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Abstract

We consider the problem of reliably choosing a near-best strategy from a
restricted class of strategi€sin a partially observable Markov decision
process (POMDP). We assume we are given the abilityiraulatethe
POMDP, and study what might be called twmple complexity- that is,

the amount of data one must generate in the POMDP in order to choose a
good strategy. We prove upper bounds on the sample complexity showing
that, even foinfinitely large and arbitrarily compleROMDPSs, the amount

of data needed can be finite, and depends only linearly on the complexity of
the restricted strategy clals and exponentially on the horizon time. This
latter dependence can be eased in a variety of ways, including the applica-
tion of gradient and local search algorithms. Our measure of complexity
generalizes the classical supervised learning notion of VC dimension to the
settings of reinforcement learning and planning.

1 Introduction

Much recent attention has been focused on partially observable Markov decision processes
(POMDPs) which have exponentially or even infinitely large stagesp. For such domains,

a number of interesting basic issues arise. As the state space becomes large, the classical
way of specifying a POMDP by tables of transition probabilities clearly becomes infeasible.
To intelligently discuss the problem of planning — that is, computing a good stratiegy

given POMDP —compactor implicit representations of both POMDPs, and of strategies in
POMDPs, must be developed. Examples include factored next-state distributions [2, 3, 6],
and strategies derived from function approximation schemes [7]. The trend towards such
compact representations, as well as algorithms for planning and learning using them, is rem-
iniscent of supervised learning, where researchers have long emphasized parametric models
(such as decision trees and neural networks) that can capture only limited structure, but which
enjoy a number of computational and information-theoretic benefits.

Motivated by these issues, we consider a setting were we are gigenegative modelbr
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simulator, for a POMDP, and wish to find a good strategfrom some restricted class of
strategiedI. A generative model is a “black box” that allows us to generate experience (tra-
jectories) from different states of our choosing. Generative models are an abstract notion of
compact POMDP representations, in the sense that the compact representations typically con-
sidered (such as factored next-state distributions) already provide efficient generative models.
Here we are imagining that the strategy clHsis given by some compact representation or

by some natural limitation on strategies (such as bounded memory). Thus, the view we are
adopting is that even though the world (POMDP) may be extremely complex, we assume
that we can at least simulate or sample experience in the world (via the generative model),
and we try to use this experience to choose a strategy from some “simpleTlclass

We study the following question: How many calls to a generative model are needed to have
enough data to choose a near-best strategy in the given class? This is analogous to the ques-
tion of sample complexitin supervised learning — but harder. The added difficulty lies in
thereuseof data. In supervised learningyerysample(z, f(x)) provides feedback about
everyhypothesis functiok(x) (namely, how closé(z) is to f(z)). If & is restricted to lie

in some hypothesis clags, this reuse permits sample complexity bounds that are far smaller
than the size of{. For instance, onl¥)(log(|#|)) samples are needed to choose a near-best
model from a finite clas®(. If 4 is infinite, then sample sizes are obtained that depend only

on some measure of tlemplexityof # (such as VC dimension [8]), but which hawe
dependencen the complexity of the target function or the size of the input domain.

In the POMDP setting, we would like analogous sample complexity bounds in terms of
the “complexity” of the strategy clad$ — bounds that have no dependence on the size or
complexity of the POMDP. But unlike the supervised learning setting, experience “reuse” is
not immediate in POMDPs. To see this, consider the “straw man” algorithm that, starting
with somer € 11, uses the generative model to generate many trajectories ninded thus
forms a Monte Carlo estimate &f" (sg). Itis not clear that these trajectories undeare of

much use in evaluating a different € II, sincer and#’ may quickly disagree on which
actions to take. The naive Monte Carlo method thus gi¥é$1|) bounds on the “sample
complexity,” rather thar® (log(|T1])), for the finite case.

In this paper, we shall describe ttrajectory treemethod of generating “reusable” trajecto-

ries, which requires generating only a (relatively) small number of trajectories — a number
that is independent of the state-space size of the POMDP, depends only linearly on a general
measure of theomplexityof the strategy clasd, and depends exponentially on the horizon
time. This latter dependence can be eased via gradient algorithms such as Willams’ R
FORCE[9] and Baird and Moore’s more recenak’s [1], and by local search techniques.

Our measure of strategy class complexity generalizes the notion of VC dimension in super-
vised learning to the settings of reinforcement learning and planning, and we give bounds
that recover for these settings the most powerful analogous results in supervised learning —
bounds for arbitrary, infinite strategy classes that depend only on the dimension of the class
rather than the size of the state space.

2 Preliminaries

We begin with some standard definitions. Markov decision process (MDP)is a tuple
(S,s0,A,{P(:|s,a)}, R), where:S is a (possibly infinitejtate sef sy € S is astart state;

A ={ay,...,a,} areactions P(-|s, a) gives the next-state distribution upon taking action

a from states; and the reward functioR(s, a) gives the corresponding rewards. We assume
without loss of generality that rewards are deterministic, and further that they are bounded
in absolute value by’,,... A partially observable Markov decision process (POMDP)
consists of an underlying MDP amdbservation distributions Q(o|s) for each state, where



o is the randonobservationmade ats.

We have adopted the common assumption of a fixed start’staéeause once we limit

the class of strategies we entertain, there may not be a single “best” strategy in the class—
different start states may have different best strategibs We also assume that we are given

a POMDPM in the form of agenerative modelfor A that, when given as input any state-
action pair(s, ), will output a states’ drawn according t@(-|s, «), an observation drawn
according taQ(+|s), and the reward(s, «). This gives us the ability teamplethe POMDP

M in a randomaccess way. This deftion may initially seem unreasonably generous: the
generative model is giving us a fully observable simulation of a partially observable process.
However, the key point is that we must still find a strategy that performs well ipahélly
observablesetting. As a concrete example, in designing an elevator control system, we
may have access to a simulator that generatesara rider arrival times, and keeps track of

the waiting time ofeach rider, the number of riders itiag at every floor at every time of

day, and so on. However helpful this information might bel@signingthe controller, this
controller must onlyseinformation about which floors currently have had their call button
pushed (the observables). In any case, readers uncomfortable with the power provided by
our generative models are referred to Section 5, where we briefly describe results requiring
only an extremely weak form of partially observable simulation.

At any timet, the agent will have seen some sequence of observatigns,. , o;, and will

have chosen actions and received rewards for each otitme steps prior to the current one.
We write itsobservable historyash = ((og, ag, 70), - - ., (0t—1, at—1,7t—1), (0t, -, -)). Such
observable histories, also calltdjectories, are the inputs to strategies. More formally, a
strategy = is any (stochastic) mapping from observable histories to actions. (For example,
this includes approaches which use the observable history to tradlelieé state [4].) A
strategy clasdll is any set of strategies.

We will restrict our attention to the case of discounted retuand we lety € [0,1) be the
discount factor. We define thehorizon time to be . = log. (¢(1 — v)/2Rmqs). Note that
returns beyond the first .-steps can contribute at most2 to the total discounted return.
Also, let Viay = Rmaz/(1 — ) bound the value function. Finally, for a POMDF and

a strategy clasH, we defineopt (M, I1) = sup,.; V™ (s0) to be the best expected return
achievable frons, usinglIl.

Our problem is thus the following: Given a generative model for a POMD&nd a strategy
classlI, how many calls to the generative model must we make, in order to have enough data
to choose ar € II whose performanc®&™ (sy) approachespt(M,11)? Also,which calls
should we make to the generative model to achieve this?

3 The Trajectory Tree Method

We now describe how we can use a generative model to create “reusable” trajectories. For
ease of exposition, we assume there are only two actipaada,, but our results generalize
easily to any finite number of actions. (See the full paper [5].)

A trajectory treeis a binary tree in which eaatpde is labeled by a state and observation pair,
and has a child for each of the two actions. Auhally, each link to a child is labeled by a

2An equivalent definition is to assume a fixed distributibnover start states, sineg can be a
“dummy” state whose next-state distribution under any actidn.is

*The results in this paper can be extended without difficulty to the undiscounted finite-horizon
setting [5].



reward, and the tree’s depth will B&, so it will have abou2! nodes. (In Section 4, we will
discuss settings where this exponential dependenéé @an be eased.) Each trajectory tree
is built as follows: The root is labeled by and the observation therg;. Its two children
are then created by calling the generative modelsana, ) and(sg, a2), which gives us the
two next-states reached (sslyands’, respectively), the two observations made (sagnd
oh), and the two rewards received, (= R(sg, a1) andr, = R(sg, a2)). Then(s}, o)) and
(sh, 05) label the root’s:; -child andas-child, and the links to these children are labetgd
andr}. Recursively, we generate two children and rewards this way for madh down to
depthH..

Now for anydeterministicstrategyr and any trajectory tre€, = defines a path througdh:

w starts at the root, and inductively,7fis at some internal node ifi, then we feed tar the
observable history along the path from the root to that nodemaselects and moves to a
child of the current node. This continues until a leaf node#&hed, and we defir(r, T

to be the discounted sum of returns along the path taken. In the case ihatochastic,

= defines aistributionon paths inl", and R(r, T') is the expected return according to this
distribution. Hence, givem trajectory treed?, ..., 7,,, a natural estimate for ™ (sg) is
V™(sg) = =57 R(w,T;). Note that each tree can be used to evalaatestrategy, much
the way a single labeled example, f(x)) can be used to evaluate any hypothésis) in
supervised learning. Thus in this sense, trajectory treesasable

Our goal now is to establiglmiform convergenceesults that bound the error of the estimates
V™ (sg) as a function of the “sample size” (number of trees) Section 3.1 first treats the
easier case of deterministic clas$EsSection 3.2 extends the result to stochastic classes.

3.1 The Case of DeterministidI

Let us begin by stating a result for the special case of finite classes of deterministic strategies,
which will serve to demonstrate the kind of bound we seek.

Theorem 3.1 LetIlI be any finite class of deterministic strategies for an arbitrary two-action
POMDP M. Letm trajectory trees be created using a generative modeMorand V'™ (so0)

be the resulting estimates.if = O ((Vinax/¢)*(Helog(|I]) + log(1/4))), then with prob-
ability 1 — &, |V (so) — V™ (s0)| < € holds simultaneously for att € II.

Due to space limitations, detailed proofs of the results of this section are left to the full
paper [5], but we will try to convey the intuition behind the ideas. Observe that for any
fixeddeterministicr, the estimate®(r, 7;) that are generated by the different trajectory
treesT; are independent. Moreover, eafifir, 7;) is an unbiased estimate of the expected
discountedH -step return ofr, which is in turne/2-close tolV’ " (sy). These observations,
combined with a simple Chernoff and union bound argument, are sufficient to establish The-
orem 3.1. Rather than developing this argument here, we instead move straight on to the
harder case of infinitd.

When addressing sample complexity in supervised learning, perhaps the most important in-
sightis that even though a claismay be infinite, the number of possilidlehaviorsof # on

a finite set of points is often not exhaustive. More precisely, for boolean functions, we say
that the sety, . . ., x4 is shatterecby 7 if every of the2¢ possible labelings of these points

is realized by somé € #. The VC dimension o#{ is then defined as the size of the largest
shattered set [8]. It is known that if the VC dimensionfofis 4, then the numbe® ;(m)

of possible labelings induced 1y on a set ofn points is at mostemn/d)¢, which is much

less thar™ for d <« m. This fact provides the key leverage exploited by the classical VC



dimension results, and we will concentrate on replicating this leverage in our setting.

If IT is a (possibly infinite) set of deterministic strategies, then each strateghf is simply

a deterministic function mapping from the set of observable histories to tHe set; }, and

is thus a boolean function on observable histories. We can thereforeM¢i{d) to denote

the familiar VC dimension of the set of binary functiolls For example, ifll is the set

of all thresholded linear functions of the current vector of observations (a particular type of
memoryless strategy), th&AC(II) simply equals the number of parameters. We now show
intuitively why a clasd1 of bounded VC dimensiod cannot induce exhaustive behavior on
asetly, ..., T,, of trajectory trees forn > d. Note that ifr;, 7o € II are such that their
“reward labelings{R(m1,T4), ..., R(m1, Tn)) and{R(m2, T1), . . ., R(ma, T,,)) differ, then
R(my,T;) # R(mae,T;) for somel < ¢ < m. Butif 7y andr; give different returns off;,

then they must choose different actions at some nodg.imn other words, every different
reward labeling of the set ofi treesyields a different (binary) labeling of the setwaf - 2/
observablenistoriesin the trees. So, the number of different tree reward labelings can be
at mostd,(m - 28<) < (m - 2#</d)¢. By developing this argument carefully and applying
classical uniform convergence techniques, we obtain the following theorem. (Full proof

in [5].)

Theorem 3.2 Let 11 be any class of deterministic strategies for an arbitrary two-action
POMDP M, and letVC(II) denote its VC dimension. Let trajectory trees be created

using a generative model far, andV " (s,) be the resulting estimates. If
m = O ((Vinax/€)* (HVC(IL) + log(1/8))) 1)
then with probabilityl — &, [V (ss) — V™ (s0)| < ¢ holds simultaneously for aft € I1.

3.2 The Case of Stochastitl

We now address the case of stochastic strategy classes. We describe an approach where we
transformstochastic strategies into “equivalent” deterministic ones and operate on the de-
terministic versions, reducing the problem to the one handled in the previous section. The
transformation is as follows: Given a class of stochastic stratégiesch with domain
(whereX is the set of all observable histories), we first extend the domain 6 Be[0, 1].

Now for each stochastic strategyc I1, define a corresponding deterministiansformed
strategyn’ with domainX x [0, 1], given by: «’(h,r7) = a1 if r < Pr[r(h) = a1], and

n'(h, ) = as otherwise (foranyr € X, » € [0, 1]). LetTI’ be the collection of these trans-
formed deterministic strategies. Sincell’ is just a set of deterministic boolean functions,

its VC dimension is well-defined. We then define ffeeudo-dimensioof the original set

of stochastic strategid$ to bepVC(II) = VC(I').*

Having transformed the strategy class, we also need to transform the POMDP, by augmenting
the state spac€ to be S x [0, 1]. Informally, the transitions and rewards remain the same,
except that after each state traims, we draw a new random varialbteuniformly in [0, 1],

and independently of all previous events. States are now of the(form and we let- be an
observed variable. Whenever in the original POMDP a stochastic strategyld have been

given a historyn, in the transformed POMDP the corresponding deterministic transformed
strategyr’ is given(h, r), wherer is the[0, 1]-random variable at the current state. By the
definition of#’, itis easy to see that and= have exactly the same chance of choosiagh

action at any node (randomization over

We are now back in the deterministic case, so Theorem 3.2 applies immediately,(With
replaced by VC(II) = VC(II'), and we again have the desired uniform convergence resullt.

*This is equivalent to the conventional definition of the yd@-dimension ofI, when it is viewed
as a set of maps into real-valued action-probabilities.



4  Algorithms for Approximate Planning

Given a generative model for a POMD®, the results of the preceding section immedi-
ately suggest a class of algorithms for approximate planning: generatajectory trees
Ti,...,Ty, and search for & € II that maximizesV’" (sy) = (1/m)>_ R(w,T;). The
following corollary to the uniform convergence results establishes the soundness of this ap-
proach.

Corollary 4.1 Let Il be a class of strategies in a POMDM, and let the numberm of
trajectory trees be as given in Theorem 3.2. ket arg max,en{V ™ (s0)} be the policy
in IT with the highest empirical return on the trees. Then with probability — §, 7 is
near-optimal withinlT:

V7 (s0) > opt(M,TI) — 2e. (2)

If the suggested maximization is computationally infeasible, one can search for a local max-

imum 7 instead, and uniform convergence again assures u¥'that) is a trusted estimate
of our true performance. Of course, even finding a local maximum can be expensive, since
each trajectory tree is of size&monential in/ ..

However, in practice it may be possible to significantly reduce the cost of the search. Suppose
we are using a class of (possibly transformed) deterministic strategies, and we perform a
greedy local search ovér to optimizeV' " (sg). Then at any time in the search, to evaluate

the policy we are currently considering, we really need to look at only a single path of length
H. in each tree, corr@®nding to the path taken by the strategy being considered. Thus, we
should build the trajectory tredazily — that is, incrementally build eaamode ofeach tree

only as it is needed to evaluaiq~, T;) for the current strategy. If there are parts of a tree

that are reached only hyoor policies, then a good search algorithm may never even build
these parts of the tree. In any case, each step of the local search now takes tifiveeanly

in H,.

There is a different approach that works directly on stochastic strategies (that is, without
requiring the transformation to deterministic strategies). In this case each stochastic strategy
n defines a distribution ovall the paths in a trajectory tree, and thus calculafitier, 7)

may in general require examining complete trees. However, we can view each trajectory
tree as a small, deterministic POMDP by itself, with the children of e=udte in the tree

being its successor nodes. Sdlif= {r; : § € R} is a smoothly parameterized family

of stochastic strategies, then algorithms such as WillianEs\RORCE [9] and Baird and
Moore’s more recent M~s [1] can be used to find an unbiased estimate of the gradient
(d/d8)V™ (s), which in turn can be used to perform stochastic gradient ascent to maximize
V™ (s5). Moreover, each of these algorithms needs @nlyf.) time per gradient estimate;

so combined with lazy tree construction, we again have a practical algorithm whose per-step
complexity is onlylinearin the horizon time. This line of thought s further developed in the
long version of the papér.

5In the full paper, we also characterize conditions under which these algorithms will give gradient
estimates with bounded variance—clearly this is needed for stochastic gradient ascent—and also de-
scribe a variation that needs only very weak conditions (a bound on the deriiéti@®) Pr[xs(h) =
a1]) to guarantee bounded variance. We also show how these algorithms can be extended to find in
O(H.) time an unbiased estimate of the gradient ofttiue valueV' ™ (s¢) for arbitrary infinite hori-
zon problems (whereas most current algorithms either only converge asymptotically to an unbiased
estimate of this gradient, or need an absorbing state and “proper” strategies).



5 The Random Trajectory Method

Using a fully observable generative model of a POMDP, we have shown that the trajectory
tree method gives uniformly good value estimates, with an amount of experience linear in
VC(IT), and exponential inff.. It turns out we can significantly weaken the generative
model, yet still obtain essentially the same theoretical results. In this harder case, we assume
a generative model that provides orpggrtially observablehistories generated by tauly
randomstrategy (which takes each action with equal pralitgtat every step, regardless of

the history so far). Furthermore, these trajectories always begin at the designated start state,
so there is no ability provided to “reset” the POMDP to any state other ¢harfindeed,
underlying states may never be observed.)

Our method for this harder case is called the Random Trajectory method. It seems to lead less
readily to practical algorithms than the trajectory tree method, and its formal description and
analysis, which is more difficult than for trajectory trees, are given in the long version of this
paper [5]. As in Theorem 3.2, we prove that the amount of data needed is liré@ax(Th),

and exponential in the horizon time — that is, by averaging appropriately over the resulting
ensemble of trajectories generated, this amount of data is sufficient to yield uniformly good
estimates of the values for all strategiedlin
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