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1 Introduction

There has long been a chasm between theoretical mod-
els of machine learning and practical machine learn-
ing algorithms. For instance, empirically successful
algorithms such as C4:5 and backpropagation have
not met the criteria of the PAC model and its vari-
ants. Conversely, the algorithms suggested by com-
putational learning theory are usually too limited in
various ways to �nd wide application. The theoreti-
cal status of decision tree learning algorithms is a case
in point: while it has been proven that C4:5 (and all
reasonable variants of it) fails to meet the PAC model
criteria [2], other recently proposed decision tree algo-
rithms that do have non-trivial performance guaran-
tees unfortunately require membership queries [6, 13].

Two recent developments have narrowed this gap
between theory and practice|not for the PAC model,
but for the related model known as weak learning or
boosting . First, an algorithm called Adaboost was
proposed that meets the formal criteria of the boosting
model and is also competitive in practice [10]. Second,
the basic algorithms underlying the popular C4:5 and
CART programs have also very recently been shown
to meet the formal criteria of the boosting model [12].
Thus, it seems plausible that the weak learning frame-
work may provide a setting for interaction between
formal analysis and machine learning practice that is
lacking in other theoretical models.

Our aim in this paper is to push this interaction
further in light of these recent developments. In par-
ticular, we perform experiments suggested by the for-
mal results for Adaboost and C4:5 within the weak
learning framework. We concentrate on two particu-
larly intriguing issues.

First, the theoretical boosting results for top-down
decision tree algorithms such as C4:5 [12] suggest that
a new splitting criterion may result in trees that are
smaller and more accurate than those obtained using
the usual information gain. We con�rm this suggestion
experimentally.

Second, a super�cial interpretation of the theo-

retical results suggests that Adaboost should vastly
outperform C4:5. This is not the case in practice,
and we argue through experimental results that the
theory must be understood in terms of a measure of
a boosting algorithm's behavior called its advantage
sequence. We compare the advantage sequences for
C4:5 and Adaboost in a number of experiments.
We �nd that these sequences have qualitatively dif-
ferent behavior that explains in large part the dis-
crepancies between empirical performance and the
theoretical results. Briey, we �nd that although
C4:5 and Adaboost are both boosting algorithms,
Adaboost creates successively \harder" �ltered dis-
tributions, while C4:5 creates successively \easier"
ones, in a sense that will be made precise.

2 C4:5 and Adaboost

In this section, we describe the two learning algorithms
we will examine. Both algorithms take a �nite training
sample S = fhxi; f(xi)igmi=1 of m labeled examples as
input. The xi are points in some instance space X,
and f is the boolean target function over X. The goal
of both algorithms is to �nd a function with small
training error on S in as few \rounds" as possible.
The notion of a round will become clear shortly, but
it can be thought of as a single step in which an algo-
rithm increases the complexity of its hypothesis, such
as splitting a leaf in the growing phase of C4:5.

2.1 A Top-Down Decision Tree Algorithm

It will be helpful to think of both algorithms as be-
ginning with the empirical distribution PS on S that
gives weight 1=m to each of the m instances xi in
S = fhxi; f(xi)igmi=1; small training error on S is then
equivalent to small error with respect to the distribu-
tion PS . For the decision tree algorithm, we can now
de�ne some important quantities. If T is any deci-
sion tree, we let leaves(T ) denote its leaves. For each
` 2 leaves(T ), we de�ne w(`) to be the probabilitywith
respect to PS that a random x reaches `, and q(`) to
be the probability that f(x) = 1 given that x reaches



TopDownF (S;N):
1 Initialize T to be the single-leaf tree, with binary
label equal to the majority class of the sample S.

2 for t = 1 to N :

3 �best  0.

4 for each pair (`; h) 2 leaves(T )� F :

5 � H(T ) �H(T (`; h)).

6 if � � �best then :

7 �best  �; `t  `; ht  h.

8 T  T (`t; ht).

9 Output T .

Figure 1: Algorithm TopDownF (S;N).

`. We will call w(`) the weight of the leaf. If q(`) = 0
or q(`) = 1 we say the leaf is pure. Notice that given T
and S, w(`) and q(`) are easily computed. Let us as-
sume that each leaf ` in T is labeled 0 if q(`) < 1=2, and
is labeled 1 otherwise; we refer to this as the majority
labeling. Under the majority labeling of the leaves of
T , an expression for the training error �̂(T ) of T on S
is simply �̂(T ) =

P
`2leaves(T )w(`)min(q(`); 1 � q(`)).

Now if H(q) is the binary entropy function, let us de-
�ne the entropy of T :

H(T ) =
X

`2leaves(T )

w(`)H(q(`)): (1)

Since H(q) � min(q; 1 � q) for all q, H(T ) � �̂(T ).
Thus if we can �nd a tree with small entropy, we have
found a tree with small training error.

We need notation to describe incremental changes
to the tree T . If ` 2 leaves(T ) and h is a boolean
function over the input space X, we use T (`; h) to
denote the tree that is the same as T , except that now
we \split" the leaf `: we make a new internal node at
` and label this node by the function h. The newly
created child leaves `0 and `1 (corresponding to the
outcomes h(x) = 0 and h(x) = 1 at the new internal
node) are labeled by their majority labels.

Our �rst algorithm, which we call TopDownF , is
given in Figure 1. It is parameterized by F , the class of
splitting functions that can label the nodes of the tree.
The algorithm takes as inputs the training sample S
and the number of rounds N . At each round (i.e., each
iteration of the outer for loop), a search is performed
(inner for loop) for the leaf, and for the function in F
labeling that leaf, that together maximize the resulting
drop in entropy to the tree (information gain).

Notice that if N is su�ciently large, TopDownF
will eventually split all impure leaves and grow the
same unpruned tree as C4:5. Regardless of the value
of N , the tree grown by TopDownF is always a sub-
tree of the unpruned tree of C4:5. Thus, the main
di�erence between TopDownF and C4:5 is in their
approaches to limiting the complexity of the resulting
tree. In C4:5, the unpruned tree is grown until there

AdaboostF (S;N):
1 Initialize vector w to be wi = 1=m, 1 � i �m.

2 for t = 1 to N :

3 Let the distribution Pt be w normalized, so
Pt[xi] = wi=

Pm

j=1
wj.

4 Let ht 2 F have the smallest error �t
(with respect to f and Pt).

5 Set �t = �t=(1� �t).

6 Update w: if ht(xi) = f(xi), then wi = �t �wi,
else wi remains unchanged.

7 Output h such that h(x) = 1 if and only ifPN

t=1
log(1=�t)ht(x) � (1=2)

PN

t=1
log(1=�t).

Figure 2: Algorithm AdaboostF (S;N).

are no impure leaves. Then, a pruning process is ap-
plied. Since the unpruned tree is always grown until
purity in C4:5, the order in which leaves are split is
irrelevant, and depth-�rst growth is acceptable. This
means C4:5 may choose to �rst split a leaf that re-
duces the entropy of the tree much less than some
later split. In contrast, in TopDownF the complex-
ity of the tree is limited by explicitly bounding the
number of rounds N . In this case, since every split
may be our last, the sensible thing to do is to always
split next the leaf that maximizes the entropy reduc-
tion. TopDownF will choose the same function to
label this split as C4:5, but may choose to perform
the splits in a di�erent order. Although there is ex-
perimental evidence that growth to purity followed by
pruning may result in better performance than explic-
itly limiting the growth, algorithmTopDownF is eas-
ier to analyze. We believe that the theoretical results
we will discuss shortly for TopDownF are relevant to
C4:5, but are perhaps on the pessimistic side.

Note that we have left the choice of the split-
ting function class F as a parameter of the algorithm.
While allowing a more expressive class F may reduce
the entropy (and thus the training error) more rapidly,
there are two costs for this. First, the search for the
best function in F in the inner for loop of TopDownF
becomes more expensive. Second, the relationship be-
tween the training and generalization errors will de-
grade as we increase the expressive power of F . The
choice of F is a design decision that must be made
with these trade-o�s in mind. We shall assume that F
is a rather simple class that can be searched rapidly,
such as the individual attributes of the instance space.

2.2 A Boosting Algorithm

We are now ready to describe the second algorithm,
whose code is given in Figure 2. We will not go
into the detailed motivation for this algorithm, in-
stead referring the reader to the paper of Freund and
Schapire [10]. For our purposes, the most important
idea is the creation of a �ltered distribution at each



round. At round t, the algorithm \adds" to its �nal
hypothesis the function ht from F that has the low-
est error on the �ltered distribution Pt. The weight
vector w (which determines the next �ltered distri-
bution through normalization) is then updated to de-
crease the relative weight of sample points on which
ht agrees with the target function, and to increase the
relative weight of the sample points on which ht errs.
The next �ltered distribution will thus be more con-
centrated on points that the preceding ht's found \dif-
�cult". A reasonable intuition is that successive �l-
tered distributions are focusing more and more on the
hard part of the learning problem.

2.3 The Weak Hypothesis Assumption

Let us point out a number of similarities between the
algorithms TopDownF and AdaboostF . First, both
algorithms proceed in rounds, where at each round
a new function is chosen from the class F . These
functions are incrementally combined to form a �-
nal hypothesis, although in rather di�erent ways. In
TopDownF , the function chosen at each round la-
bels the internal node of a decision tree, while for
AdaboostF , it becomes a member of a thresholded
linear combination. For training error, we would ex-
pect both algorithms to perform better with more
powerful classes F , but both would pay the computa-
tional and generalization error costs mentioned above.

Finally, both algorithms have some measure by
which they choose the \best" function to add in each
round. For TopDownF , this measure is the infor-
mation gain resulting from the chosen split (Figure 1,
line 5). For AdaboostF , it is the error on the �ltered
distribution for that round (Figure 2, line 4).

We will shortly discuss theoretical results for
AdaboostF that relate the training error after N
rounds to the best errors �t (see Figure 2, line 4)
on the sequence of �ltered distributions P1; : : : ; PN ;
briey, if these errors are just slightly smaller than
the trivial value of 1=2 (achieved by random guessing),
very strong performance guarantees can be given for
AdaboostF . But �rst, let us show that there is also a
natural de�nition for the \�ltered distributions" gen-
erated by TopDownF . If ` is any leaf of the current
decision tree T , we can de�ne P` to be the empirical
distribution on only those instances in the sample S
that reach `. Now q(`) is simply the probability of
drawing a positive example from P`. The information
gain of splitting T at ` is simply the information gain
with respect to P`, weighted by w(`).

What happens if, as for AdaboostF , we assume
that on the sequence of distributions P`1; : : : ; P`N
(where `t is the t-th node split in the call to
TopDownF (S;N )), there is always a function in F
whose predictive power is slightly better than random
guessing? The answer is that nothing happens, but
for a super�cial and easily remedied reason. Suppose

that q(`) = q is close to 1 (that is, the examples reach-
ing ` are mainly positive). Then a function h that is
always positive will have error 1 � q, which is much
better than random guessing, but will induce a trivial
and useless split at `. It turns out [12] that we need
to slightly alter our de�nition of the �ltered distribu-
tions for TopDownF . Let the balanced distribution
P 0

` at ` be de�ned by P 0

`(x) = P`(x)=(2q) if f(x) = 1
and P 0

`(x) = P`(x)=(2(1� q)) if f(x) = 0. Thus P 0

` is
P` modi�ed to give equal weight to the positive and
negative examples of f . We rede�ne the t-th �ltered
distribution Pt for TopDownF to be the distribution
P 0

`t
, where `t is the leaf split on the t-th round; P0 is

the empirical distribution PS on the training data.
Kearns and Mansour [12] show that if we assume

there is always a function in F outperforming random
guessing on the �ltered distributions P 0

`t
, then there is

a function in F giving a nontrivial information gain.
This allows us to directly compare AdaboostF and
TopDownF in the model sometimes known as boost-
ing or weak learning , which we now de�ne.

De�nition 1 For any  2 (0; 1=2], we say that
F -satis�es the Weak Hypothesis Assumption
(or WHA for short) with respect to f if for any dis-
tribution P over X, there is an h 2 F satisfying
PrP [h(x) 6= f(x)] � 1=2�. We call  the advantage
(over random guessing).

It is known that if F -satis�es the WHA with re-
spect to f , then f can be well-approximated by thresh-
olded linear combinations of functions from F in a
sense that can be made precise [9]. Thus the WHA
is not unlike the PAC model and other standard theo-
retical models, where one obtains leverage by making
a priori assumptions on the form of the target function
f . However, in the WHA this assumption is indirect,
as we simply assume that the \simple" class F contains
weak approximations to f on any distribution.

We now state results for the two algorithms under
the WHA. The �rst is for AdaboostF .

Theorem 2.1 (Freund and Schapire [10]) Let F
be any class of boolean functions, let  2 (0; 1=2], and
let f be any target boolean function that -satis�es the
WHA with respect to F . Let S be any training sam-
ple of f , and let h denote the hypothesis output by
AdaboostF (S;N ). Then for any �, the training er-
ror of h on S is less than � provided that

N �
1

22
ln

1

�
: (2)

Kearns and Mansour [12] show that TopDownF
can also be pro�tably analyzed under the WHA. Per-
haps the most signi�cant aspect of their result is that
it provides a performance guarantee for a popular
and experimentally successful heuristic in an indepen-
dently motivated theoretical model of learning.



Theorem 2.2 (Kearns and Mansour [12]) Let F
be any class of boolean functions, let  2 (0; 1=2], and
let f be any target boolean function that -satis�es
the WHA with respect to F . Let S be any train-
ing sample of f , and let T denote the tree output by
TopDownF (S;N ). Then for any �, the training error
of T on S is less than � provided that

N �

�
1

�

�c log(1=�)=2
(3)

for some constant c > 0.

Two important remarks on these theoretical results
are in order here. First, notice that in both theorems,
the number of rounds required to achieve a desired
training error is independent of the training sample
size m. Thus, if m is su�ciently large compared to
the given bounds, statements about generalization er-
ror can be obtained by standard Occam's Razor [4] or
VC dimension arguments [3]. These statements will of
course be di�erent for the two algorithms due to the
di�ering bounds on N and their di�ering hypothesis
spaces; see the papers for details [10, 12].

Second, the bound given for TopDownF in Theo-
rem 2.2 is not the best possible for a top-down decision
tree algorithm. By modifying the information gain cri-
terion used by TopDownF , Kearns and Mansour are
able to show an improved bound of

N �

�
1

�

�c=2
(4)

where c > 0 is a constant. They also show that this
bound is close to the best possible for any top-down
decision tree algorithm.

2.4 Issues Raised by the Theoretical Results

There are two intriguing issues raised by the theoret-
ical results given above, and their experimental inves-
tigation is the primary contribution of this paper.

First, the Kearns and Mansour results suggest that
top-down decision tree algorithms such as C4:5 might
be improved by a change in the splitting criterion. We
investigate this suggestion in detail in Section 3.

Second, even if we examine the improved bound of
Equation (4), the di�erence between this bound and
that given for AdaboostF in Theorem 2.1 suggests
that AdaboostF should vastly outperform C4:5.
In Section 4, using experiments due to Freund and
Schapire [8] as our starting point, we �nd that the
two algorithms are in fact rather comparable. We
show experimentally that the discrepancy between this
�nding and the theory lies (at least in part) in our
interpretation of the WHA advantage . We show
that the advantage  (or rather, the sequence of ad-
vantages 1; : : : ; N obtained on the �ltered distribu-
tions P1; : : : ; PN) must be regarded as an algorithm-
dependent and distribution-dependent quantity, and

thus the theoretical bounds given for the two algo-
rithms are incomparable. In other words, even though
AdaboostF has a better bound than TopDownF
for the same �xed advantage , in practice the ad-
vantage sequence for C4:5 is \better" than that for
AdaboostF , resulting in the approximate parity of
the two algorithms.

3 An Improved Splitting Criterion?

As we have already mentioned, the bound given by
Theorem 2.2 is not the best that can be obtained for a
top-down decision tree algorithm. In particular, de�ne
G(q) = 2

p
q(1� q), and in analogy with Equation 1,

de�ne
G(T ) =

X
`2leaves(T )

w(`)G(q(`)): (5)

Kearns and Mansour prove that if we replace the en-
tropy measure H(T ) in TopDownF with the new
measure G(T ) (that is, we change line 5 in Figure 1 to
read �  G(T ) � G(T (`; h)), but leave all other as-
pects of the algorithm unchanged) then Theorem 2.2
holds with the improved bound given by Equation (4).
Thus a simple change in our splitting criterion func-
tion fromH(q) toG(q) yields a polynomial rather than
superpolynomial dependence on 1=�.

The reason G(q) gives a better bound than H(q)
is that it has better concavity. Consider splitting a
node whose proportion of positive training examples
is q into two child nodes whose proportions of positive
training examples are p and r. Suppose that a fraction
� of the training examples are sent to the r child, and
the remaining 1� � examples go to the p child. Note
that these split parameters must obey the equality q =
(1 � � )p + �r. In this situation, the information gain
can be written as

H(q)� (1� � )H(p)� �H(r): (6)

A geometrical interpretation of the information gain is
shown in Figure 3, which plots H(q) as a function of q.
The �gure shows vertical lines at p and r. The length
of the short line segment descending from H(q) to the
line connecting H(p) to H(r) is the information gain.
The fact that the information gain is non-zero is due
to the concavity of the H curve.

In contrast, consider Figure 4. This �gure plots the
observed training set error min(q; 1� q) as a function
of q. We can see that if we used this function in place
of H in TopDownF , there would be no \gain" unless
p < 1=2 < r. This is because both child nodes would
get the same majority class label, so making this split
would not make the tree more accurate on the training
data (which is what min(q; 1� q) measures). The only
reason to make the split is that it \makes progress" so
that subsequent splits will be able to separate the two
classes. Hence, the purpose of using a concave split-
ting criterion such as H is to provide some measure of
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\progress" during the tree-growing process even when
p, q, and r are all on the same side of 1=2.

Finally, Figure 5 plots the new splitting criterion
G(q) as a function of q and compares it to H(q). We
can see that G has improved concavity compared toH,
especially for very small (or very large) values of q, as
shown in Figure 6. This permits Kearns and Mansour
to prove the tighter result given above.

3.1 Do G and H Di�er in Practice?

Despite the improved bound for G and the geometric
intuition, it is reasonable to ask whether G will actu-
ally outperform H in practice. Previous studies [14, 5]
have generally found that decision tree algorithms are
insensitive to the choice of the splitting criterion.

Let us be a little more precise about what Theo-
rem 2.2 and Equation (4) say. Both results assert a
relationship between tree size and error. Thus, for the
same �xed tree size N , the theory predicts smaller er-
ror � for the tree obtained using G compared to that
obtained using H. Alternatively, if G and H result in
trees with roughly the same error �, the theory pre-
dicts that the tree obtained using G should be smaller
than that obtained using H.

Table 1 shows the results of comparingG and H on
nine challenging problems from the Irvine repository
[15]. We modi�ed C4:5 Release 8 to implement the
new G function. Our modi�ed version could only han-
dle 2-class problems, so we converted multiclass prob-
lems into problems of discriminating one class from
the remaining classes. For this purpose, we chose
the classes that were di�cult to discriminate. In our
comparisons, we used the C4:5 parameters -m 1 -g,
which force the tree to be grown all the way to pure
leaves and which force C4:5 to use the information
gain rather than the gain ratio. We also disabled the



Table 1: Results of comparing C4:5(G) and C4:5(H). The �rst three columns show the % error on pruned trees and a
95% con�dence interval on the di�erences. The remaining four columns show the sizes of the unpruned trees. The class
chosen for discrimination against all other classes is shown in parentheses.

% error % error 95% con�dence Tree Size
Problem C4:5(G) C4:5(H) interval C4:5(G) C4:5(H) t Pr(t)
Letter Recognition (`H') 2.52 2.63 [�0:02;0:25] 118.75 122.00 1.051 0.328
ISOLET (`E') 3.53 3.61 [�0:31;0:48] 26.50 34.50 4.899 0.016��

ISOLET (`P') 3.26 3.62 [�0:03;0:80] 29.00 37.50 4.977 0.016��

Annealing (`3') 3.78 3.94 [�0:20;0:61] 23.50 32.50 2.286 0.106
Chess KR-vs-KP 1.69 1.83 [�0:07;0:37] 49.75 52.50 2.906 0.062
Segmentation (`4') 3.21 4.06 [0:38; 1:39]�� 21.00 22.00 1.000 0.139
Pima 28.91 30.66 [�2:40;5:87] 98.00 95.00 3.000 0.205
Shuttle (`1') 0.04 0.08 [0:02; 0:07]�� 20.00 25.00 2.402 0.096
Satellite (`4') 9.53 9.14 [�1:36;�0:05]�� 104.50 112.00 1.202 0.316

new heuristic in Release 8 that penalizes continuous
features having a large number of distinct values.

To test for signi�cant di�erences, we employed the
methodology advocated by Hinton et al. [11], in which
the available training data are subdivided into n dis-
joint training sets and a single test set. Each algo-
rithm is trained on each training set and the resulting
hypotheses are all tested on the single test set. The
results of classifying each test set example by each of
the 2n hypotheses are tallied into a contingency table,
and a 95% con�dence interval is computed for the dif-
ference between the error rates of G and H using the
ABC method for marginal homogeneity [7, 1]. This is
a very sensitive test that controls for variations due to
the di�erent training sets.

In 8 of the 9 domains, the observed test error rate
of C4:5(G) is lower than C4:5(H). The individual
tests for signi�cant di�erences �nd two domains where
C4:5(G) is better and one where C4:5(H) is better.
The combined results of all 9 domains, when analyzed
by a sign test, show that C4:5(G) is performing bet-
ter than C4:5(H) (p < 0:039). Based on these results,
there is weak evidence that G produces better error
rates than H, although the di�erences are not large.
However, recall that the theory predicts that if G and
H produce trees with similar error rates, the trees ob-
tained using G should be smaller. Table 1 also shows
the application of paired-di�erences t tests to compare
the sizes of the unpruned decision trees. In all but one
problem, the decision trees produced by G are smaller
than those produced by H, although the di�erence is
signi�cant below the 0.05 level in only 2 problems. But
if we combine all 38 trials in this table into a single t
test, the di�erence is highly signi�cant p < 0:0002.
We conclude that G on the average produces smaller
unpruned trees than H.

These experiments suggest that G may be a better
splitting criterion than H, and that it merits further
development (especially determining how it should be
extended to handle more than two classes).

4 The Advantage Sequence

As pleased as we might be to give a nontrivial proof
of performance for a C4:5-like algorithm in a stan-
dard theoretical learning model, and despite the small
improvements that seem possible with the new split-
ting criterion discussed in Section 3, there is no avoid-
ing the harsh reality that the bounds of Theorem 2.2
and Equation (4) are vastly worse than the bound of
Theorem 2.1. Should we really believe that C4:5 is
considerably inferior to AdaboostF ?

As a partial answer to this question, consider Fig-
ure 7, which is due to Freund and Schapire [8]. This
scatter plot compares the test errors of Adaboost 1

and C4:5 (with pruning) on 27 problems from the
UCI data repository. While Adaboost enjoys signi�-
cant improvements overC4:5 on many problems, there
are a couple on which it performs considerably worse
than C4:5, and on most problems the two algorithms
have similar test error rates (within a few percent).
It seems safe to say that C4:5 is at least competitive
with Adaboost. Certainly a gap in performance of
the order suggested by the theory is not present.

What, then, is missing in the theoretical results,
or more accurately, how have we been misinterpret-
ing them? In our discussion so far, we have implic-
itly assumed that the advantage  in the WHA re-
mains constant (or is at least lower bounded by a con-
stant) on all distributions. In fact, for Theorems 2.1
and 2.2 and Equation (4) to hold, it is only neces-
sary that the WHA hold on the sequence of �ltered
distributions P1; P2; : : : ; PN actually generated by the
algorithm under consideration. Thus, there might be
some problems for which the WHA holds for the se-
quence of �ltered distributions created by TopDown,
but not on the sequence created by Adaboost. On

1Throughout this section, the splitting functions F used
in the implementations of AdaboostF and TopDownF is
the same as that used by C4:5, so we drop the subscript
F .



such problems it would be perfectly consistent with
the theoretical results for TopDown to outperform
Adaboost. Furthermore, on real problems even this
weakened version of the WHA is a rather unrealistic
expectation: we should expect the best advantage i
that can be obtained within F on the �ltered distri-
bution Pi to be a varying, algorithm-dependent and
problem-dependent quantity . We call the resulting se-
quence 1; 2; : : : the advantage sequence of the algo-
rithm 2.

For example, in Adaboost we have already sug-
gested that the successive �ltered distributions are be-
coming \harder" as more weight is given to training
examples on which previous hypotheses have erred.
Thus, for the �ltered distributions of Adaboost, we
expect the advantage sequence to be decreasing. For
TopDown, successive �ltered distributions do not fo-
cus on hard examples, but form increasingly re�ned
partitions of the input space. These partitions eventu-
ally become su�ciently �ne that very simple functions
can approximate the target function well within a cell.
Thus, we expect the advantage sequence to increase,
or at least remain roughly constant.

The key point is that even though for the same
advantage sequence the bound for Adaboost is much
better than that for TopDown, in practice the advan-
tage sequences for the two algorithms are quite di�er-
ent. This could explain the discrepancy between the
experimental parity of the algorithms and their theo-
retical disparity. Experimental results supporting this
hypothesis are the focus of this section.

4.1 Methods

To measure the advantage sequence for TopDown ex-
perimentally, we need to compute the advantage of
each split. Using the notation of Section 3, consider a
candidate split of a decision tree node labeled by the
function h, with a fraction q of positive examples at
the parent and fractions p and r of positive examples
at the two children. Let � be the fraction of exam-
ples from the parent going to the r child. Kearns and
Mansour [12] show that on the balanced distribution
at the parent, h has the advantage3�����2

�
r

q
�
1� r

1� q

����� (7)

2Freund and Schapire [10] give a generalized version
of Theorem 2.1 which expresses the training error of
Adaboost in terms of the advantage sequence, rather than
a �xed advantage . A similar generalization of Theo-
rem 2.2 is possible, but is beyond our scope. In any case,
the resulting bounds again exhibit a disparity similar to
that of Theorems 2.1 and 2.2.

3Technically, this advantage may actually be achieved
by the complement of h, but since the class of splitting
functions used by C4:5 is closed under complementation,
the e�ect is identical.

over random guessing (that is, the error of h on the
balanced distribution is 1=2 minus the given expres-
sion). Thus, like the information gain, the advantage
is entirely determined by the split parameters. We
modi�edC4:5 to compute the advantage at each split,
and to record these advantages in the order that the
splits would be generated by TopDown.

We measured the advantage sequence of algorithms
TopDown and Adaboost on three problems: an ar-
ti�cial decision list problem, the Pima Indians dia-
betes database, and the Australian credit screening
database. The advantage sequence for TopDown on
any particular run is very noisy, because when a node
containing few examples is split, the advantage tends
to be high. TopDown tends to switch frequently be-
tween splitting such sparse nodes and splitting less
sparse nodes, so the advantage sequence oscillates. To
remove this noise, we averaged the results of 20 tri-
als. To generate the trials in the decision list problem,
we generated 20 separate training sets of 500 exam-
ples each. For the other two problems, we performed
a 20-fold cross-validation.

To ensure that this advantage sequence compari-
son was fair, we �rst ran TopDown to determine how
many rounds it required to drive the training error to
zero. We then ran Adaboost for the same number of
rounds and compared the training and test set errors
for the two algorithms. The purpose of this was not to
determine which algorithm was better, but to double-
check that the algorithms were achieving similar per-
formance for the same number of rounds of boosting.
Table 2 shows the results of this check. TopDown
is actually able to achieve zero training set error in
fewer rounds than Adaboost, but the test set errors
are roughly comparable. (The test error rates for the
pruned trees of C4:5 (not shown) are slightly below
those shown for the unpruned trees.)

4.2 Results

Figures 8, 9, and 10 show the averaged advantage se-
quences for the three problems. In all cases, there
is a dramatic di�erence between the advantage se-
quences of TopDown and Adaboost. As predicted,
Adaboost rapidly drives the advantage to zero, falling
below 0.05 within 40 rounds on all three problems. In
contrast, the advantage sequence forTopDown is low-
est at the beginning and tends to increase (or at least
hold steady) as more splits are performed.

This demonstrates that the  values in Theo-
rems 2.1 and 2.2 cannot be assumed to be the same.
If we think of the desired training error � in Theo-
rems 2.1 and 2.2 as being a small �xed constant, the
di�ering behavior of 1= for the two algorithms goes a
long way towards explaining their competitive perfor-
mance in spite of the disparate dependence on 1= in
the two theorems.

Figure 11 gives a scatter plot of the value of  at a



Table 2: Comparison of TopDown and Adaboost for equal numbers of boosting rounds (means of 20 trials).

TopDown # rounds Adaboost TopDown Adaboost
Problem to 0 train error train error test error test error
Decision List 218.0 9.4 9.14 13.8
Pima Diabetes 143.6 18.0 29.60 23.7
Australian Credit 74.3 9.9 19.50 15.0

node and the fraction w of the training set that reaches
that node for the decision list experiment. Not sur-
prisingly, when w is large, the advantages are smaller:
while the partition of the input space induced by the
tree is still coarse, it may be hard to �nd good splits.
On the other hand, if we con�ne our attention to nodes
having at least 2% of the training data (which means
at least 100 examples for this problem), we still see
many large values for the advantage. This rules out
the possibility that C4:5 is only enjoying large advan-
tages when there are a handful of examples at a node.

Finally, Figure 12 gives a scatter plot of the ad-
vantage versus the information gain to show that the
advantage is measuring something quite di�erent from
the information gain. The information gain places
bounds on the possible values for , but for any �xed
value of the information gain,  takes on a wide range
of values. The mere fact that this scatter plot does
not lie on a one-dimensional curve demonstrates that
the advantage sequence measures something funda-
mentally di�erent than the information gain.

4.3 Discussion

The Weak Hypothesis Assumption is a di�erent way
of de�ning inductive biases than previous theoretical
frameworks. In the PAC model (and in the Bayesian
and MDL frameworks), the bias is expressed in terms
of assumptions about the syntactic representation,
complexity, or prior probability of the target function.
The WHA makes no explicit assumptions of this kind.
Instead, it makes the incremental, procedural assump-
tion that at each round of the boosting process, some
h 2 F will have an advantage over random guessing.

Can our experimental results give us any intu-
ition about what the WHA means for TopDown and
Adaboost? Figures 8, 9, and 10 show that the advan-
tage forTopDown is smallest near the root of the tree.
Hence, forC4:5, the WHA is most likely to be violated
early in the tree-growing process. In other words, for
C4:5, the WHA asserts that even at the root, a split
will have an advantage over random guessing. If we
think about cases where this is violated (e.g., parity),
these are precisely cases where C4:5 fails.

For Adaboost, the advantages are small later in
the boosting process, so the WHA is most dubious
after several rounds of boosting have been performed.
In other words, forAdaboost, after the \main e�ects"

have been identi�ed, the WHA asserts thatAdaboost
will still be able to make progress.

We can conclude that although making the WHA
provide insights into the behavior and performance of
both Adaboost and C4:5, the WHA is asserting fun-
damentally di�erent things for the two algorithms.
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Figure 7: Scatter plot of test errors for Adaboost and
C4:5 on 27 problems from the UCI data repository [8].
Points below the diagonal indicate superior performance
for C4:5, while points above the diagonal indicate supe-
rior performance for Adaboost.
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Figure 8: Plot of advantage t on �ltered distribution
Pt vs. t for the unpruned tree of C4:5 (top plot) and
for Adaboost (bottom plot) on the arti�cial decision list
learning problem.
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Figure 9: Plot of advantage t on �ltered distribution Pt
vs. t for the unpruned tree of C4:5 (top plot) and for
Adaboost (bottom plot) on the Pima Indians diabetes
problem.
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Figure 10: Plot of advantage t on �ltered distribution
Pt vs. t for the unpruned tree of C4:5 (top plot) and for
Adaboost (bottom plot) on the Australian credit screen-
ing problem.
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Figure 11: Scatter plot of advantage  vs. weight w for
C4:5 on the decision list experiment, accumulated over
all 20 trials. For each split made at node ` and labeled
by the function h, we plot a point whose x coordinate is
the advantage over random guessing that h has on the
balanced distribution P 0

` , and whose y coordinate is w(`),
the fraction of the training sample reaching `.
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Figure 12: Scatter plot of advantage  vs. information gain
forC4:5 on the decision list experiment, accumulated over
all 20 trials. For each split made at node ` and labeled
by the function h, we plot a point whose x coordinate is
the advantage over random guessing that h has on the
balanced distribution P 0

`, and whose y coordinate is the
information gained by the split.


