F : �trn(h; S) = min
h02F

�trn(h
0; S)g: (26)

3.1 Energy functions

One of the main di�erences between the unrealizable and re-
alizable cases is the form of the bound we can obtain on the
probability that a �xed function h 2 F \survives" m random
examples, that is, remains in the version space and hence is
eligible to be chosen by an empirical error minimization al-
gorithm. Recall that in the realizable case, this probability
was exactly (1��gen(h))m since �min = 0 and minimum em-
pirical error is equivalent to consistency. In the unrealizable
case, the situation is more complicated: we will only be able
to upper bound this survival probability. Unlike the realiz-
able case, where the exact expression (1� �gen(h))

m for the
survival probability was eventually translated in the ther-
modynamic limit method to a function �� log(1� �) in the
exponent that was universal for all problems (the speci�cs of
the problem a�ecting only the scaling function and entropy
bound), in the unrealizable case we may sometimes need to
use energy bounds that depend on the problem speci�cs.
Furthermore, the quality of bound we use can have signi�-
cant e�ects on the behavior of the resulting scaled learning
curve, especially in the large � limit.

We will treat this bound on the survival probability as
a parameter of the analysis. More precisely, let us refer to
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a function u(�) as a permissible energy bound (with respect
to F , D and the target function) if for any h 2 F and any
sample size m we may write

PrS [h 2 VS(S)] � e�u(�gen (h))m: (27)

In other words, we imagine that u(�gen(h)) assesses a penalty
to �gen(h) that increases with larger �gen(h), and the proba-
bility that h survives to be in the version space (and thus the
probability that an empirical minimization algorithm may
choose h) decreases exponentially in m times this penalty.

Permissible energy bounds will all be derived from the
following chain of inequalities:

PrS[h 2 VS(S)] (28)

� PrS[�trn(h; S) � �trn(h
�; S)] (29)

�
h
1 � �(h; h�) +

p
�(h; h�)2 � (�gen(h) � �min)2

im
(30)

where �(h1; h2) is the probability of disagreement between
h1 and h2 on the label of a random example drawn according
to DN . The �rst inequality follows from the fact that the
training error of any hypothesis h in the version space must
be no greater than the training error of any other hypothesis
in the class, including h� in particular. The second follows
from Sanov's theorem on large deviations [5] (see Section A.2
of the Appendix).

For the realizable case we have �min = 0 and �(h; h�) =
�gen(h), soPrS [h 2 VS(S)] � (1��gen(h))m already follows
from the second inequality. To obtain an energy bound in
the unrealizable case, we must somehow relate �(h; h�) to
�gen(h). If v(�) is a function that satis�es

�(h; h�) � v(�gen(h)) (31)

then from Equation (30)

u(�) = � ln
�
1� v(�) +

p
v2(�)� (�� �min)2

�
(32)

is a permissible energy bound. In our theory, learning curves
are determined by the competition between energy and en-
tropy, with the best bounds being obtained for the largest
energy bound (which corresponds to the most rapidly de-
caying bound on the survival probability as a function of
m). For this reason, we see that smaller v(�) is, the better
the resulting energy bound. Now by the triangle inequal-
ity, we can always �nd v(�) such that � � �min � v(�) �
minf� + �min; 1g, and cannot �nd a smaller v(�). Since the
choice v(�) = � + �min is always possible, plugging this into
Equation (32) gives a universally permissible energy bound.
After a little algebra, this bound reduces to

u(�) = � ln(1� (
p
��p�min)

2) (33)

However, better v(�) may be obtained in certain cases. For
instance, if we are fortunate enough to have v(�) = � �
�min for some problem, then u(�) = � ln(1 � � + �min) is
a permissible energy bound, which is essentially linear in �
and thus nearly the same as for the realizable case. We now
sketch the technical development for the unrealizable case
using a generic permissible energy bound u(�), occasionally
pointing out the e�ects of speci�c energy bounds on learning
curves. We examine these e�ects more closely in Section 3.5.

3.2 Technical development for the unrealizable case

As was done for the realizable case in Section 2.1, we can
write a union bound on the probability that VS(S) is con-
tained in B(�). This enables us to bound the error of all em-
pirical error minimization algorithms. For with con�dence
PrS [VS(S) � B(�)], we can assert that the hypothesis with
minimal training error has generalization error less than �.

Let � > �min be given. Then any permissible energy
bound u(�) can be used to lower bound the probability that
every function outside B(�) has training error larger than
the training error of h�:

Theorem 6 Let u(�) be a permissible energy bound. Then
PrS [VS(S) � B(�)]� 1� �, where

� =
X

h2B(�)

e�u(�gen (h))m (34)

Theorem 1 is a special case with u(�) = � log(1 � �).
With the universally permissible energy function u(�) =

� ln(1 � (
p
� � p

�min)
2), the standard cardinality bound

becomesX
h2B(�)

e�u(�gen (h))m � jFj(1� (
p
��p�min)

2)m (35)

� jFje�(
p
��p�min)

2m (36)

because �gen(h) > � for all h 2 B(�). Setting the latter
quantity to � and solving for � yields

� = �min+ 2

r
�min ln(jFj=�)

m
+

ln(jFj=�)
m

: (37)

Hence in analogy with Section 2.2 for the realizable case,
it follows that for any empirical error minimization algo-
rithm, with con�dence 1 � � the hypothesis h it produces
satis�es

�gen(h) � �min + 2

r
�min ln(jFj=�)

m
+

ln(jFj=�)
m

; (38)

giving the same bound we obtained in the realizable case
when �min = 0.

This worst case bound already has some interesting be-
havior in the thermodynamic limit. To see this, let assume
that FN = 2N , as large as we allow, and further that the
best entropy function that we can obtain is the trivial func-
tion s(�) = 1. Let t(N) = N . Then ln jFN j=m = 1=�.
Hence, from Equation (38), in the thermodynamic limit we
obtain the scaled learning curve

�� �min � 2
q

�min

�
+

1

�
: (39)

This curve exhibits a faster learning rate, scaling roughly
like 1=� in the early stages of learning, until � � 1=4�min,
the point at which both terms in the bound are equal, then it

begins to scale more like 2
p
�min=� as � gets larger and the

�rst term in the bound begins to dominate. This behavior
has also been noted by Vapnik [30].

Returning to the general development, just as in the real-
izable case we can re�ne the union bound of Theorem 6 via
a shell decomposition. Still more improvement may come
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from �nding a better energy function of the form in Equa-
tion (32). Addressing the �rst improvement, just as in the
realizable case in Section 2.3, we proceed to slice the func-
tion class into error shells. Let �min = �1 < �2 < � � � < �r
be all of the possible values for the generalization error for
functions in F , and let Qi be the number of functions h 2 F
satisfying �gen(h) = �i. The analog of Theorem 3 in the
unrealizable case is:

Theorem 7 Let u(�) be a permissible energy bound. Then
for any �xed sample size m and con�dence value �, with
probability at least 1� � any h 2 VS(S) obeys �gen(h) � �i,
where �i � �min is the smallest error level satisfying

rX
j=i

Qje
�u(�j )m � �: (40)

In other words, for any � we may write

�gen(h) � min

(
�i :

rX
j=i

Qje
�u(�j)m � �

)
(41)

with probability at least 1 � �. Thus we have a bound on
�gen(h) that implicitly depends onm, but as in the realizable
case, this bound is more easily understood in a thermody-
namic limit.

Towards this goal, in analogy with Section 2.4 for the re-
alizable case, we again can rewrite the summation obtained
by shell decomposition in a convenient exponential form.

rX
j=i

Qje
�u(�j)m (42)

=

rX
j=i

elogQj�u(�j )m (43)

=

rX
j=i

et(N)[(1=t(N)) logQj�(m=t(N))u(�j )] (44)

where t(N) is a scaling function of our choice. Thus we
see that in the unrealizable case, the bound on general-
ization error again involves a competition between the en-
tropic expression (1=t(N)) logQj and the energetic expres-
sion (m=t(N))u(�j). Using the same de�nition of the per-
missible entropy function s(�) as in the realizable case, we
obtain the following theorem, whose proof is entirely analo-
gous to the realizable setting.

Theorem 8 Let u(�) be a permissible energy bound. Let
s(�) be any continuous function that is a permissible entropy
bound with respect to the scaling function t(N), and suppose

that r(N) = o(et(N)�) for any positive constant �. Then
as m;N ! 1 but � = m=t(N) remains constant, for any
positive � we have

PrS[VS(S) � B(�� + �)]! 1: (45)

Here the probability is taken over all samples S of size m =
�t(N), where each is example is drawn independently ac-
cording to DN , and �

� is the rightmost crossing point of s(�)
and �u(�). In other words, in the thermodynamic limit any
hypothesis h with the minimum number (over F) of observed
disagreements on the �t(N) examples will have generaliza-
tion error �gen(h) � �� + � with probability 1.

Just as in the realizable case, Theorem 8 allows us to
extract scaled learning curves that express generalization
error as a function of �. It is also easily veri�ed that the
thermodynamic limit lower bound of Theorem 5 translates
unchanged to the unrealizable setting.

In summary, for the unrealizable case in the thermody-
namic limit, the generalization error can be upper bounded
by the rightmost crossing of s(�) and a competing energy
function of the form in Equation (32) times �. Thus the ba-
sic theory derived for the realizable case survives relatively
nicely. Furthermore, we will shortly see that while the over-
all picture is described by this competition, slight changes to
simple models of unrealizability can yield important changes
to s(�) and the energy function, and thus to the resulting
learning curve.

3.3 Analysis of an unrealizable Ising perceptron

We now illustrate the use of the thermodynamic limit method
in the unrealizable case by considering an unrealizable vari-
ant of the Ising perceptron problem considered in Section 2.6.
Let the target function fN be the perceptron in which ev-
ery weight is +1, and let the function class FN consist of all
Ising perceptrons which have at least N weights ( 2 [0; 1])
that are �1. (Note that unlike the realizable Ising percep-
tron case, here the choice of target function matters.) Again
let the distribution DN be any spherically symmetric distri-
bution on <N . Thus, the target function is not contained
in FN , and the minimum error �min() is given by applying
Equation (17), so �min() = (1=�) cos�1(1� 2). This min-
imum error is achieved by all of those functions in FN with
the minimum allowed number N of �1 weights, of which
there are exactly

�
N
N

�
. We shall regard  as a parameter

measuring the extent of the unrealizability.
The correct scaling function for this problem is again

t(N) = N , and it is easy to see the e�ects of the unrealizabil-
ity parameter  on this problem. The resulting permissible
entropy bound s(�) is identically 0 in the range [0; �min()],
as there are no functions in FN at these generalization er-
rors. In the range [0; �min()], however, s(�) = s(�), where
s(�) is simply the entropy bound for the realizable Ising per-
ceptron given by Equation (19). Thus our entropy bound
in the unrealizable case is simply that of the realizable case,
but truncated to the left of �min().

The e�ects of this truncation on the predicted scaled
learning as a function of  turn out to be quite interesting.
If we use the universally permissible energy bound given by
Equation (32) then Figures 12, 13 and 14 show the result-
ing entropy-energy competition for three di�erent degrees of
unrealizability (that is, three values of �min()) by plotting
s(�)� �u(�). In each case of �min(), we plot s(�) � �u(�)
for three di�erent values of �. When �min() is small (thus,
the target function is nearly realized by the function class),
the behavior is quite similar to that of the realizable case
in Figure 11. By the time �min() is as large as 0:05 in
Figure 14, we can see that the leftward progress of the zero
crossing as � increases is quite uniform | the unrealizability
has thus erased all traces of a phase transition. The inter-
mediate value �min() = 0:01224 is the boundary between
these two behaviors: for smaller �min(), the resulting learn-
ing curve will still exhibit some phase transition, while for
larger �min(), the transition is erased (although there may
still be some trace of a phase transition in the form of ac-
celerated generalization). This can all be clearly seen in
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Figure 15, which shows the resulting scaled learning curves
for these values of �min(). Thus we see that the increase
of  not only increases the best error �min(), it a�ects the
very form of the learning curve. In particular, as  increases
the asymptotic rate of approach to �min() becomes slower.
Figure 16 shows a phase diagram that plots the critical value
of � for which the learning curve experiences a phase tran-
sition as a function of �min() | thus, as we have already
mentioned, no value is plotted for �min() > 0:01224 since
no phase transition occurs in this case.

3.4 Analysis of the Ising perceptron with input noise

Here we consider the case when DN is obtained by applying
a target function consisting of an Ising perceptron w� to
inputs corrupted by additive Gaussian noise �. Thus in a
random training example hx; yi from DN ,

y = f(x; �) = sgn(w� � (x+ �)): (46)

The distribution of inputs x is Gaussian, with unit vari-
ance on each component. The distribution of noise � is also
Gaussian, with variance 2�1 on each component. A similar
problem was examined by Gy�orgyi and Tishby [15].

In this case, one can show that

�gen(w) =
1

�
cos�1(R=) (47)

�min() = �gen(w
�) =

1

�
cos�1(1=) (48)

�gen(w;w
�) =

1

�
cos�1R (49)

where R = w �w�=N .
The entropy function takes the form

s(�) = H((1� cos ��= cos ��min())=2): (50)

To derive the energy function, we use

v(�) =
1

�
cos�1(cos ��= cos��min()) (51)

and plug into Equation (32) to obtain u(�). Our error
bound is then the rightmost solution of s(�) = �u(�).
The entropy s(�) is a single hump, as in the zero noise
case. However, the edges of the hump are at � = �min()
and � = 1 � �min(), outside of which the entropy is zero.
At the edges, the entropy rises like �� log �� (where �� =
� � �min()), and thus has in�nite slope. In contrast the

energy has zero slope, since it behaves like (��)3=2. Hence
the asymptotic behavior must be

�� �min() = O
�
log �

�

�2
(52)

However, the large � asymptotics are not the whole story.
For �min() < 0:01969, the error bound undergoes a �rst
order transition to nonzero error. In other words, although
the input noise prevents a transition to perfect learning,
when it is small it does not erase all traces of the transition.

Plots of s(�)� �u(�) for three di�erent values of �min()
are given in Figures 17, 18 and 19, and the corresponding
learning curves in Figure 20. The phase diagram indicating
the critical value of � for each value of �min() is plotted in
Figure 21.

As an illuminating exercise, we note that four di�erent
bounds can be written using the tools of this paper. For
the entropy there are two choices, the simple cardinality
bound s(�) = 1 and the tighter bound above. For the energy
there are two choices, given by Equations (32) and (33),
corresponding to the choices of v(�) as above and v(�) =
�+ �min. These four possibilities give the bounds exhibited
below:

cardinality entropy

v(�) = �+ �min ��1=2 (log �)=�
v(�) � p

�� ��2=3 ((log �)=�)2
(53)

Note how much weaker some of the bounds are than others.

3.5 Large-� asymptotics of scaled learning curves

Our formalism can be used to give a classi�cation of the
large-� asymptotics of scaled learning curves, 7 thus com-
pleting a classi�cation program that has been suggested by
several researchers [24, 25, 1]. From Equation (32) and
Lemma 9, the weaker form

u(�) =
(�� �min)

2

2v(�)
(54)

is derived as a permissible energy bound in the Appendix
in Section A.2. The entropy-energy competition then takes
the form

s(��) = �u(��) = �
(��)2

2v(��)
(55)

where we have rewritten all functions of � as functions of the
di�erence �� = �� �min.

Since the only model-dependent quantities are s(��) and
v(��), we can classify the large � asymptotics of scaled
learning curves. In fact, the only model-dependent quan-
tity that need enter is a single exponent x, de�ned by

s(��)v(��)� (��)x (56)

near �� = 0. This yields the following cases:

� If x > 2, there is a �rst-order (sudden) phase transition
to perfect learning. This is assuming that s(0) = 0, so
that �� = 0 is always a solution of Equation (55), if not
the rightmost solution. This is the generic case, unless
there are exponentially many functions with � = �min.

� If 1 < x < 2, the error decays as a power law, 1=�2�x.

� In the marginal case x = 2, the behavior can be af-
fected by logarithmic corrections to the power law of
Equation (56). In the absence of such corrections,
there is a second-order (continuous) transition to per-
fect learning in which the error drops to zero like � �
�c � �. In the presence of a logarithmic correction,
s(��)v(��) � �(��)2 log ��, the error bound decays
exponentially with �.

This classi�cation scheme is a generalization of that of Som-
polinsky and his colleagues to include unrealizable rules [25].

7Note that the large-� asymptotics, which by de�nition invoke a
thermodynamic limit, may be di�erent from the largem asymptotics
for a �xed function class.
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4 The In�nite Case

The �nal generalization of our theory that needs to be dis-
cussed is to the frequent case in which the function class
F (whether it realizes the target function or not) has in-
�nite cardinality. Unfortunately, while there are certainly
several plausible directions we can take to adapt our theory
to this case, none of these has emerged as de�nitively the
best choice for handling the in�nite case. This is partially
due to the lack of known natural examples of in�nite classes
that lead to learning curve behavior other than a power law
(thus suggesting that the extremely general VC dimension-
based approach is su�cient for analyzing most classes), and
partially due to the di�culty of the calculations required by
the various approaches. Thus, by necessity our examination
of the in�nite case will be considerably more open-ended
than for the �nite case.

We begin by noting that practically every step of our
analysis for the �nite case was based on computing the (�-
nite) cardinality of some subclass of F . This began with the
shell decomposition of F to obtain the subclass cardinali-
ties Qj, whose logarithms were eventually bounded by the
entropy function s(�) in the thermodynamic limit method.
Obviously, new ideas will be required in order to carry out
a similar analysis in the in�nite case. Our eventual goal
should be to preserve the essentials of our theory: namely,
to again describe learning curves as a competition between
\entropy" and \energy", with the largest value for which
energy dominates entropy being a bound on the generaliza-
tion error of empirical minimization algorithms. However,
there are now several distinct candidates for our entropic
measure. We now discuss in some detail just one of these
candidates, which essentially attempts to reduce the in�nite
case to a series of �nite problems. In Section 6, we briey
mention alternative approaches that are the focus of our
current research.

4.1 The covering approach

In the covering approach, we reduce an in�nite cardinality
function class to a series of �nite classes, and perform our
analysis for the �nite case on each of these classes in order
to obtain a bound on the learning curve.

For any �xed function class F (of possibly in�nite car-
dinality), any distribution D, and any value  2 [0; 1], a
subclass F [] � F is called a -cover of F with respect to
D if for every f 2 F there exists an f 0 2 F [] such that
�(f;f 0) � . In other words, while there may be functions
in F that are not realizable in F [], the extent of this unre-
alizability is bounded by the parameter .

There is a canonical greedy construction of -covers that
will be particularly helpful to keep in mind. Thus, through-
out this section, for any �xed value , we assume that F []
is a -cover of F with respect to D obtained by initially
choosing any function in F , then inductively adding to F []
at each step any f 2 F that is distance at least  (with
respect to D) from all h 2 F []. This process is repeated
until no more functions can be added. It is easy to see that
the resulting set F [] does indeed form a -cover, and it is
known that this -cover is in fact at most twice the cardi-
nality of the smallest possible -cover. Furthermore, sup-
pose 0 < . Then we can extend F [] to obtain a 0-cover
F [0] � F [] by again greedily adding to F [] functions
that are at distance at least 0 until no such function exists.
The resulting cover F [0] will again have cardinality at most

twice the smallest 0-cover. In this way we can obtain for
any sequence 1 > 2 > 3 > � � � a sequence of nested covers
F [1] � F [2] � F [3] � � � �.

Let us �x  2 [0; 1], and assume that F has a �nite -
cover with respect to D. This is not as severe an assumption
as it might initially seem. For instance, it is well-known that
any class of VC dimension d has a -cover of cardinality at
most O(1=d) with respect to any distribution and for every
. Furthermore, if a class is not �nitely -coverable with
respect to D, then the generalization error cannot be made
less than  in any �nite number of examples. Thus, we see
that �nite coverability is really a minimal assumption for
attaining small generalization error.

With a �xed -cover F [] of F with respect to D in
mind, it is a straightforward application of our theory for
the �nite unrealizable case to analyze the algorithm that
performs empirical error minimization with respect to F [].
Given m examples, this algorithm outputs any h 2 F []
with minimum empirical error on the sample. Note that
this algorithm explicitly does not choose from the full class
F , but limits its search to the �xed �nite subclass F []. For
a �xed target function (contained in F or not), the thermo-
dynamic limit method applied to F [] results in a bound on
the error of ��, where �

�
 is the rightmost crossing function

of a permissible entropy bound s(�) for F [] and an energy
function �u(�), where as before �min() �  is the small-
est possible generalization error achievable in F []. The
idea of using empirical minimization over a �nite cover for
an in�nite class has also been investigated by Benedek and
Itai [3] in their investigation of distribution-speci�c sample
complexity, and also by Vapnik [30].

Things become more interesting when we take the natu-
ral step of analyzing the algorithm that �rst chooses an ad-
vantageous value for the realizability parameter  and then
performs empirical minimization using F []. More precisely,
if we assume that the algorithm has knowledge of s(�) for
each , 8 and is given m = �t(N) examples of the target
function, then the algorithm will explicitly choose  to min-
imize the resulting rightmost crossing �� .

It is worth mentioning at this point that while such an
algorithm may be di�cult or impossible to implement (re-
quiring the possibly di�cult choice of  and knowledge of
the �nite covers F []), it is worth study for at least two
reasons. First, the algorithm is of some theoretical interest
since it explicitly considers the potential trade-o� between
the best error achievable in the chosen cover F [] (which
improves as  ! 0), and the size of F [] (which increases
as  ! 0). Second, although one might not implement such
an algorithm in practice, any bound we can provide on its
generalization error can provide bounds on the generaliza-
tion error of optimal algorithms (such as the Bayes or Gibbs
algorithms in a Bayesian framework [17]).

In the thermodynamic limit, we may upper bound the
generalization error of this algorithm by

�� = min
2[0;1]

��: (57)

Let us interpret this bound. For each �xed , we are com-
puting the rightmost crossing �� of s(�) and �u(�). What

8This is a nontrivial assumption, since in many of the examples
we have examined, the entropy bound depends strongly on the target
function, which we of course assume is unknown. Thus, we are really
assuming here that either s(�) is invariant to the target function (as
in the realizable Ising perceptron), or that is a worst-case entropy
bound over all target functions.
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is the expected behavior of this crossing as  ! 0? Well, as
 ! 0 the covers F [] are becoming larger (since we require
more functions to achieve the greater realizability), and we
thus expect s(�) to increase. Indeed, if we use the nested
cover construction suggested at the beginning of this sec-
tion, then for any 0 �  we will have s0 (�) � s(�) for
every �. Thus, decreasing  has the e�ect of \lifting" s(�)
(although perhaps in a very nonuniform and complex man-
ner). If u(�) remained unchanged as  decreased, then the
lift to s(�) could only cause the crossing �� to increase, thus
predicting that decreasing  could never help.

However, u(�) does not remain unchanged as  de-
creases. Rather, smaller  results in a smaller value for the
optimal error �min() � , thus shifting the energy curve
u(�) to the left. If s(�) remained unchanged as  ! 0,
we would predict that decreasing  could never hurt, and
would choose  = 0.

Thus in general, the covering analysis predicts that while
for each �xed , the best error for resolution  is determined
by the competition between s(�) and �u(�), the overall
best error is governed by the competition between the lift
to s(�) and the leftward shift to u(�) as  ! 0.

5 Generalization of the Theory to Distribution Learning

We believe that the basic components of the theory outlined
here | namely, the identi�cation of the appropriate entropy
and energy bounds, and the resulting bound on the learn-
ing curve in terms of their competition | should generalize
considerably beyond the basic model of supervised learning
of boolean functions examined in this paper. By this we
mean the theory should generalize to cover many di�erent
models of learning from random independent observations,
using a variety of loss functions. To demonstrate this, we
now informally work out a simple example in which we cal-
culate learning curve bounds, in the thermodynamic limit,
for a certain class of probability distributions with respect
to the well-known Kullback-Leibler divergence.

Let the target distribution D over f0; 1gN be de�ned as
follows: for each 1 � i � N , we let the ith bit of the output
vector be 0 with probability (1� p) and 1 with probability
p. Here p is a parameter in [0; 1=2] that will remain �xed
for the ensuing discussion. Thus, the distribution D can be
regarded as outputting a random vector obtained by cor-
rupting each bit of the vector ~0 = 00 � � � 0 with independent
probability p.

Let the class of hypothesis distributions be similarly de-
�ned by all the possible \center" vectors ~v 2 f0; 1gN . Thus,
the vector ~v represents the distribution D~v obtained by cor-
rupting each bit of ~v with independent probability p, and
the target D � D~0. It should be clear that the Kullback-
Leibler divergence of D~v from the target D depends only on
the Hamming distance between ~v and ~0, which is just the
number of 1's appearing in the vector ~v.

We now undertake an analysis of the Kullback-Leibler
divergence, as a function of the sample size m, of the hy-
pothesis D~v minimizing the empirical log-loss

loss(D~v; S) =
X
~y2S

log(1=D~v[~y]): (58)

Here S consists of m independent random draws from the
target distribution D. Thus, we are simply analyzing in
our theory the learning curve of the maximum-likelihood
approach to this problem.

Now it is not hard to show that if ~v is a vector with
exactly r 1's in it, then the Kullback-Leibler divergence of
D~v to D is

r

�
p log

1

1� p
+ (1� p) log

1

p
�H(p)

�
(59)

where H(p) is the usual binary entropy of p. Note that the
divergence is 0 when r = 0 (the divergence of the target from
itself is 0), and it is also 0 when p = 1=2 (since then every
~v generates the uniform distribution on f0; 1gN ). Since p is
�xed , let us use Cp = p log(1=(1�p))+(1�p) log(1=p)�H(p)
to denote the constant inside the parentheses above. For
convenience, we also divide the Kullback-Leibler divergence
by N just to make our measure of generalization error an
order 1 quantity. Then we see that our error levels are just
�Nr = r(Cp=N) for 0 � r � N , and the number of distribu-
tions in the class that are at divergence �Nr from the target
is QN

r =
�
N
r

�
.

We now turn to the problem of �nding a suitable en-
ergy function. In other words, suppose that ~v is a �xed
vector with exactly r 1's, and suppose we draw a sample S
of m vectors from the target distribution D. Then what is
PrS2Dm [loss(D~v; S) � loss(D;S)]?

To bound this probability, note that the di�erence in the
log-loss incurred by the two distributions on any �xed vector
~y depends only on the setting in ~y of the r bits where ~v and ~0
disagree (which we may assume without loss of generality are
the �rst r bits). On a 0 in bits 1 through r, the target pays
log(1=(1�p)) and D~v pays log(1=p), and on a 1, the costs are
reversed. Thus our problem simply reduces to the following:
we have m�r Bernoulli trials, each with probability p of tails.
What is the probability that we have a majority of tails?
Now we can just use standard Cherno� bounds to obtain
the following bound:

PrS2Dm [loss(D~v; S) � loss(D;S)] � e�(mr=3)(1�2p)2=(4p):
(60)

Thus when we write out our summation of entropy times
energy (corresponding to Equation 7 in the boolean function

learning setting), the rth term is
�
N
r

�
e�(mr=3)(1�2p)2=(4p).

Using the bound
�
N
r

�
� Nr we can bound the rth term

by er logN�(mr=3)(1�2p)2=(4p). Factoring out the scaling fac-

tor t(N) = logN , we rewrite this elogN(r�(�r=3)(1�2p)2=(4p))

where we de�ne � =m= logN . In the thermodynamic limit,
this predicts a phase transition to perfect generalization for
� proportional to p=(1 � 2p)2. This makes some sense, in
that the critical � goes to in�nity as p approaches 1=2.

6 Conclusion

Two questions have often been raised in the computational
learning theory community regarding the statistical physics
approach to learning curves. Can it be made rigorous? Does
it give any results that can not be derived from the VC the-
ory? In this paper, we shown that for �nite function classes
and excluding replica calculations, the answer to both ques-
tions is a�rmative. Under certain circumstances, our theory
provides much tighter bounds than the VC theory, best il-
lustrated in our examples exhibiting phase transitions.

Our theory gives tighter bounds than the VC theory at
the expense of increasing the number of problem-dependent
quantities. Since the computation of the entropy bound s(�)
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requires knowledge of the input distribution, it is consider-
ably more di�cult than the computation of the VC dimen-
sion, which requires knowledge of only the function class.
For this reason, applications of our theory to real problems
may be di�cult. Thus, our theory is descriptive rather than
prescriptive at this point: it should be regarded more as
an attempt to come to a theoretical understanding of the
true behavior of learning curves, rather than as a tool for
application.

There is obviously still much work to do in our theory,
and we now list some of the research directions we are pur-
suing.

� The in�nite case. The most glaring weakness of
our theory, especially in comparison to the VC the-
ory, is that we have developed and analyzed it only
for �nite cardinality concept classes. We are currently
investigating extensions to the in�nite case that are
more re�ned than the covering approach discussed in
Section 4.1, and are based on combining the shell de-
composition with the VC dimension, VC entropy and
random covering numbers [30, 22, 7, 16].

� Expressing our bounds as penalty functions.
One of the most interesting aspects of the VC the-
ory is Vapnik's explicit prescription in the unrealiz-
able setting for trading o� hypothesis class complex-
ity (and therefore, ability to realize the target func-
tion) against empirical error [30]. This prescription is
known as structural risk minimization, and the form
it takes can be directly traced to the form of the VC
bounds on learning curves. The fact that we now have
learning curve bounds whose functional form can dif-
fer radically from the VC bounds opens the possibility
for structural risk minimization prescriptions that are
di�erent from Vapnik's. Although possibly di�cult to
apply, such prescriptions may have interesting theoret-
ical interpretations and consequences.

� Alternatives to the computation of s(�). Wemen-
tioned above that at this point our theory is descriptive
rather than prescriptive. It would be nice to at least
partially remedy this situation. The main barrier is
our assumption that s(�) is known to the designer of a
learning algorithm, which in turn implies knowledge of
the input distribution. Might it be possible to estimate
s(�) from data, even for special function classes of in-
terest? If one has only partial information about the
input distribution, can this be translated into useful
partial information about s(�). Note that such consid-
erations must be central to any attempt to apply our
theory in a practical manner, for instance to structural
risk minimization.
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A Technical Appendix

A.1 Relaxing the bound on the number of error levels

One undesirable aspect of the statement of Theorem 4 is the
demand that r(N) = o(et(N)�) for all values � > 0, that
is, the insistence that the number of error levels r(N) be a
strictly subexponential function of chosen scaling function
t(N). In this section we briey show how this condition can
be sidestepped without changing the essential character of
the thermodynamic limit method. The basic idea is this: if
the true number of error levels r(N) is too large to apply
Theorem 4, we can instead apply the theorem using a smaller
number of error levels of our own choosing.

More precisely, rather than using the error levels �Nj ,
1 � j � r(N), that are determined by the de�nition of
the FN , fN and DN , let us instead let r(N) be any function

meeting the condition r(N) = o(et(N)�) for all values � >

0, and let the �Nj be any sequence of error values that we
choose. Thus, now there may in fact be no functions in F
at generalization error �Nj . We now rede�ne QN

j to be all
those functions in FN whose generalization error falls in the
interval [�Nj ; �

N
j+1). The intuition is that we are �rst putting

functions of nearby generalization error in the same \bin",
and assuming (pessimistically) that all functions in the same
bin have the smallest possible generalization error for this
bin.

The de�nition of a permissible entropy bound s(�) with
respect to the scaling function t(N) remains unaltered, and
it can be veri�ed that under the new de�nitions, Theorem 4
still holds. Given a scaling function t(N), the number and
spacing of the error levels we should choose to obtain the
best analysis depends on the problem. A natural choice is
to space the error levels evenly over [0; 1], but this is not
the only possibility and may not be the best one for certain
problems.

A.2 Derivation of general energy bound form

Here we show how Equations (30) and (54) can be derived.

Lemma 9 (Sanov) Let Z1; :::;Zm be i.i.d. random variables
taking on the values f�1; 0; 1g with probabilities fp�1; p0; p1g,
resp. If the mean p1 � p�1 of Zi is positive, then the proba-
bility that the empirical mean is nonpositive is bounded by

Pr

"
1

m

mX
i=1

Zi � 0

#
� �

1� (
p
p1 �pp�1)

2
�m

(61)

� exp

�
�m(p1 � p�1)

2

2(p1 + p�1)

�
(62)

Proof: Let T = 1
m

Pm

i=1 Zi be the empirical mean. Then
from Markov's inequality it follows that

Pr[T � 0] = Pr[e�m�T � 1] (63)

� E[e�m�T ] (64)

=

mY
i=1

E[e��Zi] (65)

= (p1e
�� + p0 + p�1e

�)m ; (66)

for any positive �. In particular, it is true for the �� satis-

fying e��
�

=
p
p�1=p1. Making this substitution and using
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p0 = 1� p1 � p�1, we �nd the �rst inequality of the lemma.
The second inequality follows from

(p1 � p�1)
2

p1 + p�1
= (

p
p1 �pp�1)

2 (
p
p1 +

p
p�1)

2

p1 + p�1
(67)

� 2(
p
p1 �pp�1)

2 (68)

� �2 log
�
1� (

p
p1 �pp�1)

2
�

(69)

To prove Equation (30) using this lemma, we note that
the random variable �trn(h; S)� �trn(h

�; S) is precisely the
empirical mean of the random variables

Zi = �[h(xi) 6= yi]� �[h�(xi) 6= yi]; (70)

where each hxi; yii is an example drawn independently from
DN . Each Zi takes on the values f�1; 0; 1g with probabili-
ties

p1 = Pr[(h(x) 6= y) ^ (h�(x) = y)] (71)

p0 = Pr[(h(x) 6= y) ^ (h�(x) 6= y)]

+Pr[(h(x) = y) ^ (h�(x) = y)] (72)

p�1 = Pr[(h(x) = y) ^ (h�(x) 6= y)] (73)

where hx; yi is an example drawn randomly from DN . These
are related to probabilities of disagreement via

�(h; h�) = p1 + p�1 (74)

�(h)� �(h�) = p1 � p�1 (75)

Making the appropriate substitutions in Equation (62) yields
the desired result.
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Figure 1: Rightmost intersections for a constant entropy bound
s(�) = 1 and �� log(1� �) for three values � = �1; �2; �3.
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Figure 2: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 1.

0 ε1ε2 1

ε

0

1

Figure 3: Rightmost intersections for a single-peak entropy
bound (for the Ising perceptron of Section 2.6) and �� log(1� �).
The curves corresponding to the three values �1 = 0:7, �2 =
1:448 and �3 = 2:5 are plotted. The resulting three intersections
are �1 = 0:6011, �2 = 0:2543 and 0. The value �2 = 1:448 is a
critical value, resulting in the phase transition seen in Figure 4.
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Figure 4: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 3 (Ising perceptron), show-
ing a phase transition to zero error at the critical value �2 =
1:448.
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0 ε1ε2+ε2−ε3 1

ε

0

Figure 5: Rightmost intersections for a single-peak entropy
bound and �� log(1� �), showing a critical value �2.
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Figure 6: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 5, showing a phase tran-
sition to nonzero error at the critical value �2.
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Figure 7: Rightmost intersections for a double-peak entropy
bound and �� log(1� �), showing critical values �2 and �4.
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Figure 8: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 7, showing a phase tran-
sition to nonzero error at the critical value �2, and a phase tran-
sition to 0 error at the critical value �4.
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Figure 9: Rightmost intersections for a triple-peak entropy
bound and �� log(1 � �), showing critical values at �2 and �4

and demonstrating the phenomenon of shadowing.
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Figure 10: Scaled learning curve �
�(�) corresponding to the

entropy-energy competition of Figure 9, showing a phase tran-
sition to nonzero error at the critical value �2, and a phase tran-
sition to 0 error at the critical value �4.
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Figure 11: The function s(�) + � log(1 � �) for the Ising per-
ceptron, plotted for the same values of �1; �2; �3 as in Figure 3.
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Figure 12: The function s(�) � �u(�) for the unrealizable Ising
perceptron discussed in Section 3.3, with �min() = 0:005. The
function is plotted for the values � = 2:0;2:063;2:1 (top to bot-
tom).
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Figure 13: The function s(�) � �u(�) for the unrealizable Ising
perceptron discussed in Section 3.3, with �min() = 0:01224. This
value for �min() is a critical value, in the sense that the learning
curve phase transition disappears for larger �min(). The function
is plotted for the values � = 2:5;2:659;2:8 (top to bottom).
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Figure 14: The function s(�) � �u(�) for the unrealizable Ising
perceptron discussed in Section 3.3, with �min() = 0:05. The
function is plotted for the values � = 10;11;12 (top to bottom).
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Figure 15: The scaled learning curves �� (�) for the unrealizable
Ising perceptron discussed in Section 3.3, for the three values
�min() = 0:005;0:01224;0:05 (bottom to top).
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Figure 16: Phase diagram showing line of �rst-order transitions
beginning at � = 1:448 for �min() = 0 and terminating at � =
2:659 for �min() = 0:01224.
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Figure 17: The function s(�) � �u(�) for the unrealizable Ising
perceptron discussed in Section 3.4, with �min() = 0:01. The
function is plotted for the values � = 2:0;2:1184;2:2 (top to bot-
tom).

0 0.05 0.1 0.15 0.2 0.25 0.3

ε

-0.005

-0.0025

0

0.0025

0.005

0.0075

0.01

Figure 18: The function s(�) � �u(�) for the unrealizable Ising
perceptron discussed in Section 3.4, with �min() = 0:01969. This
value for �min() is a critical value, in the sense that the learning
curve phase transition disappears for larger �min(). The function
is plotted for the values � = 2:5;2:6136;2:7 (top to bottom).
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Figure 19: The function s(�) � �u(�) for the unrealizable Ising
perceptron discussed in Section 3.4, with �min() = 0:03. The
function is plotted for the values � = 2;3; 4 (top to bottom).
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Figure 20: The scaled learning curves �� (�) for the unrealizable
Ising perceptron discussed in Section 3.4, for the three values
�min() = 0:01;0:01969;0:03 (bottom to top).
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Figure 21: Phase diagram showing line of �rst-order transitions
beginning at � = 1:448 for �min() = 0 and terminating at � =
2:6136 for �min() = 0:01969.
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