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Abstract prove that a simple variant of distributed smoothed best-

response dynamics will quickly converge to (learn) an ap-
We introduce a general representation of large- proximate equilibrium for anjinear summarization func-
population games in which each player’s influ- tion. These algorithms run in time polynomial in the num-
ence on the others is centralized and limited, but ~ ber of players and the approximation quality parameter, and
may otherwise be arbitrary. This representation ~ are among the few examples of provably efficient Nash
significantly generalizes the class known as con- computation and learning algorithms for broad classes of
gestion games in a natural way. Our main results  large-population games.
are provably correct and efficient algorithms for
computing and learning approximate Nash equi- 2 RELATED WORK
libria in this general framework.
A closely related body of work is the literature on games
known ascongestion gamefRosenthal [1973]) oexact
1 INTRODUCTION potential gamegMonderer and Shapley [1996]), which are
We introduce a compact representation for single-stage manown to be equivalent. In congestion games and their gen-
trix games with many players. In this representation, eacleralizations, players compete for a central resource or re-
player is influenced by the actions of all others, but onlysources, and each player’s payoff is a (decreasing) function
through a globabummarization functian Each player’s of the number of players selecting the resources. An ex-
payoff is an arbitrary function of their own action and the ample is the well-studieBanta Fe Bar problepqwhere pa-
value of the summarization function, which is determinedtrons of a local bar receive positive payoff if their numbers
by the population joint play. This representation of large-are sufficiently low, negative payoff if they exceed capac-
population games may be exponentially more succinct thaty, and players who stay home receive 0 payoff. Single-
the naive matrix form, and here we prove that vast compuresource congestion games can be viewed as summariza-
tational savings can be realized as well. A natural exampléion games in which the global summarizatiorsignmet-
of such games is voting scenarios (a special case in whictic — that is, dependent only on the total number of play-
the summarization function is both linear and symmetric),ers selecting the resource. In the current work we allow the
where each player’s payoff depends only on their own votesummarization function to be both non-symmetric and non-
and the outcome of the popular election, but not on the delinear, but our results can also be viewed as a contribution
tails of exactly how every citizen voted. As discussed be+to the congestion game literature. While a fair amount is
low, summarization games generalize a number of existinginderstood about the mathematical properties of equilibria
representations in the game theory literature, such as coim congestion games (such as the existence of pure equilib-
gestion games. ria), and there has been a great deal of recent experimen-
We make the natural assumptionkmunded influence— tal simulation (see, for e_zxample, Greenwalc_i (_at al. [2001]),
there seems to be relatively little work providing provably

that is, that no player can unilaterally induce arbitrarily . . : : X
: o .7 efficient and correct algorithms for computing and learning
large changes in the value of the summarization function,

(Voting is a simple example of bounded influence.) Un_equmbna.

der only this assumption and a bound on the derivatives ofVe also view the proposed representation and algorithms
the private individual payoff functions (both of which ap- as complementary to recent work on compact undirected
pear to be necessary), we give an algorithm for efficientlygraphical models for multi-player games (Kearns et al.
computing approximate Nash equilibria, which interest-[2001], Littman et al. [2002], Vickrey and Koller [2002]).
ingly always outputpureapproximate equilibria. We also While those works emphasize large-population games in



which each player is strongly influenced by a small num-The first element of this new representation is a population
ber of others, the current work focuses on games in whictsummarization functiothat we shall denot8(z). As dis-
each player is weakly influenced by all others. This iscussed in the introduction, a natural example might be the
analogous to the two main cases of tractable inference inotingsummarization functio(z) = (1/n) "1, z;, but
Bayesian networks, where the polytree algorithm providesere we explicitly allowsS to be asymmetric and non-linear.
an algorithm for sparse networks, and variational algo-We shall assume without loss of generality that the range of
rithms yield approximate inference in dense networks withS is [0, 1]. The central idea is that in a multiplayer game

small-influence parametric CPTs. in which the joint pure play ig, the payoffs to any player
7 will be a function of only his own actiom;, and the two
3 DEFINITIONS AND NOTATION valuesS(Z[i : 0]) andS(&[i : 1]). We view these two

values asummarizingor each player all that they need to
know about the joint behavior in order to decide how to act.
Note that one of these two values (namélyz[i : x;])) is
simply S(Z).

We begin with the standard definitions for multiplayer ma-
trix games. Ann-player, two-actiont game is defined by
a set ofn matricesM; (1 < i < n), each withn in-
dices. The entrM;(z1,...,x,) = M;(¥) specifies the
payoff to playeri when the joint action of the playersis A natural question is why we provide each player with the
Z € {0,1}" Thus, eacld/; has2™ entries. We shall assume two valuesS(Z[i : 0]) andS(Z[i : 1]), rather than simply

all payoffs are bounded in absolute value by 1. the single valueS(#). The reason is that in many natu-
ral cases, the single-value model may lead to situations in
which players do not have sufficient global information to
determine the effects of their own actions, or even compute
their best responses, since the vali(&) alone may not
determine the effect of of changingr;. As an example,
suppose thaf (%) reports the fraction of players that are
playing the majority value, without specifying whether the
majority value is 0 or 1, and thatis a player whose pay-
We usepli : p}] to denote the vector which is the same asoff increases with the value ¢ (that is,i is a consensus-

P except in theith component, where the value has beenbuilder). Then for any given value @¥(%), i cannot de-
changed t@}. A Nash equilibriunfor the game is a mixed termine whether he should change his play frenin or-
strategyp such that for any playei, and for any value der to build greater consensus. If he is provided with both
pi € [0,1], M;(p) > M;(pli : pi]). (We say thap; isabest  S(Z[i : 0]) andS(Z[¢ : 1]), he can directly see the im-
responseo the rest of.) In other words, no player can im- pact onS of his own actions (but not that of others), and
prove their expected payoff by deviating unilaterally from can at least always compute his own best response to any
a Nash equilibrium. The classic theorem of Nash [1951Fixed pure joint playz. We note, however, that the results
states that for any game, there exists a Nash equilibrium inve will give shall render this distinction between receiving
the space of joint mixed strategies. one or both values largely a technicality, and that the reader
may informally think of the players as receiving the single
summarizing valu& ().

The actions 0 and 1 are tipaire strategie®f each player,
while amixedstrategy for playei is given by the proba-
bility p; € [0, 1] that the player will play 0. For any joint
mixed strategy, given by a product distributignve define
the expected payoff to playéas;(p) = Ezz[M;(Z)],
whereZ ~ pindicates that each; is 0 with probabilityp;
and 1 with probabilityl — p;.

We will also use a straightforward definition for approxi-
mate Nash equilibria. Ar-Nash equilibriumis a mixed
strategyp such that for any playei, and for any value Before moving on to the payoff functions for the individ-
p; € [0,1], M;(p) + ¢ > M;(pli : p}]). (We say thap;  ual players, we first discuss restrictions®nhat we shall

is ane-best responsw the rest ofy’) Thus, no player can assume. Recall that our goal is to model settings in which
improve their expected payoff by more thaby deviating  every player’'s payoff may depend on every other player’s
unilaterally from an approximate Nash equilibrium. move, but in a way that the influences are bounded. For

As in Kearns et al. [2001], our goal is to introduce a nat-2 fixed summarization functioi, we formally define the

ural new representation for large multiplayer games that iénfluenceof playeri by
considerably more compact than the classical tabular form, 7= max {|S(@[i:0])—Si: 1))}
which grows exponentially in the number of players. How- ze{o,1}n

ever, rather than succinctly capturing games in which eacl}he influence measures the greatest change plagan

player has a small numbgr of possibly strong “local” influ- ever (unilaterally) effect in the summarization function. We
ences, our interest here is at the other extreme — wher

hol is infl q f the others in a | gay that the influence of is bounded byr if , < 7
each playeris influenced layi of the others in a large pop- for all playersi. In keeping with our motivation, we shall

UIat'OPH but no single player has a dominant influence %he studying the computational benefits that can arise from

any other. multiplayer games with bounded influence summarization
We describe our results for the two-action case. The generafunctions. Note that since we assume the range a$

ization to multiple actions is straightforward. [0, 1], the influence is always bounded by 1; however, if



there aren playersjn many natural bounded-influence set- rally degrade. It is only for bounded influence and deriva-
tings the maximum influence will be on the ordet 6f (as  tive games, which seem to have wide applicability, that our
in voting), or at least some function diminishing with results are interesting. Second, we note that if we view
the summarization function as being defined for every in-
put lengthn (as in voting) and fixed, and the continuous
payoff functions as being fixed, then summarization games
naturally represent games with an arbitrarily large or grow-
ing number of players, and our results will shed light on
computing and learning equilibria in the limit of large pop-
ulations.

Finally, we discuss the individual payoff functions. Here
we simply assume that each playiepossesses separate
payoff functions for their two actionsFi and Fi. If the
pure actions of the other— 1 players are given by the vec-
tor # (where here; is irrelevant) the payoff to for playing

0 is defined to beF}(S(Z]i : 0])), and the payoff to player

i for playing 1 is defined to beF} (S(Zi : 1])). Thus, for
any joint play#, each player is told what values their two The results in this paper describe efficient algorithms for
actions will yield for the population summarization func- computing and learning approximate Nash equilibria in
tion, and has private payoff functions indicating their own summarization games, and provide rates of convergence as
reward for each resulting value. We assume that&ie a function of summarization influence, payoff derivatives,
are real-valued functions mappif@y 1] to [0, 1]. We shall  and population size. We now turn to the technical develop-
also assume that all the payoff functions are continuous andhent.

have bounded derivatives.

Note that even though the summarization functibhas 4 COMPUTING EQUILIBRIAIN

bounded influence, and thus a player’s action can have only SUMMARIZATION GAMES

bounded effect on the payoffs to others, it can have draThe first of our two main results is an efficient algorithm
matic effect on hisown payoffs, since’; and 7y may as-  for computing approximate Nash equilibria in bounded-
sume quite different values for any mixed strategy (despitgnfluence summarization games:

the bounds on their derivatives). We feel this is a natural

model for many large-population settings, where subjectiverheorem 1 There is an algorithnBummNashthat takes
(private) regret over actions may be unrelated to the (smallys input anye > 0 and any(r, p)-summarization game
influence an individual has over global quantities. Forin-g — (S, {(Fi, Fiy}_,) overn players, and outputs an
stance, a staunch democrat might personally find voting fOD(e + 7p)-Nash equilibrium forG. Furthermore, this ap-
a republican candidate quite distasteful, even though thiﬁroximate equilibrium will be a pure (deterministic) joint

all election. Itis their private payoff functions that makes ,, 1 /¢ andp.

individuals “care” about their actions in a large population
where the global effects of any single player are negligiblegefore presenting the proof, let us briefly interpret the re-

We shall assume throughout that the summarization funcSult. First, the accuracy parameteis an input to the al-
tion S and all the payoff functions; can be efficiently gorithm, and thus can be made arbitrarily small at 'Fhe ex-
computed on any given input; formally, we will assume Pense of the polynomial dependencelgi of the running
such a computation takes unit time. Thus, the tuple:  time. As for therp term in the approximation quality, it is
(S, {(Fi, Fi)}~,), which we shall call a(large popu- natural to thmk of the derivative boungas bel_ng_gfn_(ed
lation) summarization games a representation of am-  constant, while the influence boumds some diminishing
player game that may be considerably more compact thaftinction of the number of players — that is, individuals
its generic matrix representation. We say tfias a(r, p)-  have relatively smooth payoffs independent of population
summarization game if the influence®fis bounded by, ~ Size, while their individual influence on the summarization
and the derivatives of alf; are bounded by. function shrinks as the population grows. Under such cir-
cumstances, Theorem 1 yields an algorithm that will com-

game are in order. First, note that the representation igonylation increases.

entirely general: by making the summarization and pay-
off functions sufficiently complex, any-player game can ' he proof of Theorem 1 and the associated algorithm will
be represented. § outputs enough information to recon- Pe developed in a series of lemmas. Our first step is
struct its input (for example, by computing a weighted sumt© approximate the continuous, bounded-derivative indi-
of its inputs, where the weight of bit; is 2-%), and the vidual paypff functions¥; by piecewise constant (step)
payoff functions simply interpolate the values of the orig- functions ;. For a given resolutionx (to be deter-
inal game matrices for player the original game is ex- Mmined by the analysis), we divide, 1] into thea-intervals
actly represented. However, in such cases we will not havé), @), [, 2a), 2, 3a), . ... Denote thekth such interval
small influence and derivatives, and our results will natu-as/x = [ka, (k + 1)a). We define the approximatiafy;

to be constant over any-interval I. Specifically, for any



z € Iy, Fi(z) = Fj(ka). Since the derivative of th&; is  Proof: For any pure strategy and anyb € {0,1}, we
bounded by, we have 7 (z) — Fi(z)| < paforall play- ~ have

ersi, b € {0,1},andz € [0, 1]. In the sequel, we shall refer |S(@) — S(@[i - b])| < 7[b — a4
toG = (S, {(F, Fi)}i=,) as thea-approximatesumma-  due to the bound on influence. Note that the right-hand
rization game fog. side of this inequality is- if b # z; and 0 ifb = z;. By

We first show that the bounded derivatives of the payoﬁj‘emma 2, we have

functions translates to a Lipschitz-like condition on the ap- Fi(S(2)) — FiH(S(Eli - b)) < 9 b—
proximate payoff functions. IF5(S(@) = Fo(S(@li: B < (o + 2pa)lb - ail

Taking expectations undgrgives
Lemma 2 Forall z,2' € [0,1], gexp prd

\Fi(2) — Fi()| < (plz — 2| + 2pa)B(z — 2') ‘Ef~ﬁ[ﬁg(5(f))] — Bz [ FL(S([i - B])]| < (Tp+2pa)|b—a4].
where we defing(z — 2') = 0if z =2 andf(z —2z') =1  Now f

otherwise. A o
a;(p) # argmaxye o 1} {Ez~p[F5 (S(Z[i : 0]))]}
Proof: Clearly the differenceis0if = 2'. If z # 2/ we

have (thatis,a;(p) is not already arue best response f@for i in
. . ' ' G), then the inequality above implies itigap+ 2pa)-best
|Fo(2)—=Fp(2")| < |Fi(z)=Fp(z")|+2pa < plz—2"|+2pa response. O

where the first inequality comes from the approximationNow note that by construction, i, is anya-interval, and
quality, and the second from the bound on the derivativeg’ andz’ are any two pure strategies such téf) € Iy,
of the 7. O andS(#) € I (thatis, both vectors give a value of the

. . .. summarization function lying in the sameinterval), then
The following straightforward lemma translates the quallty&i (%) = a;(#), because the approximate payoff functions

of approximate Nash equilibria ig back to the original f}f do not change ovek,. Furthermore, the actiof; (7)

gameg. is an approximate best responsefan G by Lemma 4. In
other words, in;, we have reduced to a setting in which the
(approximate) best response of all players can be viewed
solely as a function of tha-interval I}, in which S(%) lies,

and not on the details dfitself.

Proof: Sincepis ay-Nash equilibrium foG, each player For anya-interval I, let us define

i is playing av-best response. The rewards ¢hcan

change by at mosia for each action, which implies that BR(I) = (a1(D), ..., a4, (%))
the change to a new best response is at st v. [

Lemma 3 Let  be any~y-Nash equilibrium for thea-
approximate summarization garie Theng'is a (2pa+7)-
Nash equilibrium foiG.

wheref is any vector such tha(z) € I. Thus,BR(I})

we ngxt give a.Iemma thaF will simplify our arguments_is the vector of (apparent) best responses of the players in
by letting us define (approximate) best responses solely & when the value of the summarization function falldjn

terms of the single global summarization vali(e), rather This best response itself gives a value to the summarization

the mu_ItipIe local V‘f’"“e§@[?f b]) for eachi andb. We function, which we define ag(I;) = S(BR(Ix)). We can
start with the following definition. extend this definition to view as a mapping fronfo, 1]
to [0, 1] (rather than fromu-intervals to[0, 1]) by defining
V(z) to beV(I}), wherez € Ij,. In Figure 1 we provide
a sample plot of a hypotheticil that we shall refer to for
expository purposes.

a;(p) = argmaxye o,13{EaplF; (S(@))]}- The purpose of the definition df is made clear by the
next lemmas. The intuition is that those places whére
Thus,a;(7) is the apparent best responsefar G to 7if i “crosses” the diagonal ling = z are indicative of approx-
ignores the effect of his own actions on the summarizationmate Nash equilibria. We begin with the easier case in
function. We now show that this apparent best response iwhich V crosses the diagonal during one of its constant-
G is in fact an approximate best respons€in valued horizontal segments, marked as the pdim Fig-
ure 1.
Lemma4 Let G be the a-approximate summarization
game. Lety be any mixed strategy. Theij(p) is a Lemmab5 Let I be ana-interval such that/ (1) € Ii.
(Tp + 2pa)-best response for playérto Fin G. Thensk (1) is a(rp + 2pa)-Nash equilibrium foiG.

Definition 1 Let G be thea-approximate summarization
game, and lef'be any mixed strategy. We define for player
i thesingle-value apparent best respoimsg as



Proof: LetZ = BR(I;). SinceV(I;) = S(&) € I, every
playeri is playingz; = a;(Z), and thus by Lemma 4, a
(Tp + 2pa)-best response tB. O

We next examine the case where Lemma 5 does not apply.

First we establish a property of the functibn

Lemma 6 If for every a-interval I, V(I.) ¢ I, then
there exists & such thatV(Iy_1) > ka > V(I},).

Proof: Fork = 0we haveV(I) > 0,andfor{ = 1/a—1
(the last interval) we hav®(I;) < 1. Therefore there has
to be ak for which the lemma holds. U

In other words, if Lemma 5 does not apply, there must be

two consecutive intervals whoevalues “drop” across the

diagonal. This case is illustrated in Figure 1 by the vertical

dashed line containing the poibt

Lemma 7 Let k be such that’(I;—1) > ka > V(I).
Then there is a pure strategy which is a(37p + 6pa)-
Nash equilibrium ing.

Proof: Lety = BR(I;_1) andZ = BR(I}). Lett be the
number of indices for whichy; # z;. Define the sequence
of ¢t vectorsi?, ..., #* such thatt! = ¢, @ = 7, and for
everyj = 1,...,t,#/*! is obtained fronx’ by flipping the
next biti suchy; # z;. Thus, in eacl#’, bits that have the
same value iy andz are unaltered, while bits that differ in
i andZ? flip exactly once during the “walk” fron¥ to z.

The intuition is that if we can find any vector on the walk

which gives a value t& falling in or near the intervaly,

it must be an approximate Nash equilibrium, since players

whose best response in this neighborhoo8-aflues may
be strongly determined (that is, those for whigh= z;)

are properly set throughout the walk, while the others may

Yol . —

X=l

Figure 1:Hypothetical plot of the functio®’ over thea-intervals

I;,. We view thez-axis as being both a continuum of individual
points and a discrete sequenceneintervals.) generally begins
above the diagonal ling = z, and ends up below the diagonal,
and thus must cross the diagonal at some point. The point labeled
A'is an example of a horizontal crossing as covered by Lemma 5.
The column of points including the point label&lis an exam-

ple of a vertical crossing as covered by Lemma 6. Each point in
this column indicates a value ¢f realized on the vector “walk”
discussed in the proof of Lemma 6, while the pathttself is the
value of S nearest the diagonal in this walk. The analysis estab-
lishes that (at least) one of these two crossing cases must occur.

We now bound the difference in the reward to playdue
to playing actior0 rather tharl in response ta, which is

FiS@ [ : 1])) = F(S(@ [ : 0])).
This difference is bounded by
Fi(ve) = Fi(ve) +7p + 2pax

be set to either value (since they are nearly indifferent in

this neighborhood, as evidenced by their switching approxsincewv,

imate best response values frdin ; to ;). In Figure 1,
the points along the vertical line that inclu@d&conceptu-
ally show the different values of during the walk.

Now for eachj we definev; = S(#7). Due to the bounded
influence ofS, we have thatv; — v;41| < 7 forall j =
1,...,t. This implies that for some valug we havev, —
ka| < 7. (In Figure 1, pointB corresponds to the vectdf
on the walk whosé&’-value comes closest ten, and thus
constitutes the desired approximate Nash equilibrium.)

We now show thag’ is an approximate Nash equilibrium.
Consider playet, and assume that = 0, but that the best
response fof is actuallyl (the other cases are similar). If
vg € I, thenz! is a(rp+2ap)-best response by Lemma 4.
Otherwise, € Ij_;. Since0 = xf is the apparent best
response foka, we have

Fi(ka) < Fi(ka).

S(#%), and by Lemma 2. Again by Lemma 2,
we have

|55 (ve) = Fi(ka)| < 7p + 2pa.
Putting it all together gives

Therefore every player is playing(@rp + 6pa)-best re-
sponse. O

Lemma 5 covers the case whéterosses the diagonal hor-
izontally, and Lemma 7 the complementary case where it
does not. Either case leads to the efficient computation of a
(37p + 6par)-Nash equilibrium forG, which by Lemma 3

is a (37p + 8pa)-Nash equilibrium for the original game

G. Settinge = 8pa or a = €¢/(8p) completes the proof of
Theorem 1.

A description of the algorithnfSummNashdetailed in the
above analysis is provided in Figure 2.



Algorithm SummNash o

Inputs: An n-player (7, p)-summarization gamé = (S, {(F5, Fi)}i=1), and an approximation parame-
tere. We assume that and each payoff functiorF; are provided as black-box subroutines that cost unjit
computation time to call.

Output: A (37p + €)-Nash equilibrium foG.

1. o+ €/8p.

2. For each playei = 1,...,n, andb € {0, 1}, construct thex-approximate payoff functionsf',jz for
everya-interval I, = [ka, (k + 1)a), Fi(z) = Fi(ka) for all z € I;.. Note that this requires/a
evaluations of eaclf; .

3. Construct the mappiry by settingV(I;,) = S(BR(I})) for everya-interval Ij.
4. For eachv-intervally,, k = 1,...,1/a, check ifV(Ix) € I. If so, then outpuBR(Ix).

5. Foreachw-intervally, k =1,...,1/«a, check ifV(Ir_1) > ka > V(I). If so:

(a) LetA be the set of player indices whose play is the sam&if;,—1) andBR(I).
(b) B+ {1,...,n} — A.

(c) t + |B|.
(d) &+ BR(Ip—1).
(e) Forj=1,...,t let’ be obtained frona”’ ~! by flipping the bit corresponding to the next index

in B. Note thati’ = BR(I}).
(f) Forj =1,...,t,if |S(&) — ka| < p, outputi? .

Figure 2: AlgorithmSummNash.

5 LEARNING IN LINEAR One natural learning algorithm would call for each player

SUMMARIZATION GAMES to updatep! in the direction of their apparent best response
. ) L a;(pt). This apparent best response involves expectations
In this section, we propose and analyze a distributed Iear%verﬁt' and therefore requires each player to know this

ing algorithm for the players of a game in which the SUm- yic ik ition to computei; (') exactly. However, let us

marization functior is linear, thatisS(7) = > ;_, wii-  extend the definition of apparent best response to apply to
It is easily verified that in such a case that each 'nﬂ“enc‘?neans rather than complete distributions:

T; = w;. Our main result is that the learning algorithm con-
verges to an approximate Nash equilibrium for the summa-
rization gamej. The analysis will rely heavily on the tools
developed in Section 4.

i) = argmaxye o 4[5 ()]

We can viewa;(u;) to be theapproximateapparent best
The learning algorithm for each player is rather simple,response fof to 5'* under the simplifying assumption that
and can be viewed as a variant of smoothed best respongé generates a distribution &(Z) that is sharply peaked
dynamics (Fudenberg and Levine [1999]). First of all, if near its mean valug;. Before describing the learning al-
G = (S, {(F, Fi}r)) is the original (linear) summariza- gorithm, we give a state without proof a standard large de-
tion game, each playeémwill instead use the-approximate  Viation bound that we shall use in the analysis, establishing
payoff functions?; described in Section 4. Note that these that this assumption is warranted in large populations.
approximations can be computed privately by each player.

Lemma8 Llet ¢ = (S, {(F,F)}",) be the a-
approximate summarization game derived from the)-
summarization gamg = (S, {(F4, Fi)},). Letp be

We shall uses't to denote the joint mixed strategy of the
population at time in the learning algorithm. In our learn-

'rggrr.ng,?g:]’ fatnecetl_c; r:]roumjthe expected value of the sum- any mixed strategy, and lgt = S(p). Then for each
Ization tunctl playeri, a;(u) is a ¢-best response tg'in G, for ¢ =

e = S(F") = By o [S(D)] O(p/ 22z 2 log(1/ /325, 7))

is broadcast to all playefs This lemma actually holds regardless of whetl§es lin-

S — . . L . ear, but we shall only apply it to the linear case. Thus, for
In the full paper we will examine the variant in which a pure le. if all ights iS b ded b tant

strategy is sampledaccording tg7 ¢, and all players receive only  €X@mple, T all weights 11> are bounded by some constan

the valueS(#). The analysis and results will be similar due to C times1/n (C = 1in the case of straight voting), we have
large-deviation bounds. 1 = O(plog(n)/+/n). Thus, as before we have improved



approximated with larger populations. Note, however, that

Z?:l Ti2

> 7 = max;{7; }.

We now describe the learning algorithm, which has a learn-

ing rate parametdr < 3 < 1 and a “stopping” parameter

0. We view( as a small fixed constant, and for the analysis

will require thatg < «. At timet, each playei updates
their mixed strategglightly in the direction ofa; (u:):

= (1= B)p} + Bai(pe)-

If we defineBR(u) = (ay(p), ..., a, (1)), the global vec-
tor update resulting from these distributed updates is

(1= B)F" + BBR (1)
41

If |pi™" — pt| < 4 for all i, then the learning algorithm is
terminated; otherwise updates continue for all players.

1
p;

>t+1
p =

We will refer to this distributed learning algorithm as

SummLearn(§). Note that if6 > 0, the algorithm re-

— Y=X
‘ —
Y=V() ‘
vl -
— : |
M o
e
Ht —
X=1

Figure 3: Replication of Figure 1, with arrows added along the
diagonal to illustrate the dynamics 8ummLearn(d). We can

quires a single additional bit of global information at eachinink of the distributed learning process as generating the move-

step, or the ability for players to “broadcast” if their up-

date was greater thahh For SummLearn(0), no such

mechanism is necessary, as all players continue upda
ing forever. Below we shall consider both cases, becaus

ment of the meap; = S(p*) along the diagonal. As indicated
by the arrows, at each poipt, if V is above the diagonal, then the
carning dynamics increage, and ifV is below the diagonal they
ecreasg;. Convergence is to crossing points)af At the point
fabeledC the dynamics reverse direction, and the point labé&ed

while SummULearn(0) is more decer?tralized and there- jndicates a neighborhood where the dynamics do not reverse, but
fore more natural, we can make a slightly stronger statemay slow down considerably, sindzis near the diagonal.

mentin the) > 0 case. Note thaummLearn(0) is sim-

ply an approximate and smoothed version of best-respons
dynamics (Fudenberg and Levine [1999]) — each playe
simply moves their mixed strategy slightly in the direction

of the best response to a sharply peaked distributiofi of
with the broadcast mean.

For the analysis, we begin by writing:

S

S((1—B)p" + B8R (1))
(1=B8)S(F") + BS(BR(11t))

(1= B)ps + BS(BR(pr))

(1 = Bt + BV (Ir)

where we defind, to be thea-interval containingu,, we

have used the linearity af, andV is as defined in Sec-
tion 4. The above implies

pir — pe = BV (Ig) — pt)-

In other words, as long as; < V(I), the distributed
updates cause the mean to increase, and as lopg as

i1

?ﬂt € I, thenusq € I—1 U I, U Ix4q. Let us say that
earning hagonvergedt timeT' if there exists a vectqs *

such that for alt > T we havep't = 5*. We first show
that if learning converges, it must be to an approximate
Nash equilibrium. This covers two possible outcomes of
the learning dynamics: convergence to a horizontal cross-
ing point, or convergence to a point on a horizontal segment
that comes very close to the diagonal (see Figure 3).

Lemma 9 Suppose learning has converged at tiffido
p*. Theng * isanO(y + pd + pa)-Nash equilibrium irg.

Proof: Letu* = S(§*). Since the learning has con-
verged, we havéii(u*) — pi| < ¢ for everyi. By Lem-
mas 2 and 8p; must be & + pd + 2pa)-best response
in G, and thus by Lemma 3 * is a(v) + pd + 4pa)-Nash
equilibriuming. ]

Now for anya-interval I, we call a maximal sequence of
consecutive time stegswith u; € I, avisitto interval .
Thedurationof a visit is the number of steps in the visit.

V(Ix), they cause the mean to decrease. Viewed graphi:emma 10 The duration of any visit to ang-interval I
cally in Figure 3, the learning dynamics cause the mean t¢s bounded by1/8)In(1/6).

move towards the crossing points of the functidrana-

lyzed in Section 4. As before, there are two distinct case®roof:

As long asu; € I, BR(u) is unchanged, and

of crossing. We now analyze the convergence to the crossherefore||p! — BR(u:)|| is reduced by a factor df — 3

ings.

Sincep < a by choice, we always hajg:1 — | < a.
This implies that we can only move to adjacenintervals:

at each step. Solvind — )™ < ¢ for m yields the desired
bound. |

The next claim follows immediately from Lemma 10 and



the Pigeonhole Principle. that any timeu; is “near the diagonal”, the players are play-
ing an approximate Nash equilibrium. This implies that we
Lemma 11 Assume that the mean never visits anyr-  can bound the number of time steps in which theyrare
interval twice. ThenSummLearn(d) converges after at playing an approximate Nash equilibrium.
most(1/a)(1/8)1n(1/9) steps.
Lemma 14 Consider a visit ofi; to interval I, in the time

The following lemma handles both the case that learningntervalt ¢ {t1,...,tz}. For all times
never converges, and the case that some interval is visited
twice. te{t; + (1/8)In(1/6),...,t2}

—

Lemma 12 Suppose that at some tirfie 1, makes a sec- 7' is an(y + pd)-Nash equilibrium.

ond visit to somex-interval I;,. Then for allt > T’, the

mixed strategieg® are all O(¢ + pr + pd + pa)-Nash ~ Proof: AsinlLemma, afte(1/5) In(1/6) steps we have

equilibria for G, whereT” < T + (1/8)In(1/6). 17 — a(ue)|loo < 6. Therefore each player is playing a
O(y + pa + pd)-best response ig. O

Proof:  Let I, be the firsia-interval visited twice by, Since Lemma 12 does not depend on the termination mech-

and thatl" is the first step of the second visit. Sinée< a, ey | emma 14 and the choie= a/2 implies the fol-
attimeT —1 we had eithepr_1 € Ij,_1 Or g1 € Iptq; Iowing’ theorem.

we assume the latter case without loss of generality. Note

that that sincdy, is the first revisitedv-interval, i1, is mono- Theorem 15 For any § > 0, if SummLearn(0) is run
tonically increasing whilg., € I, and monotonically de- 5 an infinite sequence of steps, the players play an
creasing whileu, € Iii1. Thus, forallt > T, we will ) 4 -1 55 1 pa)-Nash equilibrium in all but at most
havep; € I U L. O((1/a?) In(1/4)) steps.

Consider a playei such thati;(I) = a;(I+1). After at

most(1/3) In(1/5) time steps we will havs! —a; (I1,)| < Note that thougrSummLe_arn_(O) has no dependence én

5. Therefore, as in the proof of Lemma 9, by tiffieplayer ~ (Only the global summarization mean must be broadcast),
i will play anO (1) + pa+ pd)-best response i forall ¢ >  Theorem 15 provides a spectrum of statements about this
T. For the other playerssuch thati; (I;) # a;(Ix41), any algorithm parameterized by— as we reducé, we give

action is anO(1 + pr + pa)-best response for afl > 7, ~ Worse (larger) bounds on the total number of steps that a
sinceps € I, U Tjp1. [] better approximation to equilibrium is played.
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