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Abstract

This paper describes new and e�cient algorithms for learning deterministic �nite automata. Our
approach is primarily distinguished by two features: (1) the adoption of an average-case setting to model
the \typical" labeling of a �nite automaton, while retaining a worst-case model for the underlying graph
of the automaton, along with (2) a learning model in which the learner is not provided with the means
to experiment with the machine, but rather must learn solely by observing the automaton's output
behavior on a random input sequence. The main contribution of this paper is in presenting the �rst
e�cient algorithms for learning non-trivial classes of automata in an entirely passive learning model.

We adopt an on-line learning model in which the learner is asked to predict the output of the next
state, given the next symbol of the random input sequence; the goal of the learner is to make as few
prediction mistakes as possible. Assuming the learner has a means of resetting the target machine to a
�xed start state, we �rst present an e�cient algorithm that makes an expected polynomial number of
mistakes in this model. Next, we show how this �rst algorithm can be used as a subroutine by a second
algorithm that also makes a polynomial number of mistakes even in the absence of a reset.

Along the way, we prove a number of combinatorial results for randomly labeled automata. We also
show that the labeling of the states and the bits of the input sequence need not be truly random, but
merely semi-random. Finally, we discuss an extension of our results to a model in which automata are
used to represent distributions over binary strings.



1 Introduction

In this paper, we describe new and e�cient algorithms for learning deterministic �nite automata. Our
approach is primarily distinguished by two features:

� The adoption of an average-case setting to model the \typical" labeling of a �nite automaton, while
retaining a worst-case model for the underlying graph of the automaton.

� A learning model in which the learner is not provided with the means to experiment with the machine,
but rather must learn solely by observing the automaton's output behavior on a random input
sequence.

Viewed another way, we may think of the learner as a robot taking a random walk in a �nite-state
environment whose topology may be adversarially chosen, but where the sensory information available to
the robot from state to state has limited dependence.

An important feature of our algorithms is their robustness to a weakening of the randomness assump-
tions. For instance, it is su�cient that the states be labeled in a manner that is both partially adversarial
and partially random; this is discussed further momentarily.

One of our main motivations in studying a model mixing worst-case and average-case analyses was
the hope for e�cient passive learning algorithms that remained in the gap between the pioneering work
of Trakhtenbrot and Barzdin' [25], and the intractability results discussed in the history section below for
passive learning in models where both the state graph and the labeling are worst-case. In the former work,
there is an implicit solution to the problem of e�cient passive learning when both the graph and labeling
are chosen randomly, and there are also many exponential-time algorithms in mixed models similar to
those we consider. The choice of a random state graph, however, tends to greatly simplify the problem of
learning, due in part to the probable proximity of all states to one another. The problem of e�cient learning
when the graph is chosen adversarially but the labeling randomly was essentially left open by Trakhtenbrot
and Barzdin'. In providing e�cient algorithms for passively learning in this case, we demonstrate that the
topology of the graph cannot be the only source of the apparent worst-case di�culty of learning automata
passively (at least for the random walk model we consider).

We give algorithms that learn with respect to a worst-case choice of the underlying directed state graph
(transition function) of the target automaton along with a random choice of the f+;�g-labeling (output
function) of the states. Throughout most of the paper, we assume that the label at each state is determined
by the outcome of an unbiased coin ip; however, our algorithms are robust in the sense that they continue
to work even when there is only limited independence among the state labels. Limited independence is
formalized using the semi-random model of Santha and Vazirani [24], in which each label is determined by
the outcome of a coin ip of variable bias chosen by an omniscient adversary to be between � and 1��.
In addition to investigations of their properties as a computational resource [6, 24, 27, 28], semi-random
sources have also been used as a model for studying the complexity of graph coloring that falls between
worst-case and average-case (random) models [5], and as a model for biased random walks on graphs [3].

In our setting, the learner observes the behavior of the unknown machine on a random walk. (As for
the random labeling function, the walk may actually be only semi-random.) At each step, the learner must
predict the output of the machine (the current state label) when it is fed the next randomly chosen input
symbol. The goal of the learner is to minimize the expected number of prediction mistakes, where the
expectation is taken over the choice of the random walk.

Our �rst algorithm, for any state graph, and with high probability over the random labeling of the state
graph, will make only an expected polynomial number of mistakes. In fact, we show that this algorithm
has the stronger property of reliability [22]: if allowed to output either a f+;�g-prediction or the special
symbol \?" (called a default mistake) the algorithmwill make no prediction mistakes, and only an expected
polynomial number of default mistakes. In other words, every f+;�g-prediction made by the algorithm
will be correct.
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This �rst algorithm assumes that the target machine is returned to a �xed start state following each
default mistake. The random walk observed by the learner is then continued from this start state. Thus,
the learner is essentially provided with a reset mechanism (but is charged one default mistake each time
it is used), so the data seen by the learner can be thought of as a sample of �nite length input/output
behaviors of the target machine. This view allows us to prove performance bounds in an average-case
version of the popular PAC model of learning.

In our second algorithm, we are able to remove the need for the reset. The second algorithm thus
learns by observing the output of a single, unbroken random walk. For this, we sacri�ce reliability, but
are nevertheless able to prove polynomial bounds on the absolute number of prediction mistakes and the
expected number of default mistakes. The removal of the reset mechanism is particularly important in the
motivation o�ered above of a robot exploring an environment; in such a setting, each step of the robot's
random walk is irreversible and the robot must learn to \orient" itself in its environment solely on the
basis of its observations.

Finally we give a modi�cation of our algorithm which applies to the setting of learning probability
distributions over binary strings. The algorithm of Ron, Singer and Tishby [23] which learns acyclic
probabilistic �nite automata builds on the algorithm given here. Their algorithm has been successfully
applied to the problem of handwriting recognition and to construct multiple-pronunciation models for
spoken words.

Following a history of the problem of learning �nite automata and the de�nitions of our models, the
paper is organized into three technical sections: one describing each of the two algorithms and a third
describing extensions. Each of the two algorithms sections consists of two parts. In the �rst part, we
de�ne \nice" combinatorial properties of �nite automata that hold with high probability over a random
(or semi-random) labeling of any state graph. The second part then describes how the algorithm exploits
these properties in order to e�ciently learn the target automaton.

For our �rst algorithm, which assumes the reset mechanism, the important combinatorial object is the
signature of a state of the machine. Informally, the signature of a state q is a complete description of the
output behavior of all states within a small distance of q. Our algorithm exploits a theorem stating that
with high probability the signature of every state is unique.

For our second algorithm, which eliminates the reset mechanism, the important combinatorial object
is the local homing sequence, which is related to but weaker than the homing sequences used by Rivest
and Schapire [21]. Informally, a (local) homing sequence is an input sequence which, when executed, may
allow the learner to determine \where it is" in the machine based on the observed output sequence. The
algorithm hinges on our theorem stating that with high probability a short local homing sequence exists
for every state, and proceeds to identify this sequence by simulating many copies of our �rst algorithm.

In the �nal sections, we explore both the relaxation of randomness to semi-randomness already men-
tioned, and a modi�cation of our algorithms for learning probability distributions over binary strings.

2 History of the Problem

The problem of learning �nite automata has an extensive history. To understand this history, we broadly
divide results into those addressing the passive learning of �nite automata, in which the learner has no
control over the data it receives, and those addressing the active learning of �nite automata, in which we
introduce mechanisms for the learner to experiment with the target machine.

The intractability results for various passive learning models begin with the work of Gold [11] and
Angluin [1], who proved that the problem of �nding the smallest automaton consistent with a set of accepted
and rejected strings is NP-complete. This result left open the possibility of e�ciently approximating the
smallest machine, which was later dismissed in a very strong sense by the NP -hardness results of Pitt
and Warmuth [17, 19]. Such results imply the intractability of learning �nite automata (when using �nite
automata as the hypothesis representation) in a variety of passive learning models, including the well-
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studied \probably approximately correct" (or PAC ) model introduced by Valiant [26] and the mistake-
bound models of Littlestone [16] and Haussler, Littlestone and Warmuth [12].

These results demonstrated the intractability of passively learning �nite automaton when we insist that
the hypothesis constructed by the learner also be a �nite automaton, but did not address the complexity of
passively learning �nite automata by more powerful representations. Although such changes of hypothesis
representation can in some instances provably reduce the complexity of certain learning problems from
NP-hard to polynomial time [18], Kearns and Valiant [14] demonstrated that this is not the case for �nite
automata by proving that passive learning in the PAC model by any reasonable representation is as hard
as breaking various cryptographic protocols that are based on factoring. This again implies intractability
for the same problem in the mistake-bound models.

The situation becomes considerably brighter when we turn to the problem of actively learning �nite
automata. Angluin [2], elaborating on an algorithm of Gold [10], proved that if a learning algorithm is
provided with both passive counterexamples to its current hypothesis automaton (that is, arbitrary strings
on which the hypothesis automaton disagrees with the target) and the ability to actively query the target
machine on any string of the algorithm's choosing (known as membership queries), then �nite automata
are learnable in polynomial time. This result provides an e�cient algorithm for learning �nite automata in
the PAC model augmented with membership queries. Together with the results of Kearns and Valiant [14],
this separates (under cryptographic assumptions) the PAC model and the PAC model with membership
queries, so experimentation provably helps for learning �nite automata in the PAC setting.

The Angluin and Gold algorithm essentially assumes the existence of an experimentation mechanism
that can be reset : on each membership query x, the target automaton is executed on x and the �nal state
label is given to the learner; the target machine is then reset in preparation for the next query. Rivest and
Schapire [20, 21] considered the natural extension in which we regard the target automaton as representing
some aspect of the learner's physical environment, and in which experimentation is allowed, but without
a reset. The problem becomes more di�cult since the learner is not directly provided with the means to
\orient" itself in the target machine. Nevertheless, Rivest and Schapire extend Angluin's algorithm and
provide a polynomial time algorithm for inferring any �nite automaton from a single continuous walk on
the target automaton. Variants of this algorithm have recently been examined by Dean et al. [7].

All of the results discussed above, whether in a passive or an active model, have considered the worst-
case complexity of learning: to be considered e�cient, algorithmsmust have small running time on any �nite
automaton. However, average-case models have been examined in the extensive work of Trakhtenbrot and
Barzdin' [4, 25]. In addition to providing a large number of extremely useful theorems on the combinatorics
of �nite automata, Trakhtenbrot and Barzdin' also give many polynomial time and exponential time
inference algorithms in both worst-case models, and models in which some property of the target machine
(such as the labeling or the graph structure) is chosen randomly. For an interesting empirical study of the
performance of one of these algorithms, see Lang's paper [15] on experiments he conducted using automata
that were chosen partially or completely at random.

The primary lesson to be gleaned from the previous work on learning �nite automata is that passive
learning of automata tends to be computationally di�cult. Thus far, only the introduction of active
experimentation has allowed us to ease this intractability. The main contribution of this paper is in
presenting the �rst e�cient algorithms for learning non-trivial classes of automata in an entirely passive
learning model.

3 Preliminaries

A deterministic �nite automaton is a tuple M = (Q; �; ; q0). Here Q is a �nite non-empty set of n states;
� : Q � f0; 1g ! Q is the transition function;  : Q ! f+;�g is the labeling function; and q0 2 Q is the
designated start state. Notice that here we have assumed an input alphabet of f0; 1g and an output alphabet
of f+;�g for simplicity; the results presented here all generalize to larger input and output alphabets.
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We adopt the following notational conventions: For q a state ofM and x 2 f0; 1g� we denote by qx 2 Q
the state of M reached by executing the walk x from state q (as de�ned by �). We denote by qhxi the
sequence of length jxj + 1 of f+;�g labels observed along this walk. Finally, we write x(i) to denote the
length i pre�x of x.

The state set Q and the transition function � taken together (but without the state labeling ) de�ne
the underlying automaton graph GM(Q; �) = GM of machine M . Thus, throughout the paper GM denotes
a directed graph on the states in Q, with each directed edge labeled by either a 0 or a 1, and with each
state having exactly one outgoing 0-edge and one outgoing 1-edge.

In all of the learning models considered in this paper, we give algorithms for learning with respect to
a worst-case underlying automaton graph GM , but with respect to a random labeling  of GM . Thus we
may think of the target machine M as being de�ned by the combination of an adversary who chooses the
underlying automaton graph GM , followed by a randomly chosen labeling  of GM . Here by random we
shall always mean that each state q 2 Q is randomly and independently assigned a label + or � with equal
probability. Since all of our algorithms will depend in some way on special properties that for any �xed
GM hold with high probability (where this probability is taken over the random choice of the labeling ),
we make the following general de�nition.

De�nition 1 Let Pn;� be any predicate on n-state �nite automata which depends on n and a con�dence
parameter � (where 0 � � � 1). We say that uniformly almost all automata have property Pn;� if the
following holds: for all � > 0, for all n > 0 and for any n-state underlying automaton graph GM , if we
randomly choose f+;�g labels for the states of GM , then with probability at least 1� �, Pn;� holds for the
resulting �nite automaton M .

The expression \uniformly almost all automata" is borrowed from Trakhtenbrot and Barzdin' [25], and
was used by them to refer to a property holding with high probability for any �xed underlying graph. (The
term \uniformly" thus indicates that the graph is chosen in a worst-case manner.)

Throughout the paper � quanti�es con�dence only over the random choice of labeling for the target
automatonM . We will require our learning algorithms, when given � as input, to \succeed" (where success
will be de�ned shortly) for uniformly almost all automata. Thus, for any �xed underlying automaton graph
GM , the algorithmsmust succeed with probability 1��, where this probability is over the random labeling.

In this paper we shall primarily consider two basic models for learning �nite automata: one model in
which the learner is given a mechanism for resetting the target machine to its initial state, and one model
in which such a mechanism is absent. In both models the learner will be expected to make continuous
predictions on an in�nitely long random walk over the target machine, while being provided feedback after
each prediction.

More precisely, in both models the learner is engaged in the following unending protocol: at the tth

trial , the learner is asked to predict the f+;�g label of M at the current state rt 2 Q of the random walk
(the current state is the start state q0 at trial 0 and is updated following each trial in a manner described
momentarily). The prediction pt of the learner is an element of the set f+;�; ?g, where we interpret a
prediction \?" as an admission of confusion on the learner's part. After making its prediction, the learner
is told the correct label `t 2 f+;�g of the current state rt and therefore knows whether its prediction was
correct. Note that the learner sees only the state labels, not the state names.

The two models we consider di�er only in the manner in which the current state is updated following
each trial. Before describing these update rules, we observe that there are two types of mistakes that the
learner may make. The �rst type, called a prediction mistake, occurs when the learner outputs a prediction
pt 2 f+;�g on trial t and this prediction di�ers from the correct label `t. The second type of mistake,
called a default mistake, occurs any time the algorithm chooses to output the symbol \?". Note that default
mistakes are preferable, since in this case the algorithm explicitly admits its inability to predict the output.

We are now ready to discuss the two current-state update rules we will investigate. In both models,
under normal circumstances the random walk proceeds forward from the current state. Thus, the current
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state rt is updated to rt+1 by selecting an input bit bt+1 2 f0; 1g at random, and setting rt+1 = rtbt+1.
The learner is provided with the bit bt+1 and the protocol proceeds to trial t+ 1.

However, in the Reset-on-Default Model , any default mistake by the learner (that is, any trial t such
that the learner's prediction pt is \?") causes the target machine to be reset to its initial state: on a \?"
prediction we reinitialize the current state rt+1 to be q0 and arbitrarily set bt+1 = � to indicate that the
random walk has been reinitialized to proceed from q0. Thus, by committing a default mistake the learner
may \reorient" itself in the target machine.

In contrast, in the more di�cult No-Reset Model , the random walk proceeds forward from the current
state (that is, rt+1 = rtbt+1 for a random bit bt+1) regardless of the prediction made by the learner.

Finally, we turn to the question of an appropriate de�nition of e�ciency in our models. Since the trial
sequence is in�nite, we measure e�ciency by the amount of computation per trial. Thus we say that a
learning algorithm in either the Reset-on-Default Model or the No-Reset Model is e�cient if the amount
of computation on each trial is bounded by a �xed polynomial in the number of states n of the target
machine and the quantity 1=�.

In this paper we describe two main algorithms, both of which take the number of states n and the
con�dence parameter � as input and are e�cient in the sense just de�ned. The �rst algorithm works in
the Reset-on-Default Model, and for uniformly almost all target automataM (that is, for any underlying
automaton graph GM and with probability at least 1� � over the random labeling), the algorithm makes
no prediction mistakes, and the expected number of default mistakes is polynomial in n and 1=� (where
the expectation is taken only over the in�nite input bit sequence b1b2 � � �). The second algorithm works
in the No-Reset Model and is based on the �rst algorithm; for uniformly almost all target automata, the
expected total number of mistakes that it makes is polynomial in n and 1=�.

4 Learning in the Reset-on-Default Model

The main result of this section is an algorithm for learning uniformly almost all automata in the Reset-
on-Default model. We state this result formally:

Theorem 1 There exists an algorithm that takes n and the con�dence parameter � as input, is e�cient,
and in the Reset-on-Default Model, for uniformly almost all n-state automata the algorithm makes no
prediction mistakes and an expected number of default mistakes that is at most O((n5=�2) log(n=�)) (where
this expectation is taken over choice of the random walk).

As mentioned before, we �rst describe the combinatorial properties on which our algorithm is based,
followed by the algorithm itself.

4.1 Combinatorics

For the following de�nitions, let M be a �xed automaton with underlying automaton graph GM , and let
q, q1 and q2 be states of M .

De�nition 2 The d-tree of q is a complete binary tree of depth d with a state of M at each node. The
root contains state q, and if p� is the f0; 1g-path from the root of the tree to a node �, then � contains the
state qp� of M .

Note that the same state can occur several times in a signature.

De�nition 3 The d-signature of q is a complete binary tree of depth d with a f+;�g label at each node. It
is obtained by taking the d-tree of q and replacing the state of M contained at each node by the corresponding
label of that state in M .
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We omit the depth of the d-signature when clear from context.
Note that since a learning algorithm never sees the state names encountered on a random walk, the

d-tree of a state contains information that is inaccessible to the learner; however, since the learner sees the
state labels, the d-signature is accessible in principle.

De�nition 4 A string x 2 f0; 1g� is a distinguishing string for q1 and q2 if q1hxi 6= q2hxi.

The statement of the key combinatorial theorem needed for our algorithm follows. This theorem is also
presented by Trakhtenbrot and Barzdin' [25]. However, our proof, which we have included in the appendix
for completeness, yields a slightly stronger property of automata.

Theorem 2 For uniformly almost all automata, every pair of inequivalent states have a distinguishing
string of length at most 2 lg(n2=�). Thus for d � 2 lg(n2=�), uniformly almost all automata have the
property that the d-signature of every state is unique.

4.2 Algorithm

For every state q in M let �(q) be the d-signature of q for d = 2 lg(n2=�). We assume henceforth that
all signatures are unique; that is, �(q) = �(q0) if and only if q and q0 are indistinguishable in M . From
Theorem 2, this will be the case for uniformly almost all automata.

The main idea of our algorithm is to identify every state with its signature, which we have assumed
is unique. If we reach the same state often enough, then the signature of that state can be discovered
allowing us to determine its identity. As will be seen, this ability to determine the identity of states of the
machine allows us also to reconstruct the automaton's transition function.

An incomplete d-signature of a state q is a complete binary tree of depth d in which some nodes are
unlabeled, but the labeled nodes have the same label as in the d-signature of q.

The essence of our algorithm is the gradual construction ofM 0 = (Q0; � 0; 0; q00), the hypothesis automa-
ton. Each state q0 2 Q0 can be viewed formally as a distinct symbol (such as an integer), and each has
associated with it a complete signature (which, in fact, will turn out to be the complete signature �(q) of
some state q in the target machineM). In addition, the algorithmmaintains a set Q0

inc consisting of states
(again, arbitrary distinct symbols) whose signatures are incomplete, but which are in the process of being
completed. Once the signature of a state in Q0

inc is completed, the state may be promoted to membership
in Q0.

During construction of M 0, the range of the transition function � 0 is extended to include states in
Q0[Q0

inc. Thus, transitions may occur to states in either Q0 or Q0
inc, but no transitions occur out of states

in Q0
inc. As described below, predictions are made using the partially constructed machine M 0 and the

incomplete signatures in Q0
inc.

Initially, Q0 is empty and Q0
inc = fq

0
0g where q

0
0 is the distinguished start state of M 0. For any state

q0 2 Q0 of the target machine, �0(q0) denotes the (possibly partial) signature the learner associates with q0.
We will argue inductively that at all times M 0 is homomorphic to a partial subautomaton of M . More

precisely, we will exhibit the existence at all times of a mapping ' : Q0 [ Q0
inc ! Q with the properties

that (1) '(� 0(q0; b)) = �('(q0); b), (2)  0(q0) = ('(q0)), and (3) '(q00) = q0 for all q
0 2 Q0 and b 2 f0; 1g.

(Technically, we have assumed implicitly (and without loss of generality) that M is reduced in the sense
that all its states are distinguishable.)

Here is a more detailed description of how our learning algorithm makes its predictions and updates
its data structures. The algorithm is summarized in Figure 1. Initially, and each time that a reset is
executed (following a default mistake), we reset M 0 to its start state q00. The machineM 0 is then simulated
on the observed random input sequence, and predictions are made in a straightforward manner using the
constructed output function 0. From our inductive assumptions on ', it follows easily that no mistakes
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1. Q0  ;; Q0
inc  fq

0
0g.

2. q0  q00.

3. While q0 62 Q0
inc do the following:

On observing input symbol b, set q0  � 0(q0; b), and predict 0(q0).

4. Traverse the path through �0(q0) as dictated by the input sequence. At each step, predict the label
of the current node. Continue until an unlabeled node is reached, or until the maximum depth of
the tree is exceeded.

5. Predict \?". If at an unlabeled node of �0(q0), then label it with the observed output symbol.

6. If �0(q0) is complete then \promote" q0 as follows:

(a) Q0
inc  Q0

inc � fq
0g

(b) if �0(q0) = �0(r0) for some r0 2 Q0 then

{ �nd s0; b such that � 0(s0; b) = q0

{ � 0(s0; b) r0.

(c) else

{ Q0  Q0 [ fq0g

{ create new states r00 and r01
{ Q0

inc  Q0
inc [ fr

0
0; r

0
1g

{ partially �ll in signatures of r00; r
0
1 using �

0(q0)

{ � 0(q0; b) r0b for b 2 f0; 1g.

7. Go to step 2.

Figure 1: Pseudocode for algorithm Reset.

occur during this simulation ofM 0. This simulation continues until a state q0 is reached with an incomplete
signature, that is, until we reach a state q0 2 Q0

inc.
At this point, we follow a path through the incomplete signature of q0 beginning at the root node and

continuing as dictated by the observed random input sequence. At each step, we predict the label of the
current node. We continue in this fashion until we reach an unlabeled node, or until we \fall o�" of the
signature tree (that is, until we attempt to exit a leaf node). In either case, we output \?" and so incur a
default mistake. If we currently occupy an unlabeled node of the incomplete signature, then we label this
node with the observed output symbol.

Our inductive assumptions imply that the signature �0(q0) built up by this process is in fact �('(q0)),
the true signature of '(q0) in M 0. This means that no prediction mistakes occur while following a path in
the incomplete signature �0(q0).

Once a signature for some state q0 in Q0
inc is completed, we \promote" the state to Q0. We �rst remove

q0 from Q0
inc, and we then wish to assign q0 a new identity in Q0 based on its signature. More precisely,

suppose �rst that there exists a state r0 2 Q0 whose signature matches that of q0 (so that �0(q0) = �0(r0)).
Then, from the foregoing comments, it must be that �('(q0)) = �('(r0)), which implies (by the assumed
uniqueness of signatures) that '(q0) = '(r0). We therefore wish to identify q0 and r0 as equivalent states in
M 0 by updating our data structures appropriately. Speci�cally, from our construction below, there must
be some (unique) state s0 and input symbol b for which � 0(s0; b) = q0; we simply replace this assignment
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with � 0(s0; b) = r0 and discard state q0 entirely. Note that this preserves our inductive assumptions on '.
Otherwise, it must be the case that the signature of every state in Q0 is di�erent from that of q0; similar

to the argument above, this implies that '(q0) does not occur in '(Q0) (the image of Q0 under '). We
therefore wish to view q0 as a new state of M 0. We do so by adding q0 to Q0, and by setting  0(q0) to be
the label of the root node of �0(q0). Finally, we create two new states r00 and r01 which we add to Q0

inc.
These new states are the immediate successors of q0, so we set � 0(q0; b) = r0b for b 2 f0; 1g. Note that the
incomplete signatures of r00 and r01 can be partially �lled in using �0(q0); speci�cally, all of their internal
nodes can be copied over using the fact that the node reached in �0(r0b) along some path x must have the
same label as the node reached in �0(q0) along path bx (since r0b = � 0(q0; b)).

As before, it can be shown that these changes to our data structures preserve our inductive assumptions
on '.

We call the algorithm described above Algorithm Reset. The inductive arguments made above on '
imply the reliability of Reset:

Lemma 3 If every state in M has a unique d-signature, then Algorithm Reset makes no prediction
mistakes.

Lemma 4 The expected number of default mistakes made by Algorithm Reset is O((n5=�2) ln(n=�)).

Proof: We treat the completion of the start state's signature as a special case since this is the only case
in which the entire signature must be completed (recall that in every other case, only the leaf nodes are
initially empty). In order to simplify the analysis for the start state, let us require that the learner label
the nodes in �0(q00) level by level according to their distance from the root. The learner thus waits until it
is presented with all strings of length i before it starts labeling nodes on level i+ 1. Clearly the expected
number of default mistakes made by this method is an upper bound on the number of default mistakes
made in completing �0(q00). We thus de�ne, for every 0 � i � d, a random variable Xi that represents the
number of default mistakes encountered during the labeling of nodes at level i.

For each q0 (other than q00) added to Q0
inc, let Yq0 be a random variable that represents the number of

times that state q0 is reached in our simulation of M 0 before the signature of q0 is completed, that is, until
every leaf node of �0(q0) is visited.

The expected number of default mistakes made is then the sum of the expectations of the random
variables de�ned above. Computing the expectation of each of these variables in turn reduces to the so-
called Coupon Collector's Problem [9]: there are N types of coupons, and at each step we are given a
uniformly chosen coupon. What is the expected number of steps before we obtain at least one coupon of
each type? The answer to this is

PN
i=1(N=i) and a good upper bound is N(lnN + 1).

Thus, the expected number of default mistakes is

dX
i=1

E[Xi] +
X
q0

E[Yq0 ] �
dX

i=1

2i(ln 2i + 1)

� +2n2d(ln 2d + 1)

= O((n5=�2) � ln(n=�))

where the sum indexed by q0 represents a sum over all q0 (excluding q00) ever added to Q0
inc. There are at

most 2n such q0 since, by construction, each is of the form � 0(q01; b) for some q01 2 Q0 and b 2 f0; 1g, and
since jQ0j � n. (Lemma 4)

Finally, the amount of computation done by Algorithm Reset in every trial is clearly bounded by a
polynomial in n and 1=�.

In Appendix B we show that Algorithm Reset, although derived in the Reset-on-Default model, can
be modi�ed to learn �nite automata in an average-case, PAC-like model.
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5 Learning Without a Reset

In this section, we consider the problem of learning in the No-Reset Model described in Section 3.
The main result of this section is an algorithm for e�ectively learning uniformly almost all automata

in this model:

Theorem 5 There exists an algorithm that takes n and the con�dence parameter � as input, is e�cient,
and in the No-Reset Model, for uniformly almost all n-state automata the algorithm makes at most n2`

prediction mistakes and an expected number of default mistakes that is at most

O(n2`(`2` + 1)(n5(2=�)2 ln(2n=�)))

where

` = 2 lg(2n2=�) +
4 lg2(2n2=�)

lg(n)� lg(lg(2n2=�))� 2

and where the expectation is taken over the choice of a random walk. In particular, if � = n�c for some
constant c, then the number of prediction mistakes and the expected number of default mistakes is polynomial
in n:

Throughout this section, we assume that the target machine is strongly connected (that is, every state
is reachable from every other state). We make this assumption without loss of generality since the machine
will eventually fall into a strongly connected component from which escape is impossible.

As in the last section, we begin with the relevant combinatorics, followed by description and analysis
of our algorithm.

5.1 Combinatorics

Learning is considerably more di�cult in the absence of a reset. Intuitively, given a reset, the learner can
more easily relate the information it receives to the structure of the unknown machine, since it knows that
each random walk following a default mistake begins again at a �xed start state. In contrast, without a
reset, the learner can easily \get lost" with no obvious means of reorienting itself.

In a related setting, Rivest and Schapire [21] introduced the idea of using a homing sequence for learning
�nite automata in the absence of a reset. Informally, a homing sequence is a sequence of input symbols that
is guaranteed to \orient" the learner; that is, by executing the homing sequence, the learner can determine
where it is in the automaton, and so can use it in lieu of a reset.

In our setting, the learner has no control over the inputs that are executed. Thus, for a homing sequence
to be useful, it must have a signi�cant probability of being executed on a random walk, that is, it must
have length roughly O(logn). In general, every machine has a homing sequence of length n2, and one
might hope to prove that uniformly almost all automata have \short" homing sequences. We have been
unable to prove this latter property, and it may well be false.

Instead, we introduce the related notion of a local homing sequence. This is a sequence of inputs that
is guaranteed to orient the learner, but only if the observed output sequence matches a particular pattern.
In contrast, an ordinary homing sequence orients the learner after any possible output sequence.

More formally, a homing sequence is an input sequence h with the property that q1hhi = q2hhi implies
q1h = q2h for all states q1 and q2. Thus, by observing the output sequence, one can determine the �nal
state reached at the end of the sequence. A local homing sequence for state q is an input sequence h for
which qhhi = q0hhi implies qh = q0h for all states q0. Thus, if the observed output sequence is qhhi, then
the �nal state reached at the end of the sequence must be qh; however, if the output sequence is something
di�erent, then nothing is guaranteed about the �nal state.

We will see that uniformly almost all automata have \short" local homing sequences for every state.
To prove this, we will �nd the following lemma to be useful.
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We say that an input sequence s is an r-exploration sequence for state q if at least r distinct states are
visited when s is executed from q. Note that this property has nothing to do with the machine's labeling,
but only with its architecture.

Lemma 6 Every strongly connected graph GM has an r-exploration sequence of length at most
r + r2=(lg(n=r)� 1) for each of its n states.

Proof: Let q be a vertex of GM for which we wish to construct an r-exploration sequence.
Suppose �rst that there exists a state q0 at distance at least r from q (where the distance is the length

of the shortest path from q to q0). Let s be the shortest path from q to q0. Then all the states on the s-walk
from q are distinct, and so the length-r pre�x of s is an r-exploration sequence. Thus, for the remainder
of the proof, we can assume without loss of generality that every state q0 is within distance r of q.

Suppose now that there exists a pair of states q0 and q00 which are such that the distance from q0 to
q00 has distance at least r. Then, similar to what was done before, we let s be the shortest path from
q to q0 (which we assumed has length at most r) followed by the shortest path from q0 to q00. Then the
length-2r pre�x of s is an r-exploration sequence for q. Therefore, we can henceforth assume without loss
of generality that all pairs of states q0 and q00 are within distance r of one another.

We construct a path s sequentially. Initially, s is the empty string. Let T denote the set of states
explored when s is executed from q; thus, initially, T = fqg.

The construction repeatedly executes the following steps until jT j � r: Let T = ft1; t2; : : : ; tkg. Then
jT j = k < r (since we're not done). Our construction grows a tree rooted at each ti representing the states
reachable from ti. Each tree is grown to maximal size maintaining the condition that no state appears
twice in the forest of k trees. Each node t in each tree has at most one child for each input symbol b; if
present, this b-child is that state which is reached from t by executing b. We add such a b-child provided
it has not appeared elsewhere in the forest. Nodes are added to the forest in this manner until no more
nodes can be added.

Since we assume GM is strongly connected, it is not hard to see that every state will eventually be
reached in this manner, that is, that the total number of nodes in the forest is n. Since there are k < r

trees, this means that some tree has at least n=r nodes, and so must include a node at depth at least
lg(n=r)� 1. In other words there is a path y from ti (the root of this tree) to some other state t of length
at least lg(n=r)� 1. So we append to the end of s the shortest path x from qs (the state where we left o�)
to ti, followed by the path y from ti to t; that is, we replace s with sxy.

Note that jxj � r since the machine has diameter at most r, so the length of s increases by at most
r + jyj. Moreover, by extending s, we have added at least jyj � lg(n=r)� 1 states to T . This implies that
the total number of times that we repeat this procedure is at most r=(lg(n=r) � 1). Also, we have thus
argued that the di�erence between the length of s and jT j increases on each iteration by at most r. Thus,
the �nal length of s is at most r + r2=(lg(n=r)� 1). (Lemma 6)

We are now ready to prove that uniformly almost all automata have short local homing sequences.

Lemma 7 For uniformly almost all strongly connected automata, every state has a local homing sequence
of length r + r2=(lg(n=r)� 1) where r = 2 lg(n2=�).

Proof: Let GM be a strongly connected graph. Let q be a vertex of GM . By Lemma 6, we know that
there exists an r-exploration sequence s for q of length r + r2=(lg(n=r)� 1).

Let q0 be another vertex of GM . If qs 6= q0s then with probability at least 1 � 2�r=2, we have that
qhsi 6= q0hsi. This follows from a similar argument to that used in the proof of Theorem 2. Thus, the
probability that s is not a local homing sequence for q is at most n2�r=2.

Therefore, the probability that any state q does not have a local homing sequence of the stated length
is at most n22�r=2 = �. (Lemma 7)

Note, in particular, that if � = n�c where c is a positive constant then the length bound given in
Lemma 7 is O(logn).
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5.2 Algorithm

In this section, we show that local homing sequences can be used to derive an algorithm that e�ciently
learns almost all automata in the No-Reset Model.

Informally, suppose we are given a \short" local homing sequence h for some \frequently" visited state
q, and suppose further that we know the output qhhi produced by executing h from q. In this case, we
can use the learning algorithm Reset constructed in the previous section for the Reset-on-Default Model
to construct a learning algorithm for the No-Reset Model. The main idea is to simulate Reset, but to use
our knowledge about h in lieu of a reset. Recall that because h is a local homing sequence for q, whenever
we observe the execution of h with output qhhi, we know that the automaton must have reached state qh.
Thus, we can use qh as the start state for our simulation of Reset, and we can simulate each reset required
by Reset by waiting for the execution of h with output qhhi. Note that from our assumptions, we will not
have to wait too long for this to happen since we assumed that q is \frequently" visited, and since we also
assumed that h is \short" (so that the probability that h is executed once we reach q is reasonably large).

There are two problems with this strategy. The �rst problem is determining what it means for a state
to be \frequently" visited. This problem could be avoided if we had a \short" local homing sequence
hq for every state q, along with its associated output sequence qhhqi. In this case, we could simulate
several separate copies of algorithm Reset, each corresponding to one state of the machine. The copy
corresponding to state q has start state qhq and is \activated" when hq is executed with output qhhqi.
Note that when this event is observed, the learner can conclude that the machine has actually reached qhq,
the start state for the corresponding copy of Reset. Thus, to simulate a reset, we wait for one of the local
homing sequences hq to be executed with output qhhqi. This resets us to one of the copies of Reset, so we
always make some progress on one of the copies. Also, regardless of our current state q, we have a good
chance of executing the current state's local homing sequence hq .

The second obstacle is that we are not given a local homing sequence for any state, nor its associated
output sequence. However, if we assume that there exists a short local homing sequence for every state,
then we can try all possible input/output sequences. As we will see, those that do not correspond to \true"
local homing sequences can be quickly eliminated.

We will assume henceforth that the target automaton has the following properties: (1) every state has
a local homing sequence of length ` = r + r2=(lg(n=r) � 1), where r = 2 lg(2n2=�) and (2) every pair of
inequivalent states have a distinguishing string of length at most d = 2
lg(2n2=�). By Lemma 7 and Theorem 2, these assumptions hold for uniformly almost all automata.

Our algorithm uses the ideas described above. Speci�cally, we create one copy Ri;o of algorithmReset

for each input/output pair hi; oi where i 2 f0; 1g` and o 2 f+;�g`+1.
We call a copy Ri;o good if i is a local homing sequence for some state q, and if qhii = o; all other copies

are bad. We call a copy Ri;o live if it has not yet been identi�ed as a bad copy. Initially all copies are live,
but a copy is killed if we determine that it is bad.

Here is a description of our algorithm, which we call No-Reset.
Repeat forever:

1. Observe a random input sequence i of length ` producing output sequence o. If Ri;o is dead, repeat
this step. Predict \?" throughout the execution of this step.

2. Execute the next step of the reset algorithm for Ri;o. More precisely: simulate the copy Ri;o of the
Reset-on-Default algorithm relying on Ri;o's predictions until Ri;o hits the reset button or until it
makes a prediction mistake.

3. If Ri;o makes a prediction mistake, or if the number of signatures (that is, states) of Ri;o exceeds n,
then kill copy Ri;o.
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Note that if Ri;o is good then it will never be killed because every simulation of this algorithm truly
begins in the same state, and therefore Ri;o will make no prediction mistakes and will not create more
than n states (as proved in Section 4.2).

Lemma 8 Algorithm No-Reset makes at most n2` prediction mistakes.

Proof: If Ri;o makes a prediction mistake at step 2, then it is immediately killed at step 3. Thus each
copy Ri;o makes at most one prediction mistake.

Although there are 22`+1 copies Ri;o, at most n2` will ever be activated. This follows from the ob-
servation that for every input sequence there are at most n output sequences, one for every state in the
automaton. Thus at most n2` input/output pairs hi; oi will ever be observed. (Lemma 8)

Let mR be the expected number of default mistakes made by the reset algorithm of Section 4.2. The
following lemmas prove that algorithm No-Reset expects to incur n2`(`2` + 1)mR default mistakes.

Lemma 9 On each iteration, the expected number of default mistakes incurred at step 1 is at most `2`.

Proof: Let q be the current state. By assumption, q has a local homing sequence hq of length `. Since
Rhq ;qhhqi is good, it must be live. Therefore, the probability that a live copy is reached is at least the

probability of executing hq, which is at least 2�`.
Thus, we expect step 1 to be repeated at most 2` times. Since each repetition causes ` default mistakes,

this proves the lemma. (Lemma 9)
Thus for every default mistake of algorithmReset we incur `2` additional default mistakes in our new

algorithm. The following lemma can now be proved.

Lemma 10 The total number of default mistakes made by the algorithm is at most n2`(`2` + 1)mR.

Proof: Note �rst that we expect that each copy Ri;o makes at most mR default mistakes, even if Ri;o

is bad. This follows essentially from the proof of Lemma 4, combined with the fact that the number of
signatures of each copy is bounded by n (copies that exceed this bound are killed at Step 3).

As noted in the proof of Lemma 8, there are n2` copies of the algorithm that are ever activated. We
expect each of these to make at most mR mistakes, so we expect the outer loop of the algorithm to iterate
at most n2`mR times. Combined with Lemma 9, this gives the stated bound on the expected number of
default mistakes. (Lemma 10)

6 Extensions

6.1 Replacing Randomness with Semi-Randomness

Our results so far have assumed the uniform distribution in two di�erent contexts. The label of each state
of the automaton graph and each bit of the random walk observed by the learner were both assumed
to be the outcome of independent and unbiased coin ips. While entirely removing this randomness in
either place and replacing it with worst-case models would invalidate our results, the performance of our
algorithms degrades gracefully if the state labels and walk bits are not truly random.

More precisely, suppose we think of the random bits for the state labels and the random walk as being
obtained from a bit generator G. Then our algorithms still work even in the case that G does not generate
independent, unbiased bits but is instead a semi-random source as de�ned by Santha and Vazirani [24].
Briey, a semi-random source in our context is an omniscient adversary with complete knowledge of the
current state of our algorithm and complete memory of all bits previously generated. Based on this
information, the adversary is then allowed to choose the bias of the next output bit to be any real number
� in the range [�; 1 � �] for a �xed constant 0 < � � 1=2. The next output bit is then generated by
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ipping a coin of bias �. Thus, a semi-random source guarantees only a rather weak form of independence
among its output bits.

Semi-randomness was introduced by Santha and Vazirani and subsequently investigated by several
researchers [6, 24, 27, 28] for its abstract properties as a computational resource and its relationship to
true randomness. However, we are not the �rst authors to use semi-randomness to investigate models
between the worst case and the average (random) case. Blum [5] studied the complexity of coloring semi-
random graphs, and Azar et al. have considered semi-random sources to model biased random walks on
graphs [3].

Now assume that the adversary can choose the label of each state in GM by ipping a coin whose bias
is chosen by the adversary from the range [�1; 1��1]. A simple alteration of Theorem 1 (details omitted)
gives that the probability that two inequivalent states are not distinguished by their signature is at most
(1��1)

(d+1)=2 (instead of 2�(d+1)=2, which held for the uniform distribution). This implies that in order to
achieve the same con�dence, it su�ces to increase the depth of the signature by a factor of �1= log(1��1).

The relaxation of our assumption on the randomness of the observed input sequence is similar. Assume
that the next step of the walk observed by the learner is also generated by an adversarially biased coin
ip in the range [�2; 1� �2]. In algorithm Reset the expected number of default mistakes required to
complete a partial signature is higher than in the uniform case. As the probability of a sequence of length
d can decrease from (1=2)d to �d

2, the expected number of default mistakes per signature increases from
O(d2d) to at most O(d��d

2 ).
These alterations imply that the expected number of default mistakes made by Reset increases from

O((n5=�2) � ln(n=�))

to
O(n(n2=�)(2 log(�2)=log(1��1)) ln(n=�)):

The deviations from uniformity increase the degree of the polynomial dependence on n and 1=�. Notice that
the sensitivity to nonuniformity in the labeling process is stronger than the sensitivity to nonuniformity in
the random walks.

Similar implications follow for No-Reset. The length of the local homing sequences ` has to be
increased from ` to `0 = ` log(1 � �1)�2 which increases the number of prediction mistakes from n2` to
n2`

0

and the expected number of default mistakes from n2`(`2` + 1)mR to n2`
0

(`0��`0

2 + 1)m0
R.

6.2 Learning Distributions on Strings

An interesting extension of our results is to a model where automata are used to represent distributions
over binary strings such as those discussed by Feder, Merhav and Gutman [8], rather than as acceptors of
languages. In this model no binary labels are associated with the states Q. Instead, there is a real-valued
function ' : Q ! [0; 1]. The underlying state graph (de�ned by the transition function �) together with
' de�nes a probabilistic generator of binary strings in the following manner: we now think of the bits on
the edges of the machine as the output bits. Starting in the initial state, if at any point we have traversed
the path of i edges labeled b1 � � � bi and are currently in state q, the next bit of the path is determined by
ipping a coin of bias '(q). We then move to the indicated state and continue. The machine thus generates
a distribution over �nite binary strings of any �xed length: the probability of a binary sequence � is the
product of the values of ' at the nodes on the path de�ned by �.

A common and natural learning goal in this context is to learn to approximately predict the probability
of a binary string after observing a sample of strings from the distribution. In general, this problem is
shown to be as hard as the problem of learning parity with noise in [13], which is related to a longstanding
open problem in coding theory.

14



However, there is a simple variant of Reset that can perform an online version of this task e�ciently
with high probability if the function ' is chosen according to some natural types of distributions. As usual
the structure of the automaton as de�ned by � is unrestricted (worst-case).

The algorithm of Ron, Singer and Tishby [23] which learns acyclic probabilistic �nite automata builds
on the algorithm given here. Their algorithm has been successfully applied to the problem of handwriting
recognition and to construct multiple-pronunciation models for spoken words.

We de�ne two parameters 0 < �; � < 1=2 and associate with each state q 2 Q some distribution Pq
over the interval [�; 1� �]. We assume that the value of '(q) is chosen independently for each state q
according to Pq. The only requirement we make on the distributions Pq is that if q1 and q2 are two di�erent
states in the automaton, then the probability that j'(q1)� '(q2)j � � is at least 1=2, and that otherwise
'(q1) = '(q2). More generally, we can require that the probability that j'(q1)�'(q2)j < � be at most 1=2,
but for sake of the exposition we consider this simpler case. This requirement is analogous to the random
f+;�g labeling of the states in the case of typical DFA. A simple legal example for � = 1=4; � = 1=8 is
when all Pq are equal to the uniform distribution over fi=8 : 2 � i � 6g. (If j'(q1)� '(q2)j is allowed to
be small, but non-zero, then a legal example for � = 1=4; � = 1=8 is when all Pq are equal to the uniform
distribution over [1=4; 3=4].)

In this context we say that a string x 2 f0; 1g� is a distinguishing sequence for q1 and q2, if there exists
a pre�x x0 of x, such that j'(�(q1; x0))�'(�(q2; x0))j � �. It is easily veri�ed that the proof of Theorem 2
also yields that for uniformly almost all distribution generating automata, every pair of inequivalent states
have a distinguishing string of length at most 2 log(n2=�).

For the task of learning an unknown distribution in this setting, we use a slightly modi�ed version of
Reset:

1. Instead of collecting the labels of each node in the d-tree, it waits until each node is visited at least
m times, and counts the number of times the symbol 1 is observed when the node is visited.

2. After all nodes in a d-tree have been visited m times, the signature tree is calculated. The signature
tree associates with each node in the d-tree the empirical estimate of the value of ' that is associated
with the node: that is, '̂ is the number of times a 1 has been observed in the node divided by the
total number of visits to the node. It then compares the signature tree to all previously collected
signature trees. Two trees are identi�ed if for every corresponding pair of nodes v and v0 we have
j'̂(v)� '̂(v0)j � �=2.

3. At each step, the learner must predict an approximation to the value of '(q), where q is the current
state that the learner is at. It does so using the estimates '̂(�) unless it is at a node which has been
visited less than m times in which case it outputs \?" (and makes a default mistake). If the learner
predicts a value that is more than �=2 away from the correct value, then it is considered to be a
prediction mistake. (note that the learner may not know that it has made a prediction mistake, but
we show that with high probability our algorithm does not make any prediction mistakes).

Assume for a moment that the estimates of the values of ' were completely accurate. In such a case, as
was observed above, for every pair of inequivalent states, there exists at least one node in their respective
signature trees which will have a signi�cantly di�erent ' value, and hence their signature trees will not be
identi�ed. Thus the analysis of this case essentially reduces to the analysis of of learning typical DFA. Since
'(q) 2 [�; 1��] also determines the bias for the choice of the next state, we can apply the result stated
in the previous subsection and get that the expected number of default mistakes made by the algorithm is

O
�
m � n(n2=�)2 log(1=�) log(n=�)

�
;

where m (the number of times each node is visited before the signature is complete) is set below.
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As the estimates of ' are not exact, there might be mistakes in identifying signatures. However, using
Cherno� bounds it is easy to show that the probability that the estimate di�ers from the true value by a
multiplicative constant decreases exponentially with m. In particular, it su�ces that m = 
(log(1=�0)=�)
so that this event will not occur for a particular node with probability at least 1� �0. Since the number of
nodes in all possible signature trees constructed is at most 2n�2d+1, we should choosem = 
(d log(n=�0)=�)
in order to ensure that with probability at least 1� �0, this event never occurs. As long as this event does
not occur, the algorithm does not make any prediction mistakes. Note that the algorithm can be slightly
modi�ed so that the accuracy of the algorithm's predictions improves as the number of trials increases.
All that is needed is to keep updating the '̂(�) values associated with states whose signatures have been
completed.
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A Technical Appendix : Proof of Theorem 2

Theorem 2 For uniformly almost all automata, every pair of inequivalent states have a distinguishing
string of length at most 2 lg(n2=�). Thus for d � 2 lg(n2=�), uniformly almost all automata have the
property that the d-signature of every state is unique.

Theorem 2 will be proved via a series of lemmas. The graph GM is �xed throughout the proof. In the
lemmas we prove that for any labeling of GM , if two states in the automaton are inequivalent, then either
their d-signatures are di�erent or at least one of the d-trees includes many di�erent states. Using this fact
we shall later prove that for most of the labelings of GM the d-signatures of the two states are di�erent.
As the lemmas are proven for any labeling, let us �x any automaton M for the duration of the lemmas.

We begin by giving a lemma saying that the shortest distinguishing string passes through many states
on walks from q1 and q2. Our eventual goal is to �nd a much shorter string with this property.

Lemma 11 Let q1 and q2 be inequivalent states of M , and let x 2 f0; 1g� be a shortest distinguishing
string for q1 and q2. Let T1 and T2 be the sets of states of M passed through on taking an x-walk from q1
and q2 respectively. Then jT1 [ T2j � jxj+ 2.

Proof: Let R be a set of states in M , and let y be a string over f0; 1g. We de�ne the partition of
R induced by y to be the partition of the states in R according to their behavior on the string y. More
precisely, two states r1; r2 2 R belong to the same block of the partition if and only if r1hyi = r2hyi.

Let xi 2 f0; 1g denote the ith bit of x, and let ` = jxj. For 1 � i � `+1, let yi be the string xixi+1 � � �x`.
We claim that for every 1 � i � `, the partition of T1 [ T2 induced by yi is a strict re�nement of the

partition induced by yi+1. Suppose to the contrary that there exists an index 1 � j � ` for which the
partition of T1 [T2 induced by yj is the same as that induced by yj+1. Let r1 = q1x

(j�1) and r2 = q2x
(j�1)

(recall that x(i) denotes the length i pre�x of x). Since we assume that x distinguishes q1 and q2, we
have that r1hyji 6= r2hyji, and so r1 and r2 must already be in di�erent classes according to the partition
induced by yj+1. Therefore q1hx(j�1)yj+1i 6= q2hx(j�1)yj+1i and so x(j�1)yj+1 is a shorter distinguishing
string for q1 and q2, contradicting our assumption on x.

Now since the number of classes in the partition induced by X`+1 (the set f�g) is two, the number of
classes in the partition induced by X1 is at least `+2. On the other hand, the size of the partition of T1[T2
induced by any set of strings is at most jT1 [ T2j, and hence `+ 2 � jT1 [ T2j as desired. (Lemma 11)

Lemma 11 can be thought of as a statement about the density of unique states encountered by taking
the x-walk from q1 or q2: either along the x-walk from q1 or along the x-walk from q2, we must pass
through at least (jxj+ 2)=2 di�erent states. What we would like to develop now is a similar but stronger
statement holding for any pre�x x0 of x, in which we claim that along the x0-walk from either q1 or q2 we
must encounter �(jx0j) di�erent states.

In order to do this we �rst present the following construction. Let x0 be a proper pre�x of the shortest
distinguishing string x for q1 and q2, and let y 2 f0; 1g� be such that x = x0y (note that jyj � 1). Let z be
a new de�ned symbol which is neither 0 nor 1. The symbol z will act as a kind of \alias" for the string y.
We construct a new automaton My = (Qy ; �y; y; qy0) over the input alphabet f0; 1; zg. The start state in
this automaton is the start state of M , so qy0 = q0. We set Qy = Q [ fq+; q�g where q+ and q� are new
special states, and y extends  with y(q�) = � and y(q+) = +. All the transitions in My from states
in Q on input symbols from f0; 1g remain the same as in M , and the z transitions are de�ned as follows:
for q 2 Q, �y(q; z) = q+ if (qy) = +, and �y(q; z) = q� otherwise. Thus, the special input symbol z from
any state in My results in the same �nal label as the input string y from the corresponding state in M .
For q 2 fq+; q�g, �y(q; b) = q� for any b 2 f0; 1; zg.

Lemma 12 x0z is a shortest distinguishing string for q1 and q2 in My.
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Proof: Clearly, x0z distinguishes q1 and q2 in My.
Suppose t is a shortest distinguishing string for q1 and q2 that is shorter than x0z. We claim that z

cannot appear in the middle of t. Suppose to the contrary that t = t0zt00 where z does not appear in t0 and
jt00j � 1. By construction, every z transition takes the machine into either q+ or q�. Therefore, because
t is a shortest distinguishing string, it must be that q1t

0z = q2t
0z. Thus, q1t

0zt00 = q2t
0zt00, and so t0zt00

cannot be a shortest distinguishing string.
If t is of the form t0z, then t0y is a shorter distinguishing string than x = x0y for q1 and q2 in M which

contradicts our assumption on x. If z does not appear at all in t, then since jyj � jzj, t itself is a shorter
distinguishing string than x in M , again contradicting our assumption. (Lemma 12)

We are now prepared to generalize Lemma 11.

Lemma 13 Let x0 be the length `0 pre�x of x for `0 < `. Let T 0
1 � T1 and T 0

2 � T2 be the sets of states in
M passed upon executing x0 starting from q1 and q2 respectively. Then jT 0

1 [ T
0
2j � `0 + 1.

Proof: According to Lemma 12, x0z is a shortest distinguishing string for q1 and q2 in My . The set
of states passed upon executing x0z starting from q1 is T 0

1 [ fq+g, and those passed starting from q2 is
T 0
2 [ fq�g. Applying Lemma 11, we get that jT 0

1 [ T
0
2j+ 2 � jx0zj+ 2 = `0+ 3 and hence jT 0

1 [ T
0
2j � `0+ 1.

(Lemma 13)
We now move to combine these statements that hold for all labelings of GM to a proof of the statement

about most of the labelings of GM .
Proof of Theorem 2: Let GM be an underlying automaton graph, and let q1 and q2 be two distinct
states in GM . Let M be the random variable representing the machine obtained from GM by assigning
random labels to every state. For �xed d, we �rst wish to bound the probability (over the random choice
of M) that q1 and q2 are inequivalent but indistinguishable by any string of length d.

Suppose �rst that for every labeling of GM , states q1 and q2 are either equivalent, or they can be
distinguished by a string of length at most d. Then this will certainly be the case for a random labeling of
GM , and therefore, in this case, the probability that q1 and q2 are inequivalent in M but indistinguishable
by any string of length d is zero.

Otherwise, there exists some labeling of GM which yields a machine M0 with respect to which q1 and
q2 are inequivalent but whose shortest distinguishing string x has length ` greater than d. Let us consider
the x(d)-walks from q1 and q2 in M0, or equivalently, in the unlabeled graph GM . De�ne the d + 1 state
pairs (ri1; r

i
2) of GM by (ri1; r

i
2) = (q1x

(i); q2x
(i)) for 0 � i � d. Since x was a distinguishing string in

M , ri1 6= ri2 for all i. Furthermore, Lemma 13 tells us that at least d + 1 unique states appear in these
state pairs. Consider the following process for randomly and independently labeling the states of GM

appearing in the state pairs: initially all states are unlabeled. At each step, we choose a state pair (ri1; r
i
2)

in which one or both states are still unlabeled and choose a random label for the unlabeled state(s). Note
that with probability 1=2, on the current step x(d) becomes a distinguishing string for q1 and q2 in the
automaton under construction. Now after k steps of this process, at most 2k states can be labeled. As
long as 2k < d + 1 there must still remain a pair with both states unlabeled. This method yields at least
(d+ 1)=2 independent trials, each of which has probability 1=2 of making x(d) a distinguishing string for
q1 and q2. Thus the probability that x(d) fails to be a distinguishing string for q1 and q2 in M is at most
2�(d+1)=2.

For any �xed pair of states q1 and q2 of GM , the probability that q1 and q2 are inequivalent in M but
indistinguishable by strings of length d is at most 2�(d+1)=2. Thus the probability of this occurring for
any pair of states in M is bounded by n2 � 2�(d+1)=2. If d � 2 lg(n2=�) this probability is smaller than �.
(Theorem 2)
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B Learning Typical Automata in the PAC Model

In this appendix we show how algorithmReset can be modi�ed to learn �nite automata in an average-case,
PAC-like model. Speci�cally, such a model assumes that each example is a random input sequence along
with the output sequence that results from executing the input sequence on the target machine1. Each
input sequence is generated by the following process: �rst, the length ` of the sequence is chosen according
to an arbitrary distribution; then an input sequence is chosen uniformly at random from f0; 1g`. The goal
is to learn to predict well the output sequences given a random input sequence.

De�nition 5 Let M = (Q; �; ; q0) be the target automaton, let D : N ! [0; 1] be an arbitrary distribution
over the lengths of the input sequences, and let DU : f0; 1; g� ! [0; 1] be the distribution on sequences
de�ned by choosing a length ` according to D, and then choosing a sequence of length ` uniformly. We say
that M 0 = (Q0; � 0; 0; q00) is an �-good hypothesis with respect to M and DU if

PrDU
[q0hxi 6= q00hxi] � � :

Theorem 14 There exists an algorithm that takes n, the con�dence parameter �, an approximation pa-
rameter �, and an additional con�dence parameter �PAC as input, such that for uniformly almost all n-state
automata, and for every distribution D on the length of the examples, with probability at least 1 � �PAC,
after seeing a sample of size polynomial in n, 1=�, 1=�, and 1=�PAC, and after time polynomial in the same
parameters and the length of the longest sample sequence, the algorithm outputs a hypothesis M 0 which is
an �-good hypothesis with respect to M and DU .

Note that in the theorem above we have two sources of failure probabilities. The �rst stems from the
random choice of the target automatonM , where we allow failure probability �, and the second emanates
from the random choice of the sample, where we allow failure probability �PAC.

Proof: The PAC learning algorithmuses Reset as a subroutine in the following straightforwardmanner.
For every given sample sequence it simulates Reset on the random walk corresponding to this sequence
until either Reset performs a default mistake or the walk ends. It continues in this manner, allowingReset
to build its hypothesis M 0, until either Reset has a complete hypothesis automaton (i.e., Qinc is empty
and � 0 is completely de�ned), or, for (1=�) ln(2=�PAC) consecutive sample sequences, Reset has not made
any default mistake (and has not changed its hypothesis as well). This process can be viewed as testing
the hypotheses constructed by Reset until one succeeds in predicting correctly the output sequences of
a large enough number of randomly chosen sample sequences. In the former case we have a hypothesis
automaton M 0 which is equivalent to M . In the latter case, we can extend � 0 wherever it is unde�ned in
an arbitrary manner and output the resulting M 0. Since M 0 was consistent with M on a random sample
of size (1=�) ln(2=�PAC), with probability at least 1� �PAC=2, it is an �-good hypothesis with respect to M .
It remains to show that with probability at least 1 � �PAC=2, the sample size needed to ensure that this
event occurs, is polynomial in the relevant parameters.

From Theorem 1 we know that for uniformly almost all n-state automata, the expected number of
default mistakes made by Reset in the Reset-on-Default model is O((n5=�2) log(n=�)). In the PAC-like
model considered here the algorithm receives a series of sequences, and hence, di�erently from the Reset-on-
Default model, the target DFA is e�ectively reset at the end of each sample sequence even if Reset did not
make a default mistake. However, it is easily veri�ed that the analysis in Lemma 4 can be directly adapted
to yield the same upper bound on the expected number of default mistakes made in the PAC-like model.
By Markov's inequality we have that with probability at least 1 � �PAC=2, the total number of default
mistakes Reset makes (on an in�nite sample) is O((n5=(�2 � �PAC) log(n=�)). Therefore, with probability

1The mere fact that we are providing the learner with the entire output of the machine on a complete walk does not in itself
make (worst-case) PAC-learning of �nite automata any easier; for instance, the negative results of Kearns and Valiant [14]
hold even when the learner is provided with this extra information.
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at least 1��PAC=2, after seeing O((1=�) log(2=�PAC) �(n
5=(�2 ��PAC) log(n=�)) sample sequences, there must

be (1=�) ln(2=�PAC) consecutive sample sequences on which Reset has not made a single default mistake.
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