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Abstract

We introduce a general representation of large-
population games in which each player’s influ-
ence on the others is centralized and limited, but
may otherwise be arbitrary. This representation
significantly generalizes the class known as con-
gestion games in a natural way. Our main results
are provably correct and efficient algorithms for
computing and learning approximate Nash equi-
libria in this general framework.

1 INTRODUCTION
We introduce a compact representation for single-stage ma-
trix games with many players. In this representation, each
player is influenced by the actions of all others, but only
through a globalsummarization function. Each player’s
payoff is an arbitrary function of their own action and the
value of the summarization function, which is determined
by the population joint play. This representation of large-
population games may be exponentially more succinct that
the naive matrix form, and here we prove that vast compu-
tational savings can be realized as well. A natural example
of such games is voting scenarios (a special case in which
the summarization function is both linear and symmetric),
where each player’s payoff depends only on their own vote
and the outcome of the popular election, but not on the de-
tails of exactly how every citizen voted. As discussed be-
low, summarization games generalize a number of existing
representations in the game theory literature, such as con-
gestion games.

We make the natural assumption ofbounded influence—
that is, that no player can unilaterally induce arbitrarily
large changes in the value of the summarization function.
(Voting is a simple example of bounded influence.) Un-
der only this assumption and a bound on the derivatives of
the private individual payoff functions (both of which ap-
pear to be necessary), we give an algorithm for efficiently
computing approximate Nash equilibria, which interest-
ingly always outputspureapproximate equilibria. We also

prove that a simple variant of distributed smoothed best-
response dynamics will quickly converge to (learn) an ap-
proximate equilibrium for anylinear summarization func-
tion. These algorithms run in time polynomial in the num-
ber of players and the approximation quality parameter, and
are among the few examples of provably efficient Nash
computation and learning algorithms for broad classes of
large-population games.

2 RELATED WORK

A closely related body of work is the literature on games
known ascongestion games(Rosenthal [1973]) orexact
potential games(Monderer and Shapley [1996]), which are
known to be equivalent. In congestion games and their gen-
eralizations, players compete for a central resource or re-
sources, and each player’s payoff is a (decreasing) function
of the number of players selecting the resources. An ex-
ample is the well-studiedSanta Fe Bar problem, where pa-
trons of a local bar receive positive payoff if their numbers
are sufficiently low, negative payoff if they exceed capac-
ity, and players who stay home receive 0 payoff. Single-
resource congestion games can be viewed as summariza-
tion games in which the global summarization issymmet-
ric — that is, dependent only on the total number of play-
ers selecting the resource. In the current work we allow the
summarization function to be both non-symmetric and non-
linear, but our results can also be viewed as a contribution
to the congestion game literature. While a fair amount is
understood about the mathematical properties of equilibria
in congestion games (such as the existence of pure equilib-
ria), and there has been a great deal of recent experimen-
tal simulation (see, for example, Greenwald et al. [2001]),
there seems to be relatively little work providing provably
efficient and correct algorithms for computing and learning
equilibria.

We also view the proposed representation and algorithms
as complementary to recent work on compact undirected
graphical models for multi-player games (Kearns et al.
[2001], Littman et al. [2002], Vickrey and Koller [2002]).
While those works emphasize large-population games in



which each player is strongly influenced by a small num-
ber of others, the current work focuses on games in which
each player is weakly influenced by all others. This is
analogous to the two main cases of tractable inference in
Bayesian networks, where the polytree algorithm provides
an algorithm for sparse networks, and variational algo-
rithms yield approximate inference in dense networks with
small-influence parametric CPTs.

3 DEFINITIONS AND NOTATION

We begin with the standard definitions for multiplayer ma-
trix games. Ann-player, two-action1 game is defined by
a set ofn matricesMi (1 � i � n), each withn in-
dices. The entryMi(x1; : : : ; xn) = Mi(~x) specifies the
payoff to playeri when the joint action of then players is
~x 2 f0; 1gn Thus, eachMi has2n entries. We shall assume
all payoffs are bounded in absolute value by 1.

The actions 0 and 1 are thepure strategiesof each player,
while a mixedstrategy for playeri is given by the proba-
bility pi 2 [0; 1] that the player will play 0. For any joint
mixed strategy, given by a product distribution~p, we define
the expected payoff to playeri asMi(~p) = E~x�~p[Mi(~x)],
where~x � ~p indicates that eachxj is 0 with probabilitypj
and 1 with probability1� pj .

We use~p[i : p0i] to denote the vector which is the same as
~p except in theith component, where the value has been
changed top0i. A Nash equilibriumfor the game is a mixed
strategy~p such that for any playeri, and for any value
p0i 2 [0; 1],Mi(~p) �Mi(~p[i : p

0
i]). (We say thatpi is abest

responseto the rest of~p.) In other words, no player can im-
prove their expected payoff by deviating unilaterally from
a Nash equilibrium. The classic theorem of Nash [1951]
states that for any game, there exists a Nash equilibrium in
the space of joint mixed strategies.

We will also use a straightforward definition for approxi-
mate Nash equilibria. An�-Nash equilibriumis a mixed
strategy~p such that for any playeri, and for any value
p0i 2 [0; 1], Mi(~p) + � � Mi(~p[i : p

0
i]). (We say thatpi

is an�-best responseto the rest of~p.) Thus, no player can
improve their expected payoff by more than� by deviating
unilaterally from an approximate Nash equilibrium.

As in Kearns et al. [2001], our goal is to introduce a nat-
ural new representation for large multiplayer games that is
considerably more compact than the classical tabular form,
which grows exponentially in the number of players. How-
ever, rather than succinctly capturing games in which each
player has a small number of possibly strong “local” influ-
ences, our interest here is at the other extreme — where
each player is influenced byall of the others in a large pop-
ulation, but no single player has a dominant influence on
any other.

1We describe our results for the two-action case. The general-
ization to multiple actions is straightforward.

The first element of this new representation is a population
summarization functionthat we shall denoteS(~x). As dis-
cussed in the introduction, a natural example might be the
votingsummarization functionS(~x) = (1=n)

Pn
i=1 xi, but

here we explicitly allowS to be asymmetric and non-linear.
We shall assume without loss of generality that the range of
S is [0; 1]. The central idea is that in a multiplayer game
in which the joint pure play is~x, the payoffs to any player
i will be a function of only his own actionxi, and the two
valuesS(~x[i : 0]) andS(~x[i : 1]). We view these two
values assummarizingfor each player all that they need to
know about the joint behavior in order to decide how to act.
Note that one of these two values (namely,S(~x[i : xi])) is
simplyS(~x).
A natural question is why we provide each player with the
two valuesS(~x[i : 0]) andS(~x[i : 1]), rather than simply
the single valueS(~x). The reason is that in many natu-
ral cases, the single-value model may lead to situations in
which players do not have sufficient global information to
determine the effects of their own actions, or even compute
their best responses, since the valueS(~x) alone may not
determine the effect onS of changingxi. As an example,
suppose thatS(~x) reports the fraction of players that are
playing the majority value, without specifying whether the
majority value is 0 or 1, and thati is a player whose pay-
off increases with the value ofS (that is,i is a consensus-
builder). Then for any given value ofS(~x), i cannot de-
termine whether he should change his play fromxi in or-
der to build greater consensus. If he is provided with both
S(~x[i : 0]) andS(~x[i : 1]), he can directly see the im-
pact onS of his own actions (but not that of others), and
can at least always compute his own best response to any
fixed pure joint play~x. We note, however, that the results
we will give shall render this distinction between receiving
one or both values largely a technicality, and that the reader
may informally think of the players as receiving the single
summarizing valueS(~x).
Before moving on to the payoff functions for the individ-
ual players, we first discuss restrictions onS that we shall
assume. Recall that our goal is to model settings in which
every player’s payoff may depend on every other player’s
move, but in a way that the influences are bounded. For
a fixed summarization functionS, we formally define the
influenceof playeri by

�i = max
~x2f0;1gn

fjS(~x[i : 0])� S(~x[i : 1])jg:

The influence measures the greatest change playeri can
ever (unilaterally) effect in the summarization function. We
say that the influence ofS is bounded by� if �i � �
for all playersi. In keeping with our motivation, we shall
be studying the computational benefits that can arise from
multiplayer games with bounded influence summarization
functions. Note that since we assume the range ofS is
[0; 1], the influence is always bounded by 1; however, if



there aren players,in many natural bounded-influence set-
tings the maximum influence will be on the order of1=n (as
in voting), or at least some function diminishing withn.

Finally, we discuss the individual payoff functions. Here
we simply assume that each playeri possesses separate
payoff functions for their two actions,F i

0 andF i
1. If the

pure actions of the othern�1 players are given by the vec-
tor~x (where herexi is irrelevant) the payoff toi for playing
0 is defined to beF i

0(S(~x[i : 0])), and the payoff to player
i for playing1 is defined to beF i

1(S(~x[i : 1])). Thus, for
any joint play~x, each player is told what values their two
actions will yield for the population summarization func-
tion, and has private payoff functions indicating their own
reward for each resulting value. We assume that theF i

b

are real-valued functions mapping[0; 1] to [0; 1]. We shall
also assume that all the payoff functions are continuous and
have bounded derivatives.

Note that even though the summarization functionS has
bounded influence, and thus a player’s action can have only
bounded effect on the payoffs to others, it can have dra-
matic effect on hisownpayoffs, sinceF i

0 andF i
1 may as-

sume quite different values for any mixed strategy (despite
the bounds on their derivatives). We feel this is a natural
model for many large-population settings, where subjective
(private) regret over actions may be unrelated to the (small)
influence an individual has over global quantities. For in-
stance, a staunch democrat might personally find voting for
a republican candidate quite distasteful, even though this
individual action might have little or no effect on the over-
all election. It is their private payoff functions that makes
individuals “care” about their actions in a large population
where the global effects of any single player are negligible.

We shall assume throughout that the summarization func-
tion S and all the payoff functionsF i

b can be efficiently
computed on any given input; formally, we will assume
such a computation takes unit time. Thus, the tupleG =
(S; f(F i

0;F i
1)gni=1), which we shall call a(large popu-

lation) summarization game, is a representation of ann-
player game that may be considerably more compact than
its generic matrix representation. We say thatG is a(�; �)-
summarization game if the influence ofS is bounded by� ,
and the derivatives of allF i

b are bounded by�.

Two final remarks on the definition of a summarization
game are in order. First, note that the representation is
entirely general: by making the summarization and pay-
off functions sufficiently complex, anyn-player game can
be represented. IfS outputs enough information to recon-
struct its input (for example, by computing a weighted sum
of its inputs, where the weight of bitxi is 2�i), and the
payoff functions simply interpolate the values of the orig-
inal game matrices for playeri, the original game is ex-
actly represented. However, in such cases we will not have
small influence and derivatives, and our results will natu-

rally degrade. It is only for bounded influence and deriva-
tive games, which seem to have wide applicability, that our
results are interesting. Second, we note that if we view
the summarization function as being defined for every in-
put lengthn (as in voting) and fixed, and the continuous
payoff functions as being fixed, then summarization games
naturally represent games with an arbitrarily large or grow-
ing number of players, and our results will shed light on
computing and learning equilibria in the limit of large pop-
ulations.

The results in this paper describe efficient algorithms for
computing and learning approximate Nash equilibria in
summarization games, and provide rates of convergence as
a function of summarization influence, payoff derivatives,
and population size. We now turn to the technical develop-
ment.

4 COMPUTING EQUILIBRIA IN
SUMMARIZATION GAMES

The first of our two main results is an efficient algorithm
for computing approximate Nash equilibria in bounded-
influence summarization games:

Theorem 1 There is an algorithmSummNashthat takes
as input any� > 0 and any(�; �)-summarization game
G = (S; f(F i

0;F i
1)gni=1) over n players, and outputs an

O(� + ��)-Nash equilibrium forG. Furthermore, this ap-
proximate equilibrium will be a pure (deterministic) joint
strategy. The running time ofSummNashis polynomial in
n, 1=�, and�.

Before presenting the proof, let us briefly interpret the re-
sult. First, the accuracy parameter� is an input to the al-
gorithm, and thus can be made arbitrarily small at the ex-
pense of the polynomial dependence on1=� of the running
time. As for the�� term in the approximation quality, it is
natural to think of the derivative bound� as being a fixed
constant, while the influence bound� is some diminishing
function of the number of playersn — that is, individuals
have relatively smooth payoffs independent of population
size, while their individual influence on the summarization
function shrinks as the population grows. Under such cir-
cumstances, Theorem 1 yields an algorithm that will com-
pute arbitrarily good approximations to equilibria as the
population increases.

The proof of Theorem 1 and the associated algorithm will
be developed in a series of lemmas. Our first step is
to approximate the continuous, bounded-derivative indi-
vidual payoff functionsF i

b by piecewise constant (step)
functions F̂ i

b. For a given resolution� (to be deter-
mined by the analysis), we divide[0; 1] into the�-intervals
[0; �); [�; 2�); [2�; 3�); : : :. Denote thekth such interval
asIk = [k�; (k + 1)�). We define the approximation̂F i

b

to be constant over any�-intervalI . Specifically, for any



z 2 Ik , F̂ i
b(z) = F i

b(k�). Since the derivative of theF i
b is

bounded by�, we havejF i
b(z)� F̂ i

b(z)j � �� for all play-
ersi, b 2 f0; 1g, andz 2 [0; 1]. In the sequel, we shall refer

to Ĝ = (S; f(F̂ i
0
; F̂ i

1
)gni=1) as the�-approximatesumma-

rization game forG.

We first show that the bounded derivatives of the payoff
functions translates to a Lipschitz-like condition on the ap-
proximate payoff functions.

Lemma 2 For all z; z0 2 [0; 1],

jF̂ i
b(z)� F̂ i

b(z
0)j � (�jz � z0j+ 2��)�(z � z0)

where we define�(z � z0) = 0 if z = z0 and�(z � z0) = 1
otherwise.

Proof: Clearly the difference is 0 ifz = z0. If z 6= z0 we
have

jF̂ i
b(z)�F̂ i

b(z
0)j � jF i

b(z)�F i
b(z

0)j+2�� � �jz�z0j+2��

where the first inequality comes from the approximation
quality, and the second from the bound on the derivatives
of theF i

b .

The following straightforward lemma translates the quality
of approximate Nash equilibria in̂G back to the original
gameG.

Lemma 3 Let ~p be any-Nash equilibrium for the�-
approximate summarization gameĜ. Then~p is a(2��+)-
Nash equilibrium forG.

Proof: Since~p is a-Nash equilibrium forĜ, each player
i is playing a-best response. The rewards inG can
change by at most�� for each action, which implies that
the change to a new best response is at most2��+ .

We next give a lemma that will simplify our arguments
by letting us define (approximate) best responses solely in
terms of the single global summarization valueS(~x), rather
the multiple local valuesS(~x[i : b]) for eachi andb. We
start with the following definition.

Definition 1 Let Ĝ be the�-approximate summarization
game, and let~p be any mixed strategy. We define for player
i thesingle-value apparent best responsein Ĝ as

âi(~p) = argmaxb2f0;1gfE~x�~p[F̂ i
b(S(~x))]g:

Thus,âi(~p) is the apparent best response fori in Ĝ to ~p if i
ignores the effect of his own actions on the summarization
function. We now show that this apparent best response in
Ĝ is in fact an approximate best response inĜ.

Lemma 4 Let Ĝ be the �-approximate summarization
game. Let~p be any mixed strategy. Then̂ai(~p) is a
(��+ 2��)-best response for playeri to ~p in Ĝ.

Proof: For any pure strategy~x and anyb 2 f0; 1g, we
have

jS(~x)� S(~x[i : b])j � � jb� xij
due to the bound on influence. Note that the right-hand
side of this inequality is� if b 6= xi and 0 if b = xi. By
Lemma 2, we have

jF̂ i
b(S(~x))� F̂ i

b(S(~x[i : b])j � (�� + 2��)jb� xij:

Taking expectations under~p gives
���E~x�~p[F̂ i

b(S(~x))] �E~x�~p[F̂ i
b(S(~x[i : b])]

��� � (��+2��)jb�xij:

Now if

âi(~p) 6= argmaxb2f0;1gfE~x�~p[F̂ i
b(S(~x[i : b]))]g

(that is,âi(~p) is not already atruebest response to~p for i in
Ĝ), then the inequality above implies it is a(��+2��)-best
response.

Now note that by construction, ifIk is any�-interval, and
~x and~x0 are any two pure strategies such thatS(~x) 2 Ik
andS(~x0) 2 Ik (that is, both vectors give a value of the
summarization function lying in the same�-interval), then
âi(~x) = âi(~x

0), because the approximate payoff functions
F̂ i
b do not change overIk . Furthermore, the action̂ai(~x)

is an approximate best response fori in Ĝ by Lemma 4. In
other words, inĜ, we have reduced to a setting in which the
(approximate) best response of all players can be viewed
solely as a function of the�-intervalIk in whichS(~x) lies,
and not on the details of~x itself.

For any�-intervalIk, let us define

~br(Ik) = hâ1(~x); : : : ; ân(~x)i

where~x is any vector such thatS(~x) 2 Ik. Thus, ~br(Ik)
is the vector of (apparent) best responses of the players in
Ĝ when the value of the summarization function falls inIk.
This best response itself gives a value to the summarization
function, which we define asV(Ik) = S( ~br(Ik)). We can
extend this definition to viewV as a mapping from[0; 1]
to [0; 1] (rather than from�-intervals to[0; 1]) by defining
V(x) to beV(Ik), wherex 2 Ik . In Figure 1 we provide
a sample plot of a hypotheticalV that we shall refer to for
expository purposes.

The purpose of the definition ofV is made clear by the
next lemmas. The intuition is that those places whereV
“crosses” the diagonal liney = x are indicative of approx-
imate Nash equilibria. We begin with the easier case in
which V crosses the diagonal during one of its constant-
valued horizontal segments, marked as the pointA in Fig-
ure 1.

Lemma 5 Let Ik be an�-interval such thatV(Ik) 2 Ik.
Then ~br(Ik) is a (��+ 2��)-Nash equilibrium forĜ.



Proof: Let ~x = ~br(Ik). SinceV(Ik) = S(~x) 2 Ik, every
player i is playingxi = âi(~x), and thus by Lemma 4, a
(��+ 2��)-best response to~x.

We next examine the case where Lemma 5 does not apply.
First we establish a property of the functionV .

Lemma 6 If for every �-interval Ik, V(Ik) 62 Ik, then
there exists ak such thatV(Ik�1) > k� > V(Ik).

Proof: Fork = 0we haveV(I0) > 0, and for̀ = 1=��1
(the last interval) we haveV(I`) < 1. Therefore there has
to be ak for which the lemma holds.

In other words, if Lemma 5 does not apply, there must be
two consecutive intervals whoseV-values “drop” across the
diagonal. This case is illustrated in Figure 1 by the vertical
dashed line containing the pointB.

Lemma 7 Let k be such thatV(Ik�1) > k� > V(Ik).
Then there is a pure strategy~x which is a(3�� + 6��)-
Nash equilibrium inĜ.

Proof: Let ~y = ~br(Ik�1) and~z = ~br(Ik). Let t be the
number of indicesi for whichyi 6= zi. Define the sequence
of t vectors~x1; : : : ; ~xt such that~x1 = ~y, ~xt = ~z, and for
everyj = 1; : : : ; t, ~xj+1 is obtained from~xj by flipping the
next biti suchyi 6= zi. Thus, in each~xj , bits that have the
same value in~y and~z are unaltered, while bits that differ in
~y and~z flip exactly once during the “walk” from~x to ~z.

The intuition is that if we can find any vector on the walk
which gives a value toS falling in or near the intervalIk,
it must be an approximate Nash equilibrium, since players
whose best response in this neighborhood ofS-values may
be strongly determined (that is, those for whichyi = zi)
are properly set throughout the walk, while the others may
be set to either value (since they are nearly indifferent in
this neighborhood, as evidenced by their switching approx-
imate best response values fromIk�1 to Ik). In Figure 1,
the points along the vertical line that includeB conceptu-
ally show the different values ofV during the walk.

Now for eachj we definevj = S(~xj). Due to the bounded
influence ofS, we have thatjvj � vj+1j � � for all j =
1; : : : ; t. This implies that for some valuè, we havejv` �
k�j � � . (In Figure 1, pointB corresponds to the vector~x`

on the walk whoseV-value comes closest tok�, and thus
constitutes the desired approximate Nash equilibrium.)

We now show that~x` is an approximate Nash equilibrium.
Consider playeri, and assume thatx`i = 0, but that the best
response fori is actually1 (the other cases are similar). If
v` 2 Ik, thenx`i is a(��+2��)-best response by Lemma 4.
Otherwise,v` 2 Ik�1. Since0 = x`i is the apparent best
response fork�, we have

F̂ i
1(k�) � F̂ i

0(k�):
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��
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Figure 1:Hypothetical plot of the functionV over the�-intervals
Ik. We view thex-axis as being both a continuum of individual
points and a discrete sequence of�-intervals.V generally begins
above the diagonal liney = x, and ends up below the diagonal,
and thus must cross the diagonal at some point. The point labeled
A is an example of a horizontal crossing as covered by Lemma 5.
The column of points including the point labeledB is an exam-
ple of a vertical crossing as covered by Lemma 6. Each point in
this column indicates a value ofS realized on the vector “walk”
discussed in the proof of Lemma 6, while the pointB itself is the
value ofS nearest the diagonal in this walk. The analysis estab-
lishes that (at least) one of these two crossing cases must occur.

We now bound the difference in the reward to playeri due
to playing action0 rather than1 in response to~x`, which is

F̂ i
1(S(~x`[xi : 1]))� F̂ i

0(S(~x`[xi : 0])):
This difference is bounded by

F̂ i
1(v`)� F̂ i

0(v`) + ��+ 2��

sincev` = S(~x`), and by Lemma 2. Again by Lemma 2,
we have

jF̂ i
b(v`)� F̂ i

b(k�)j � �� + 2��:

Putting it all together gives

F̂ i
1(S(~x`[xi : 1]))� F̂ i

0(S(~x`[xi : 0])) � 3��+ 6��:

Therefore every player is playing a(3�� + 6��)-best re-
sponse.

Lemma 5 covers the case whereV crosses the diagonal hor-
izontally, and Lemma 7 the complementary case where it
does not. Either case leads to the efficient computation of a
(3�� + 6��)-Nash equilibrium forĜ, which by Lemma 3
is a (3�� + 8��)-Nash equilibrium for the original game
G. Setting� = 8�� or � = �=(8�) completes the proof of
Theorem 1.

A description of the algorithmSummNashdetailed in the
above analysis is provided in Figure 2.



Algorithm SummNash
Inputs: An n-player(�; �)-summarization gameG = (S; f(F i

0;F
i
1)g

n
i=1), and an approximation parame-

ter �. We assume thatS and each payoff functionF i
b are provided as black-box subroutines that cost unit

computation time to call.
Output: A (3��+ �)-Nash equilibrium forG.

1. � �=8�.

2. For each playeri = 1; : : : ; n, andb 2 f0; 1g, construct the�-approximate payoff functionŝF i
b: for

every�-intervalIk = [k�; (k + 1)�), F̂ i
b(z) = F

i
b(k�) for all z 2 Ik. Note that this requires1=�

evaluations of eachF i
b .

3. Construct the mappingV by settingV(Ik) = S( ~br(Ik)) for every�-intervalIk.

4. For each�-intervalIk, k = 1; : : : ; 1=�, check ifV(Ik) 2 Ik. If so, then output~br(Ik).

5. For each�-intervalIk, k = 1; : : : ; 1=�, check ifV(Ik�1) > k� > V(Ik). If so:

(a) LetA be the set of player indices whose play is the same in~br(Ik�1) and ~br(Ik).
(b) B  f1; : : : ; ng �A.
(c) t jBj.
(d) ~x1  ~br(Ik�1).

(e) Forj = 1; : : : ; t, let~xj be obtained from~xj�1 by flipping the bit corresponding to the next index
in B. Note that~xt = ~br(Ik).

(f) For j = 1; : : : ; t, if jS(~xj)� k�j � �, output~xj .

Figure 2: AlgorithmSummNash.

5 LEARNING IN LINEAR
SUMMARIZATION GAMES

In this section, we propose and analyze a distributed learn-
ing algorithm for the players of a game in which the sum-
marization functionS is linear, that is,S(~x) =Pn

i=1 wixi.
It is easily verified that in such a case that each influence
�i = wi. Our main result is that the learning algorithm con-
verges to an approximate Nash equilibrium for the summa-
rization gameG. The analysis will rely heavily on the tools
developed in Section 4.

The learning algorithm for each player is rather simple,
and can be viewed as a variant of smoothed best response
dynamics (Fudenberg and Levine [1999]). First of all, if
G = (S; f(F i

0;F i
1)gni=1) is the original (linear) summariza-

tion game, each playeri will instead use the�-approximate
payoff functionsF̂ i

b described in Section 4. Note that these
approximations can be computed privately by each player.

We shall use~p t to denote the joint mixed strategy of the
population at timet in the learning algorithm. In our learn-
ing model, at each roundt, the expected value of the sum-
marization function

�t = S(~p t) � E~x�~p t [S(~x)]

is broadcast to all players2.
2In the full paper we will examine the variant in which a pure

strategy~x is sampledaccording to~p t, and all players receive only
the valueS(~x). The analysis and results will be similar due to
large-deviation bounds.

One natural learning algorithm would call for each playeri
to updatepti in the direction of their apparent best response
âi(~p

t). This apparent best response involves expectations
over ~p t, and therefore requires each player to know this
distribution to computêai(~p t) exactly. However, let us
extend the definition of apparent best response to apply to
means rather than complete distributions:

âi(�t) = argmaxb2f0;1g[F̂ i
b(�t)]:

We can viewâi(�t) to be theapproximateapparent best
response fori to ~p t under the simplifying assumption that
~p t generates a distribution ofS(~x) that is sharply peaked
near its mean value�t. Before describing the learning al-
gorithm, we give a state without proof a standard large de-
viation bound that we shall use in the analysis, establishing
that this assumption is warranted in large populations.

Lemma 8 Let Ĝ = (S; f(F̂ i
0; F̂ i

1)gni=1) be the �-
approximate summarization game derived from the(�; �)-
summarization gameG = (S; f(F i

0;F i
1)gni=1). Let ~p be

any mixed strategy, and let� = S(~p). Then for each
player i, âi(�) is a  -best response to~p in Ĝ, for  =
O(�

pPn
i=1 �

2
i log(1=

pPn
i=1 �

2
i )).

This lemma actually holds regardless of whetherS is lin-
ear, but we shall only apply it to the linear case. Thus, for
example, if all weights inS are bounded by some constant
C times1=n (C = 1 in the case of straight voting), we have
 = O(� log(n)=

p
n). Thus, as before we have improved



approximated with larger populations. Note, however, thatpPn
i=1 �

2
i � � = maxif�ig.

We now describe the learning algorithm, which has a learn-
ing rate parameter0 < � < 1 and a “stopping” parameter
Æ. We view� as a small fixed constant, and for the analysis
will require that� < �. At time t, each playeri updates
their mixed strategyslightly in the direction of̂ai(�t):

pt+1i = (1� �)pti + �âi(�t):

If we define ~br(�) � hâ1(�); : : : ; ân(�)i, the global vec-
tor update resulting from these distributed updates is

~p t+1 = (1� �)~p t + � ~br(�t):

If jpt+1i � ptij � Æ for all i, then the learning algorithm is
terminated; otherwise updates continue for all players.

We will refer to this distributed learning algorithm as
SummLearn(Æ). Note that if Æ > 0, the algorithm re-
quires a single additional bit of global information at each
step, or the ability for players to “broadcast” if their up-
date was greater thanÆ. For SummLearn(0), no such
mechanism is necessary, as all players continue updat-
ing forever. Below we shall consider both cases, because
while SummLearn(0) is more decentralized and there-
fore more natural, we can make a slightly stronger state-
ment in theÆ > 0 case. Note thatSummLearn(0) is sim-
ply an approximate and smoothed version of best-response
dynamics (Fudenberg and Levine [1999]) — each player
simply moves their mixed strategy slightly in the direction
of the best response to a sharply peaked distribution ofS
with the broadcast mean.

For the analysis, we begin by writing:

�t+1 = S(~p t+1)

= S((1� �)~p t + � ~br(�t))

= (1� �)S(~p t) + �S( ~br(�t))
= (1� �)�t + �S( ~br(�t))
= (1� �)�t + �V(Ik)

where we defineIk to be the�-interval containing�t, we
have used the linearity ofS, andV is as defined in Sec-
tion 4. The above implies

�t+1 � �t = �(V(Ik)� �t):

In other words, as long as�t < V(Ik), the distributed
updates cause the mean to increase, and as long as�t >
V(Ik), they cause the mean to decrease. Viewed graphi-
cally in Figure 3, the learning dynamics cause the mean to
move towards the crossing points of the functionV ana-
lyzed in Section 4. As before, there are two distinct cases
of crossing. We now analyze the convergence to the cross-
ings.

Since� < � by choice, we always havej�t+1 � �tj � �.
This implies that we can only move to adjacent�-intervals:

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Y = X

Y = V(I)

Y

X = I

C

D

µ t

Figure 3:Replication of Figure 1, with arrows added along the
diagonal to illustrate the dynamics ofSummLearn(Æ). We can
think of the distributed learning process as generating the move-
ment of the mean�t = S(~p t) along the diagonal. As indicated
by the arrows, at each point�t, if V is above the diagonal, then the
learning dynamics increase�t, and ifV is below the diagonal they
decrease�t. Convergence is to crossing points ofV. At the point
labeledC the dynamics reverse direction, and the point labeledD
indicates a neighborhood where the dynamics do not reverse, but
may slow down considerably, sinceV is near the diagonal.

if �t 2 Ik, then�t+1 2 Ik�1 [ Ik [ Ik+1. Let us say that
learning hasconvergedat timeT if there exists a vector~p �

such that for allt � T we have~p t = ~p �. We first show
that if learning converges, it must be to an approximate
Nash equilibrium. This covers two possible outcomes of
the learning dynamics: convergence to a horizontal cross-
ing point, or convergence to a point on a horizontal segment
that comes very close to the diagonal (see Figure 3).

Lemma 9 Suppose learning has converged at timeT to
~p �. Then~p � is anO( +�Æ+��)-Nash equilibrium inG.

Proof: Let �� = S(~p �). Since the learning has con-
verged, we havejâi(��) � p�i j � Æ for everyi. By Lem-
mas 2 and 8,p�i must be a( + �Æ + 2��)-best response
in Ĝ, and thus by Lemma 3,~p � is a( + �Æ + 4��)-Nash
equilibrium inG.

Now for any�-intervalIk, we call a maximal sequence of
consecutive time stepst with �t 2 Ik a visit to intervalIk.
Thedurationof a visit is the number of steps in the visit.

Lemma 10 The duration of any visit to any�-interval Ik
is bounded by(1=�) ln(1=Æ).

Proof: As long as�t 2 Ik, ~br(�t) is unchanged, and
thereforek~p t � ~br(�t)k1 is reduced by a factor of1� �
at each step. Solving(1��)m � Æ form yields the desired
bound.

The next claim follows immediately from Lemma 10 and



the Pigeonhole Principle.

Lemma 11 Assume that the mean�t never visits any�-
interval twice. ThenSummLearn(Æ) converges after at
most(1=�)(1=�) ln(1=Æ) steps.

The following lemma handles both the case that learning
never converges, and the case that some interval is visited
twice.

Lemma 12 Suppose that at some timeT , �t makes a sec-
ond visit to some�-interval Ik . Then for allt > T 0, the
mixed strategies~p t are all O( + �� + �Æ + ��)-Nash
equilibria for G, whereT 0 < T + (1=�) ln(1=Æ).

Proof: Let Ik be the first�-interval visited twice by�t,
and thatT is the first step of the second visit. Since� < �,
at timeT �1 we had either�T�1 2 Ik�1 or�T�1 2 Ik+1;
we assume the latter case without loss of generality. Note
that that sinceIk is the first revisited�-interval,�t is mono-
tonically increasing while�t 2 Ik, and monotonically de-
creasing while�t 2 Ik+1. Thus, for allt > T , we will
have�t 2 Ik [ Ik+1.
Consider a playeri such that̂ai(Ik) = âi(Ik+1). After at
most(1=�) ln(1=Æ) time steps we will havej~p t

i �âi(Ik)j �
Æ. Therefore, as in the proof of Lemma 9, by timeT 0 player
iwill play anO( +��+�Æ)-best response in̂G for all t >
T . For the other playersj such that̂aj(Ik) 6= âj(Ik+1), any
action is anO( + �� + ��)-best response for allt > T ,
since�t 2 Ik [ Ik+1.
For the caseÆ > 0, we thus have the following theorem,
which together with Theorem 15 below constitutes the sec-
ond of our main results.

Theorem 13 After at mostO((1=�)(1=�) log(1=Æ)) steps,
SummLearn(Æ) plays anO( +�� +�Æ+��)-Nash equi-
librium for all subsequent time steps.

As in algorithmSummNash , We can make the term
�Æ + �� smaller than any desired� by choosingÆ = �=2�
and� = �=2�, with the resulting polynomial dependence
on 1=� in the running time. This leaves us with the un-
controllable term + �� . Again, as we have discussed, in
many reasonable large-population games we expect these
influence terms to vanish asn becomes large. Also, note
that given that we require the learning rate� < �, there
is no benefit to setting� much smaller than this, and thus
the choice� = �=2 yields an overall convergence time of
O((1=�2) log(1=Æ)).

We now analyzeSummLearn(0). Here we cannot expect
to upper bound the time it will take to converge to an ap-
proximate Nash equilibrium — technically, if the interval
Ik is such thatjV(Ik) � �kj � Æ, �t might stay inIk for
�(log 1=Æ) steps (see Figure 3). SinceÆ can be arbitrary
small, this time cannot be bounded. However, we can show

that any time�t is “near the diagonal”, the players are play-
ing an approximate Nash equilibrium. This implies that we
can bound the number of time steps in which they arenot
playing an approximate Nash equilibrium.

Lemma 14 Consider a visit of�t to intervalIk in the time
interval t 2 ft1; : : : ; t2g. For all times

t 2 ft1 + (1=�) ln(1=Æ); : : : ; t2g

~p t is an( + �Æ)-Nash equilibrium.

Proof: As in Lemma 9, after(1=�) ln(1=Æ) steps we have
k~p t � â(�t)k1 � Æ. Therefore each player is playing a
O( + ��+ �Æ)-best response in̂G.

Since Lemma 12 does not depend on the termination mech-
anism, Lemma 14 and the choice� = �=2 implies the fol-
lowing theorem.

Theorem 15 For any Æ > 0, if SummLearn(0) is run
for an infinite sequence of steps, the players play an
O( + �� + �Æ + ��)-Nash equilibrium in all but at most
O((1=�2) ln(1=Æ)) steps.

Note that thoughSummLearn(0) has no dependence onÆ
(only the global summarization mean must be broadcast),
Theorem 15 provides a spectrum of statements about this
algorithm parameterized byÆ — as we reduceÆ, we give
worse (larger) bounds on the total number of steps that a
better approximation to equilibrium is played.
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