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Abstract

While most theoretical work in machine learning has focused on the com-

plexity of learning, recently there has been increasing interest in formally study-

ing the complexity of teaching . In this paper we study the complexity of teach-

ing by considering a variant of the on-line learning model in which a helpful

teacher selects the instances. We measure the complexity of teaching a concept

from a given concept class by a combinatorial measure we call the teaching

dimension. Informally, the teaching dimension of a concept class is the mini-

mum number of instances a teacher must reveal to uniquely identify any target

concept chosen from the class.
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1 Introduction

While most theoretical work in machine learning has focused on the complexity of

learning, recently there has been some work on the complexity of teaching [7, 8, 13,

16, 17]. In this paper we study the complexity of teaching by considering a variant of

the on-line learning model in which a helpful teacher selects the instances (this is the

teacher-directed learning model of Goldman, Rivest, and Schapire [7]). We measure

the complexity of teaching a concept from a given concept class by a combinatorial

measure we call the teaching dimension. Informally, the teaching dimension of a

concept class is the minimum number of instances a teacher must reveal to uniquely

identify any target concept chosen from the class.

We show that this new dimension measure is fundamentally di�erent from the

Vapnik-Chervonenkis dimension [3, 11, 20] and the dimension measure of Natara-

jan [13]. While we show that there is a concept class C for which the teaching

dimension is jCj�1, we prove that in such cases there is one \hard-to-teach" concept

that when removed yields a concept class that has a teaching dimension of one. More

generally, when the teaching dimension of C is jCj � k then by removing a single

concept one obtains a class with a teaching dimension of k.

We then explore the computational problem of �nding an optimal teaching se-

quence for a given target concept. We show that given a concept class C and a target

concept c 2 C the problem of �nding an optimal teaching sequence for c is equivalent

to �nding a minimum set covering. While the problem of �nding a minimum set

covering is fairly well understood, there is an important distinction between the set

cover problem and the problem of computing optimal teaching sequences. In the set

covering problem, no assumptions are made about the structure of the sets, whereas

for our problem we are assuming there is a short (polynomial-sized) representation

of the objects contained in each set. We also describe a straightforward relation

between the teaching dimension and the number of membership queries needed for

exact identi�cation.

Next, we give tight bounds on the teaching dimension for the class of monomials

and then extend this result to more complicated concept classes such as monotone
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k-term DNF formulas and k-term �-DNF formulas. We also compute bounds on the

teaching dimension for the class of monotone decision lists and orthogonal rectangles

in f0; 1; � � � ; n�1gd. In computing the teaching dimension for these classes we also pro-

vide some general results that will aid in computing the teaching dimension for other

concept classes. Finally, we prove that for concept classes closed under exclusive-or

the teaching dimension is at most logarithmic in the size of the concept class.

2 The Teaching Dimension

In this section we formally de�ne the teaching dimension. A concept c is a Boolean

function over some domain of instances. Let X denote the set of instances, and let

C � 2X be a concept class over X. Often X and C are parameterized according to

some complexity measure n. For a concept c 2 C and instance x 2 X, c(x) denotes

the classi�cation of c on instance x.

The basic goal of the teacher is to teach the learner to perfectly predict whether

any given instance is a positive or negative instance of the target concept . Thus, the

learner must achieve exact identi�cation of the target concept. Of course, the teacher

would like to achieve this goal with the fewest number of examples possible. In

order to preclude unnatural \collusion" between the teacher and the learner (such as

agreed-upon coding schemes to communicate the name of the target via the instances

selected without regard for the labels), which could trivialize the teaching dimension

measure, we simply ask that the teaching sequence chosen induces any consistent

algorithm to exactly identify the target.

We formalize this as follows. Let an instance sequence denote a sequence of

unlabeled instances, and an example sequence denote a sequence of labeled instances.

For concept class C and target concept c 2 C, we say T is a teaching sequence for c

(in C) if T is an example sequence that uniquely speci�es c in C|that is, c is the

only concept in C consistent with T . Let T (c) be the set of all teaching sequences for

c. We de�ne the teaching dimension td(C) of a concept class C as follows:

td(C) = max
c2C

 
min
�2T (c)

j� j

!
:
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In other words, the teaching dimension of a concept class is the minimum number

of examples a teacher must reveal to uniquely identify any concept in the class.

Note, however, that the optimal teaching sequence is allowed to vary with the target

concept, as opposed to the universal identi�cation sequences of Goldman, Kearns and

Schapire [6].

Finally, we de�ne the Vapnik-Chervonenkis dimension [20]. Let X be the instance

space, and C be a concept class over X. A �nite set Y � X is shattered by C if

fc \ Y j c 2 Cg = 2Y . In other words, Y � X is shattered by C if for each subset

Y 0 � Y , there is a concept c 2 C which contains all of Y 0, but none of the instances in

Y �Y 0. The Vapnik-Chervonenkis dimension of C, denoted vcd(C), is de�ned to be

the smallest d for which no set of d+1 points is shattered by C. Blumer et al. [3] have

shown that this combinatorial measure of a concept class characterizes the number

of examples required for learning any concept in the class under the distribution-free

or PAC model of Valiant [19].

In the next section we briey discuss some related work. In Section 4 we compare

the teaching dimension to both the Vapnik-Chervonenkis dimension and Natarajan's

dimension measure. Furthermore, we show that when the teaching dimension of a

class C is jCj � k then by removing a single concept one obtains a class with a

teaching dimension of k. In Section 5 we �rst explore the problem of computing an

optimal teaching sequence for a given target concept. Next we consider the problem

of computing the teaching dimension for various concept classes. In particular, we

give both upper and lower bounds on the teaching dimension for several well-studied

concept classes. We also describe some general techniques that will aid in computing

the teaching dimension for other concept classes. Finally, we prove that for concept

classes closed under exclusive-or the teaching dimension is at most logarithmic in the

size of the concept class. In Section 6 we summarize our results and discuss some

open problems.
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3 Related Work

Our work is directly motivated by the teacher-directed learning model of Goldman,

Rivest and Schapire [7]. In fact, the teaching dimension of a concept class is equal

to the optimal mistake bound under teacher-directed learning (which considers the

worst-case mistake bound over all consistent learners). Clearly the teaching dimension

is a lower bound for the optimal mistake bound|unless the target concept has been

uniquely identi�ed a mistake could be made on the next prediction. Furthermore,

the teaching dimension is an upper bound for the optimal mistake bound since no

mistakes could be made after the target concept has been exactly identi�ed. Thus

Goldman et al. [7] have computed exact bounds for the teaching dimension for binary

relations and total orders.

Independently, Shinohara and Miyano [18] introduced a notion of teachability

that shares the same basic framework as our work. In particular, they consider a

notion of teachability in which a concept class is teachable by examples if there exists

a polynomial size sample under which all consistent learners will exactly identify the

target concept. So a concept class is teachable by examples if the teaching dimension

is polynomially bounded. The primary focus of their work is to establish a relationship

between learnability and teachability1.

Recently, Jackson and Tomkins [10] have considered a variation of our teaching

model in which they can study teacher/learner pairs in which the teacher chooses

examples tailored to a particular learner. To avoid collusion between the teacher and

learner, they consider the interaction between the teacher and learner as a modi�ed

prover-veri�er session [9] in which the learner and teacher can collude, but no ad-

versarial teacher can cause the learner to output an hypothesis inconsistent with the

sample. While it appears that the teacher's knowledge of the learner in this model

would be useful, they have shown that under their model the teacher must still pro-

duce a teaching sequence that eliminates all but one concept from the concept class.

They also introduced the notion of a small amount of trusted information that the

1A few results presented here were independently discovered by Shinohara and Miyano. We shall

note such areas of independent discovery.
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teacher can provide the learner. This trusted information can be used by the teacher

to provide the learner with the size complexity of the target (e.g. the size parameter

k of a k-term DNF formula). In our results presented here, the learner and teacher

sometimes share such information, but we do not provide a formal characterization

of what kind of information can be shared in this manner.

The work of Romanik and Smith [16, 15] on testing geometric objects shares

similarities with our work. They propose a testing problem that involves specifying

for a given target concept a set of test points that can be used to determine if a tested

object is equivalent to the target. However, their primary concern is to determine for

which concept classes there exists a �nite set of instances such that any concept in

the class which is consistent on the test set is \close" to the target in a probabilistic

sense. Their work suggests an interesting variation on our teaching model in which

the teaching sequence is only required to eliminate those hypotheses that are not

\close" to the target. Such a model would use a PAC-style [19] success criterion for

the learner versus the exact-identi�cation-style [1] criterion that we have used here.

In other related work, Anthony, Brightwell, Cohen, and Shawe-Taylor [2] de�ne

the speci�cation number of a concept c 2 C to be the cardinality of the smallest

sample for which only c is consistent with the sample. Thus the speci�cation number

is just the length of the optimal teaching sequence for c. Their paper studies several

aspects of the speci�cation number with an emphasis on determining the speci�cation

numbers of hypotheses in the set of linearly separable Boolean functions.

Salzberg, Delcher, Heath and Kasif [17] have also considered a model of learn-

ing with a helpful teacher. Their model requires the teacher to present the short-

est example sequence so that any learner using a particular algorithm (namely, the

nearest-neighbor algorithm) learns the target concept. The fundamental philosophi-

cal di�erence between their work and ours is that we do not assume that the teacher

knows the algorithm used by the learner.

The work of Goldman, Kearns and Schapire [6], in which they described a tech-

nique for exactly identifying certain classes of read-once formulas from random exam-

ples, is also related to our work. They de�ned a universal identi�cation sequence for a
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concept class C as a single instance sequence that distinguishes every concept c 2 C.

Furthermore, they proved the existence of polynomial-length universal identi�cation

sequences for the concept classes of logarithmic-depth read-once majority formulas

and logarithmic-depth read-once positive nor formulas. Observe that a universal

identi�cation sequence is always a teaching sequence (modulo di�erent labelings) for

any concept in the class, and thus their work provides an upper bound on the teaching

dimension for the concept classes they considered.

Finally, Natarajan [13] de�nes a dimension measure for concept classes of Boolean

functions that measures the complexity of a concept class by the length of the shortest

example sequence for which the target concept is the unique most speci�c concept

consistent with the sample. Thus, like the work of Salzberg et al., Natarajan places

more stringent requirements on the learner. We discuss the relation between Natara-

jan's dimension measure and the teaching dimension in Section 4.2.

4 Comparison to Other Dimension Measures

In this section we compare the teaching dimension to two other dimension measures

that have been used to describe the complexity of concept classes.

4.1 Vapnik-Chervonenkis Dimension

We now show that the teaching dimension is fundamentally di�erent from the well-

studied Vapnik-Chervonenkis dimension. Blumer et al. [3] have shown that this com-

binatorial measure of a concept class exactly characterizes (modulo dependencies on

the accuracy and con�dence parameters) the number of examples required for learn-

ing under the distribution-free or PAC model of Valiant [19]. We now compare the

teaching dimension to the VC dimension. We begin by showing that neither of these

dimension measures dominates the other: in some cases td(C) >> vcd(C) and in

other cases td(C) << vcd(C).
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concept instances

c� + + + + � � � + + +

c1 � + + + � � � + + +

c2 + � + + � � � + + +

c3 + + � + � � � + + +
...

cjXnj�1 + + + + � � � + � +

cjXnj + + + + � � � + + �

Figure 1: A concept class Cn for which td(Cn) = jCnj � 1.

Lemma 1 2 There is a concept class C for which td(C) = jCj � 1 and vcd(C) = 1.

Proof: Consider the concept class C in which a distinguished concept c� classi�es

all instances as positive. In addition, for each x 2 X there is a concept cx 2 C that

classi�es all instances but x as positive. (See Figure 1.) No concept in C has two

negative instances, so clearly no set of two points is shattered. Since any singleton

set is shattered, vcd(C) = 1. Finally, since each instance distinguishes only one of

the concepts c1; . . . ; cjX j from c�, td(C) = jCj � 1.

Although the concept class C from Lemma 1 appears to be quite simple, since

the teacher must succeed for any consistent learner, it is hard to teach. However, in

Theorem 4 we shall see that with slight modi�cation, C is in fact easy to teach. Also

observe that one can obtain the result of Lemma 1 using the class of singletons and

the empty set.

Thus the VC dimension can be arbitrarily smaller than the teaching dimension.

Furthermore, we note that the concept class used in the proof of Lemma 1 has the

largest possible teaching dimension.

Observation 2 For any concept class C, td(C) � jCj � 1.

2Independently, Shinohara and Miyano [18] give a construction of a class of concepts that is

PAC-learnable but not teachable by examples.
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x0 x1 x2 � � � xn�2 xn�1 xn xn+1 � � � xn+lgn�1

c0 + � � � � � � � � � � � � �

c1 � + � � � � � � + � � � � �

c2 � � + � � � � � � + � � � �
...

cn�2 � � � � � � + � + + � � � �

cn�1 � � � � � � � + + + � � � +

Figure 2: A concept class Cn for which vcd(Cn) > td(Cn).

Proof: Each concept in C must di�er from all other concepts for at least one instance.

Thus for each concept that is not the target concept there must be an example that

it and the target concept classify di�erently.

We now show that the teaching dimension may be smaller than the VC dimension.

Lemma 3 There is a concept class C for which td(C) < vcd(C).

Proof: Let Cn = fc0; c2; . . . ; cn�1g and Xn = fx0; x1; . . . ; xn+lgn�1g where n = 2k

for some constant k. The concept ci classi�es instance xi as positive and the rest of

x0; . . . ; xn�1 as negative. The remaining lg n instances for ci are classi�ed according

to the binary representation of i. (See Figure 2.) Clearly fxn; . . . ; xn+lgn�1g is a

shattered set and thus vcd(Cn) = lg n = lg jCnj. However, td(Cn) = 1 since instance

xi uniquely de�nes concept ci.

For �nite C, vcd(C) � lg jCj and td(C) � 1, and thus vcd(C) � lg jCj � td(C).

So the concept class of Lemma 3 provides the maximum factor by which the VC

dimension can exceed the teaching dimension for a �nite concept class. Combined

with Lemma 1 we have a complete characterization of how the teaching dimension

relates to the VC dimension.

We now uncover another key di�erence between the VC dimension and the teach-

ing dimension: the potential e�ect of removing a single concept from the concept

class. Let C be a concept class with vcd(C) = d, and let C 0 = C � ffg for some
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f 2 C. Regardless of the choice of f , clearly vcd(C 0) � d� 1. In contrast to this we

have the following result.

Theorem 4 Let C be a concept class for which td(C) � jCj � k. Then there exists

an f 2 C such that for C 0 = C � ffg, td(C 0) � k.

Proof: Let f be a concept from C that requires a teaching sequence of length td(C).

Let T be an optimal teaching sequence for f (i.e. jT j = td(C)). We let C 0 = C�ffg,

and prove that td(C 0) � k. To achieve this goal we must show that for each concept

c 2 C 0 there exists a teaching sequence for c of length at most k. Without loss

of generality, let f 0 2 C 0 be the target concept that requires the longest teaching

sequence. We now prove that there is a teaching sequence for f 0 of length at most k.

The intuition for the remainder of this proof is as follows. Since T is an optimal

teaching sequence, for each instance xi 2 T there must be a concept fi 2 C 0 such

that f(xi) 6= fi(xi). However, it may be that some xi 2 T distinguishes f from many

concepts in C 0. We say that all concepts in C 0�ffig that xi distinguishes from f are

eliminated as the possible target \for free". Intuitively, since the teaching dimension

is large, few concepts can be eliminated \for free". We then use this observation to

show that TD(C 0) is small.

We now formalize this intuition. Let x� 2 T be an instance that f and f 0 classify

di�erently. We now de�ne a set F of concepts that are distinguished from f \for free".

For ease of exposition we shall also create a set S that will contain C � F � ffg.

We build the sets F and S as follows. Initially let S = ff 0g and let F = fc 2

C 0 � ff 0g j c(x�) = f 0(x�)g. That is F initially contains the concepts that are

also distinguished from f by x�. Then for each x 2 T � fx�g of all concepts in

C 0� T �S that disagree with f on x place one of these concepts (choose arbitrarily)

in S and place the rest in F . Since T is a teaching sequence at the end of this process

jSj = td(C) and C = F [ S [ ffg. Furthermore, since td(C) � jCj � k we get that

jF j = jCj � td(C)� 1 � k � 1. That is, at most k � 1 concepts are eliminated \for

free".

We now generate a teaching sequence for f 0 of length at most k. By the de�nition

of F and S any concept in C 0 � ff 0g that classi�es x� as f 0 classi�es it must be in
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F . That is, all concepts in S are distinguished from f 0 by x�. Furthermore, since

jF j � k � 1 at most k � 1 additional instances are needed to distinguish f 0 from the

concepts in F . Finally since C 0 = F [ S it follows that there is a teaching sequence

for f 0 of length at most 1 + (k � 1) = k. This completes the proof of the theorem.

So when k = 1, Theorem 4 implies that for any concept class C for which td(C) =

jCj � 1, there exists a concept whose removal causes the teaching dimension of the

remaining class to be reduced to 1. We briey mention an interesting consequence of

this result. Although it appears that for a concept class C with vcd(C) = jCj � 1

there is little the teacher can do, this result suggests the following strategy: �rst teach

some concept f 0 in C � ffg and then (if possible) list the instances that f and f 0

classify di�erently.

While we have shown that the teaching dimension and the VC dimension are

fundamentally di�erent, there are some relations between them. We now derive an

upper bound for the teaching dimension that is based on the VC dimension.

Theorem 5 For any concept class C,

td(C) � vcd(C) + jCj � 2vcd(C):

Proof: Let x1; . . . ; xd be a shattered set of size d for d = vcd(C). By the de�nition

of a shattered set, in an example sequence consisting of these d instances, all but one

of a set of 2d concepts are eliminated. Thus after placing x1; . . . ; xd in the teaching

sequence, there are at most jCj � 2d + 1 concepts remaining. Finally, we use the

naive algorithm of Observation 2 to eliminate the remaining functions using at most

jCj � 2d additional examples.

4.2 Natarajan's Dimension Measure

In this section we compare the teaching dimension to the following dimension measure

de�ned by Natarajan [13] for concept classes of Boolean functions:
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nd(C) = min
d

8>>>>>>>>>>><
>>>>>>>>>>>:

For all c 2 C; there exists a

labeled sample Sc of cardinality

d such that c is consistent with

Sc and for all c0 2 C that are

consistent with Sc; c � c0

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

Natarajan shows that this dimension measure characterizes the class of Boolean

functions that are learnable with one-sided error from polynomially many examples.

He also gives the following result relating this dimensionmeasure to the VC dimension.

Theorem [Natarajan] For concept classes Cn chosen from the domain of Boolean

functions over n variables, nd(Cn) � vcd(Cn) � n � nd(Cn).

Note that the de�nition of Natarajan's dimension measure is similar to the teach-

ing dimension except that if there is more than one concept consistent with the given

set of examples, the learner is required to pick the most speci�c one. Using this

correspondence we obtain the following result.

Lemma 6 For concept classes Cn chosen from the domain of Boolean functions over

n variables, td(Cn) � nd(Cn).

Proof: Suppose there exists a concept class for which td(Cn) < nd(Cn). By the

de�nition of the teaching dimension, there exists a sequence of td(Cn) examples that

uniquely specify the target concept from all concepts in Cn. Let this sequence of

td(Cn) examples be the labeled sample Sc used in the de�nition of nd(Cn). Since Sc

uniquely speci�es c 2 Cn there are no c0 2 Cn for c0 6= c that are consistent with Sc.

This gives a contradiction, thus proving that td(Cn) � nd(Cn).

Combining Lemma 6 with the theorem of Natarajan gives the following result.

Corollary 7 For concept classes Cn chosen from the domain of Boolean functions

over n variables, vcd(Cn) � n � td(Cn).

12



5 Computing the Teaching Dimension

In this section we compute the teaching dimension for several concept classes, and

provide general techniques to aid in computing the teaching dimension for other

concept classes.

Before considering the problem of computing the teaching dimension, we �rst

briey discuss the computational problem of �nding an optimal teaching sequence

for a given target concept. For the concept classes considered below, not only do we

compute the teaching dimension, we also give e�cient algorithms to �nd the optimal

teaching sequence for any given target. However, in general, what can we say about

the problem of �nding an optimal teaching sequence?

We de�ne the optimal teaching sequence problem as follows. The input contains

a list of the positive examples for each concept in C in some standard encoding. In

addition, the input contains a concept c� 2 C to teach and an integer k. The question

is then: Is there a teaching sequence for c� of length k or less? We now show that this

problem is equivalent to the minimum cover problem. (See Garey and Johnson [5]

for a formal description of the minimum cover problem.)

Theorem 8 The optimal teaching sequence problem is equivalent to a minimum cover

problem in which there are jCj � 1 objects to be covered and jXj sets from which to

form the covering.

Proof: To see that these are equivalent problems, we associate the concepts from

C�fc�g with the objects in the minimum cover problem. Similarly, we associate the

sets for the minimum cover problem with the instances of the teaching problem as

follows: An object associated with c 2 C � fc�g is placed in the set associated with

instance x 2 X if and only if c(x) 6= c�(x) (i.e. x distinguishes c from c�). Observe

that the sets in which a given instance are placed is distinct from the concepts for

which the instance is positive.

It is easily seen that an optimal teaching sequence directly corresponds to an

optimal set covering with jCj � 1 objects and jXj sets.
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We note that Shinohara and Miyano [18] independently obtained the similar re-

sult that computing an optimal teaching sequence (what they call the minimum key

problem) is NP-complete by giving a reduction from the hitting set problem. More

recently, Anthony, et al. [2] have considered the problem of computing an optimal

teaching sequence when it is known that every instance is a positive example of ex-

actly three concepts from C. By giving a reduction to exact cover by 3-sets, they show

that even in this restricted situation the problem of computing an optimal teaching

sequence is NP-hard. Since, the set covering problem is known to be NP-complete

even when all sets have size at most three [5], the following corollary to Theorem 8

immediately follows.

Corollary 9 The optimal teaching sequence problem is NP-hard even if it is known

that each instance in X is a positive example for at most three concepts from C.

While it is NP-complete to compute a minimum set covering, Chvatal [4] proves

that the greedy algorithm (which is a polynomial-time algorithm) computes a cover

that is within a logarithmic factor of the minimum cover. While this problem appears

to be well understood, there is one very important distinction between the minimum

cover problem and the problem of computing an optimal teaching sequence. In the

set covering problem, no assumptions are made about the structure of the sets, and

thus they are input as lists of positive examples in some standard encoding. For the

problem of computing an optimal teaching sequence, we are usually assuming there

is a short (polynomial-sized) representation of the objects contained in each set, such

as a simple monomial. Thus we suggest the following interesting research question:

What is the complexity of the set covering problem when the sets have some natural

and concise description?

Although the problem of computing the optimal teaching sequence for teaching a

given concept is interesting, we now focus on computing the teaching dimension for

various concept classes. We start by describing a straightforward relation between the

teaching dimension and the number of membership queries needed to achieve exact

identi�cation. (A membership query is a call to an oracle that on input x for any
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x 2 X classi�es x as either a positive or negative instance according to the target

concept c 2 C.)

Observation 10 The number of membership queries needed to exactly identify any

given c 2 C is at least td(C).

Proof: Suppose td(Cn) is greater than the number of membership queries needed

for exact identi�cation. By the de�nition of exact identi�cation, the sequence of

membership queries used must be a teaching sequence that is shorter than the claimed

shortest teaching sequence. This gives a contradiction.

Thus an algorithm that achieves exact identi�cation using membership queries

provides an upper bound on the teaching dimension.

As noted earlier, since the teaching dimension is equivalent to the optimal mistake

bound under teacher-directed learning, the results of Goldman et al. [7] give tight

bounds on the teaching dimension for binary relations and total orders. We now

compute both upper and lower bounds on the teaching dimension for: monotone

monomials, arbitrary monomials, monotone decision lists, orthogonal rectangles in

f0; 1; � � � ; n�1gd, monotone k-term DNF formulas, and k-term �-DNF formulas for

arbitrary k.

5.1 Monomials

We now prove a tight bound on the teaching dimension for the class of monotone

monomials, and then generalize this result for arbitrary monomials.

Theorem 11 3 For the concept class Cn of monotone monomials over n variables

td(Cn) = min(r + 1; n)

where r is the number of relevant variables.

3Shinohara and Miyano [18] independently showed that the teaching dimension of monotone

monomials over n variables is at most n.
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Proof: We begin by exhibiting a teaching sequence of length min(r + 1; n). First

present a positive example in which all relevant variables are 1 and the rest are 0.

This example ensures that no irrelevant variables are in the target monomial. (If all

variables are in the monomial then this positive example can be eliminated.)

Next present r negative examples to prove that the r relevant variables are in the

monomial. To achieve this goal, take the positive example from above and ip each

relevant bit, one at at time. So for each relevant variable v there is a positive and

negative example that di�er only in the value of v thus proving that v is relevant.

Thus this sequence is a teaching sequence.

We now prove that no shorter sequence of examples su�ces. If any variable is not

in the monomial, a positive example is required to rule out the monomial containing

all variables. We now show that r negative examples are required. At best, each

negative example proves that at least one variable, from those that are 0, must be

in the target. Suppose a set of r � 1 negative examples (and any number of positive

examples) proved that all r relevant variables must be in the target. We construct a

monomial, missing a relevant variable, that is consistent with this example sequence:

for each negative example select one of the relevant variables that is 0 and place it in

the monomial. This procedure clearly creates a consistent monotone monomial with

at most r � 1 literals.

We now give a simple extension of these ideas to give a tight bound on the teaching

dimension for the class of arbitrary monomials. The key modi�cation is that the

positive examples not only prove which variables are relevant, but they also provide

the sign of the relevant variables. (By the sign of a variable we simply mean whether

or not the variable is negated.)

Theorem 12 For the concept class Cn of monomials over n variables

td(Cn) = min(r + 2; n+ 1)

where r is the number of relevant variables.

Proof: First we exhibit a teaching sequence of length min(r + 2; n+ 1). We present

two positive examples | In each make all literals in the target monomial true and
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reverse the setting of all irrelevant variables. For example, if there are �ve variables

and the target monomial is v1v2v5 then present \01001,+" and \01111,+". Next r

negative examples are used to prove that each remaining literal is in the monomial:

take the �rst positive example and negate each relevant variable, one at a time. For

the example above, the remainder of the teaching sequence is \11001, {", \00001,{",

and \01000,{".

We now prove that the above example sequence is a teaching sequence for the

target monomial. We use the following facts.

Fact 1 Let Cn be the class of monomials and let c 2 Cn be the target concept. If

some variable v is 0 in a positive example then v cannot be in c. Likewise, if v is 1

in a positive example then v cannot be in c.

Fact 2 Let Cn be the class of monomial, and let c 2 Cn be the target concept. Let

x+ 2 Xn be a positive example and x� 2 Xn be a negative example. If x+ and x� are

identical except that some variable v is 1 in x+ and 0 in x�, then v must appear in

c. Likewise, if x+ and x� are identical except that some variable v is 0 in x+ and 1

in x�, then v must appear in c.

We �rst prove that no irrelevant variables are in a monomial consistent with the

positive examples. Since each irrelevant variables is set to both 0 and 1 in a positive

example, it follows from Fact 1 that none of these variables could appear in any

consistent monomial. (Each relevant variable has the same value in both positive

instances.) From Fact 1 it also follows that the positive examples provide the signs

of the relevant variables. (If all variables are in the monomial, then only one positive

example revealing the sign of each variable is needed.)

We now show that any monomial consistent with the negative examples must

contain all relevant variables. For each relevant variable vr the teaching sequence

contains a positive and negative example that di�er only in the assignment to vr; so

by Fact 2, vr must be relevant. Thus the above example sequence is in fact a teaching

sequence.
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v3 v1
v6 v4

v7 v5

01

false

true

0

0

1 1 1

Figure 3: A monotone decision list: h(v3; 1); (v1; 0); (v6; 1); (v4; 1); (v7; 0); (v5; 1)i.

We now prove that no shorter sequence su�ces. If any variable, say vi, is irrelevant

then at least two positive examples are required in a valid teaching sequence since

the teacher must prove that both vi and vi are not in the target monomial. Finally,

the argument used in Theorem 11 proves that r negative examples are needed.

Observe that Theorems 11 and 12 can easily be modi�ed to give the dual result

for the classes of monotone and arbitrary 1-DNF formulas.

5.2 Monotone Decision Lists

Next we consider the concept class of monotone decision lists. Let Vn = fv1; v2; . . . ; vng

be a set of n Boolean variables. Let the instance space Xn = f0; 1gn. The class Cn

of monotone decision lists [14] is de�ned as follows. A concept c 2 Cn is a list

L = h(y1; b1); . . . (y`; b`)i where each yi 2 Vn and each bi 2 f0; 1g. For an instance

x 2 Xn, we de�ne L(x), the output from L on input x, as follows: L(x) = bj where

1 � j � ` is the least value such that yj is 1 in x; L(x) = 0 if there is no such j.

Let b(vi) denote the bit associated with vi. One may think of a decision list as an

extended \if|then|elseif|. . . else" rule. See Figure 3 for an example monotone

decision list on v1; . . . ; v7.

Theorem 13 For the concept class Cn of monotone decision lists over n variables:

td(Cn) � 2n � 1:

Proof: We construct a teaching sequence of length at most 2n�1. For each variable

vi (assume all irrelevant variables are at the end of the list with an associated bit of

0), we �rst teach b(vi) and then we teach the ordering of the nodes.
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1 0 0 0 0 0 0 ; �

0 1 0 0 0 0 0 ; �

0 0 1 0 0 0 0 ; +

0 0 0 1 0 0 0 ; +

0 0 0 0 1 0 0 ; +

0 0 0 0 0 1 0 ; +

0 0 0 0 0 0 1 ; �

1 1 1 0 0 0 1 ; +

1 0 0 1 1 1 0 ; �

0 1 0 0 0 1 1 ; +

0 1 0 1 0 0 1 ; +

0 0 0 0 1 0 1 ; �

0 1 0 0 1 0 0 ; +

Figure 4: Teaching sequence for the target concept shown in Figure 3.

19



To teach b(vi) present the instance x in which vi is 1 and all other variables are 0.

Then b(vi) is 1 if and only if x is positive. Thus using n examples, we teach the bit

associated with each variable. Next we teach the ordering of the nodes. Observe that

for consecutive nodes vi and vj for which b(vi) = b(vj), reversing the order of these

nodes produces an equivalent concept. Thus, the learner can order them arbitrarily.

For each 1 � i � n� 1 we present the example in which all variables are 0 except for

vi and all vj where j > i and b(vj) 6= b(vi). (Figure 4 shows the teaching sequence

for the target concept of Figure 3.) Observe that the ith example in this portion

of the teaching sequence proves that vi precedes all nodes vj for which j > i and

b(vi) 6= b(vj). This ordering information is su�cient to reconstruct the ordering of

the nodes.

We now show that the upper bound of Theorem 13 is asymptotically tight by

proving the the teaching dimension of monotone decision lists is at least n. Unless

the learner knows b(vi) for all i, he could not possibly know the target concept.

However, to teach b(vi) (for 1 � i � n), n examples are needed: any single example

only teaches bj for the smallest j for which yj is 1.

5.3 Orthogonal Rectangles in f0; 1; � � � ; n� 1gd

We now consider the concept class of orthogonal rectangles in f0; 1; � � � ; n�1gd. (This

is the same as the class boxd
n of Maass and Tur�an [12].)

Theorem 14 4 For the concept class Cd of orthogonal rectangles in f0; 1; � � � ; n�1gd:

td(Cd) = 2 + 2d:

Proof: We build the following teaching sequence T . Select any two opposing corners

of the box, and show those points as positive instances. Now for each of these points

show the following d negative instances: for each dimension, give the neighboring

point (unless the given point is on the border of the space f0; 1; � � � ; n�1gd in the

given dimension) just outside the box in that dimension as a negative instance. (See

Figure 5 for an example teaching sequence.) Clearly the target concept is consistent

4Romanik and Smith [16, 15] independently obtained this result for the special case that d = 2.
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+ _
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Figure 5: The teaching sequence for a concept selected from the class of orthogonal

rectangles in f0; 1; � � � ; n�1gd for n = 20 and d = 2.

with T , thus to prove that T is a teaching sequence we need only show that it is the

only concept consistent with T . Let B be the target box and suppose there is some

other box B0 that is consistent with T . Since B 6= B0 either B0 makes a false positive

or false negative error. However, the two positive examples ensure that B0 � B and

the negative examples ensure that B � B0. Thus such a B0 could not exist.

We now show that no sequence T 0 of less than 2+2d examples could be a teaching

sequence. Suppose n � 4 and let the target concept be a box de�ned by opposing

corners 1d and (n� 2)d. We �rst argue that T 0 must contain two positive points|if

T 0 contained a single positive point then the box containing only that point would

be consistent with T 0. Thus any teaching sequence must contain at least two positive

points. Finally to prevent a hypothesis B0 from making a false positive error, there

must be a negative example that eliminates any hypothesis that moves each face out

by even one unit. Clearly a single point can only serve this purpose for one face.

Since a d-dimensional box has 2d faces, 2d negative examples are needed.
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5.4 Monotone k-term DNF Formulas

We now describe how bounds on the teaching dimension for simple concept classes

can be used to derive bounds on the teaching dimension for more complex classes.

We begin by using the result of Theorem 11 to upper bound the teaching dimension

for monotone k-term DNF formulas. We note that it is crucial to this result that the

learner knows k. While the teacher can force the learner to create new terms, there

is no way for the teacher to enforce an upper bound on the number of terms in the

learner's formula.

Lemma 15 For the class Cn of monotone k-term DNF formulas over n variables:

td(Cn) � `+ k

where ` is the size of the target formula in number of literals.

Proof: Let f = t1 _ t2 _ � � � _ tk be the target formula, and let f(x) denote the value

of f on input x. We assume, without loss of generality, that f is reduced meaning

that f is not equivalent to any formula obtained by removing one of its terms. The

approach we use is to independently teach each term of the target formula.

For all i we build the teaching sequence Ti for term ti (as if ti was a concept from

the class of monotone monomials) as described in Theorem 11. We now prove that

T = T1T2 � � �Tk is a teaching sequence for f . The key property we use is:

for any x 2 Ti; f(x) = + if and only if ti(x) = +: (1)

To prove that property (1) holds we prove that for all x 2 Ti, all terms except for ti

are negative on x. Recall that all variables not in ti are 0 in every x 2 Ti. Thus we

need just prove that each term of f , except for ti, must contain some variable that

is not in ti. Suppose for term tj, no such variable exists. Then tj would contain a

subset of the variables in ti. However, this violates the assumption that f is reduced.

Thus property (1) holds.

We now use property (1) to prove that T is a teaching sequence for f . We �rst

show that f is consistent with T . From property (1) we know that f is positive on
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x 2 Ti if and only if ti(x) = +, and since Ti is a teaching sequence for ti it follows that

f(x) = + if and only if x is positive. Thus f is consistent with T . Finally, we prove

by contradiction that T uniquely speci�es f . For monotone monomials g1; g2; . . . ; gk

suppose g = g1 _ � � � _ gk is consistent with T yet g 6= f . Then there must exist some

term ti from f that is not equal to any term in g. Without loss of generality suppose

that gj(x) = + for a positive point x 2 Ti. (Some term in g must be true since g

is assumed to be consistent with Ti.) By property (1), this implies that gj can only

contain those variables that are in ti. Finally, since gj must reply correctly on all

negative points in ti it follows that gj = ti giving the desired contradiction.

To complete the proof of the theorem, we need just compute this size of T . From

Theorem 11 we know that for each i, jTij � r+ 1 where r is the number of literals in

ti. Thus it follows that jT j � `+ k where ` is the number of literals in f .

We note that by using the teaching sequence from monotone 1-DNF formulas as

the \building blocks" we can prove a dual result for monotone k-term CNF formulas.

5.5 k-term �-DNF Formulas

We now extend the idea of Lemma 15 to use teaching sequences for monomials to

build a good teaching sequence for a k-term �-DNF formula.

Lemma 16 For the class Cn of k-term �-DNF formulas over n variables,

td(Cn) � n+ 2k:

Proof: As in Lemma 15 we assume that the target formula f = t1 _ t2 _ � � � _ tk is

reduced. Once again, the key idea here is to independently teach each term of f . For

each term of f we begin by letting Ti be the teaching sequence for ti (as if ti was a

concept from the class of monomials) as described in Theorem 12. Then we modify

T = T1 � � �Tk as follows. For each singleton term ti (e.g. ti = vj or ti = vj) modify all

examples in T �Ti by setting vj so that ti is false. For each remaining term ti modify

T so that at least one literal from term ti is false in all examples in T � Ti. (Since f

is a �-formula and all remaining terms contain at least two literals, this goal is easily

achieved.)
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We �rst prove that T is a teaching sequence for f . It is easy to see that for any

instance x 2 Ti, all terms in the formula, except for ti, are false on input x. The

literal in any singleton term ti is only true for elements in Ti. For any other term

tj, for any instance x 2 T � Tj at least one literal from tj is false and thus tj is

false. What remains to be proven is that Ti (1 � i � k) is a teaching sequence for

ti. However, if one individually considers each Ti this may not be true. The key

observation is to �rst consider the portion of the teaching sequence associated with

the singleton terms. It follows from the proof of Theorem 12 that each singleton is

a term in the formula. Finally, since each variable can only appear in one term, the

portion of the teaching sequence associated with each remaining term is a teaching

sequence for that term. Thus the technique of Theorem 12 can be used to prove that

T is a teaching sequence for f .

5.6 Classes Closed Under XOR

We now discuss a situation in which one can generate a teaching sequence that has

length logarithmic in the size of the concept class. For c1; c2 2 C we de�ne c =

c1xor c2 as follows: for each instance x 2 X, c(x) is the exclusive-or of c1(x) and

c2(x). We say a concept class C is closed under xor if the concept c obtained by

taking the bitwise exclusive-or of any pair of concepts ci; cj 2 C (for all i; j) is also

in C.

Theorem 17 If C is closed under xor then there exists a teaching sequence of size

at most blg(jCj � 1)c+ 1.

Proof: We construct a teaching sequence using the following algorithm.

Build-teaching-sequence(f� ; C)

1 Repeat until f� is uniquely determined

2 Find instance, x, for which f� disagrees with

a non-eliminated function from C

3 Use x as the next example
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Figure 6: Result of combining with xor.

We now show that each instance selected by Build-teaching-sequence removes at

least half of the non-eliminated functions from C � ff�g. Consider the example x

added in step 2 of Build-teaching-sequence. Let � contain the examples that have

already been presented to the learner, and let V contain the concepts from C � ff�g

that are consistent with � . We now show that at least half of the concepts in V

must disagree with x. Suppose that x is a positive example. If all the concepts in V

predict that x is negative, then x eliminates all remaining concepts in V besides the

target. Otherwise, there exists some set V+
x of concepts that predict x is positive.

(Let V�
x = V � V+

x be the concepts from V that predict x is negative.) By the choice

of x, it must be that jV�
x j � 1, so let g1 be a concept in V�

x . We now use the fact that

C is closed under xor to prove that for each concept g2 2 V+
x , there is a one-to-one

mapping to a concept in V�
x . First consider the result of taking f� � g1. Since all

elements in V are consistent with instances in � , for these instances f� � g1 is 0. For

the instance x, f� � g1 is 1. Now consider taking f� � g1 � g2 for g2 2 V+
x . Since

the instances in � are 0 in f� � g1, in f� � g1 � g2 the instances in � are the same as

in f�. For x, f� � g1 � g2 is 0. Finally, since all concepts in V+
x must disagree with

each other on some instance in Xn � � � fxg, the concept f� � g1 � g2 2 V�
x forms a

one-to-one mapping with the concepts g2 2 V+
x . (See Figure 6.)
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Concept Lower Upper

Class Bound Bound

Monotone Monomials min(r + 1; n) min(r + 1; n)

Monomials min(r + 2; n+ 1) min(r + 2; n + 1)

Monotone k-term DNF Formulas ` + 1 ` + k

k-term �-DNF Formulas n n+ 2k

Monotone Decision Lists n 2n� 1

Orthogonal Rectangles in f0; 1; � � � ; n�1gd 2 + 2d 2 + 2d

Table 1: Summary of results.
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Repeating this same argument when x is a negative instance, we conclude that on

each instance at least half of the concepts in V are eliminated. Since Build-teaching-

sequence removes at least half of the non-eliminated concepts with each example,

after at most blg(jCj � 1)c examples V contains at most one concept from C � ffg.

Finally, one additional example is used to distinguish this remaining concept from

the target concept.

6 Conclusions and Open Problems

In this paper we have studied the complexity of teaching a concept class by considering

the minimum number of instances a teacher must reveal to uniquely identify any

target concept chosen from the class. A summary of our speci�c results are given in

Table 1. (The lower bounds for monotone k-term DNF formulas and k-term �-DNF

formulas are obtained by just letting k = 1 and using the bounds for monomials.)

Observe that unlike universal identi�cation sequences, for these concept classes the

teaching sequence selected is highly dependent on the target concept.

While this model of teaching provides a nice initial model, it clearly has some

undesirable features. By restricting the teacher to teach all consistent learners, one

side e�ect is that some concepts such as that given in Observation 2 that intuitively

are easy to teach, are extremely di�cult to teach in our model. We are currently

exploring variations of our model in which the teacher is more powerful, yet collusion

is still forbidden. Also a variation of this model in which the teaching sequence is

only required to eliminate �-bad hypotheses is an interesting direction to pursue.

Finally, we suggest the following open problems. It would be quite informative

to determine whether large and powerful classes (such as polynomial-sized monotone

circuits) have polynomial teaching dimensions. Potentially the technique of Goldman,

Kearns, and Schapire [6] may be useful in solving this problem. Another good area of

research is to study the time complexity of computing optimal teaching sequences. In

Section 5 we not only prove that there are small teaching dimensions for many classes

but actually give e�cient algorithms for computing the optimal teaching sequence.

Are there natural classes for which computing the optimal teaching sequence is hard?
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