

Software Architecture for Modular Self-Reconfigurable Robots
Ying Zhang, Kimon D. Roufas and Mark Yim

Xerox Palo Alto Research Center
3333 Coyote Hill Rd, Palo Alto, CA 94304

E-mails: {yzhang,kroufas,yim}@parc.xerox.com

Abstract
Modular, self-reconfigurable robots show the promise of
great versatility, robustness and low cost. However,
programming such robots for specific tasks, with hundreds
of modules and each of which with multiple actuators and
sensors, can be tedious and error-prone. The extreme
versatility of the modular systems requires a new paradigm
in programming. In this paper, we present new software
architecture for this type of robot, in particular PolyBot,
which has been developed through its third generation. The
architecture, based on the properties of the PolyBot
electro-mechanical design, features a multi-master/multi-
slave structure in a multi-threaded environment, with three
layers of communication protocols. The architecture is
currently being implemented for Motorola PowerPC using
vxWorks.

1. Introduction

Modular self-reconfigurable robotic systems are those
systems that are composed of modules that can be
disconnected and reconnected automatically in different
arrangements to form a new system enabling new
functionalities. In many cases, the number of modules is
much larger than the types of modules within such systems,
i.e., the systems tend to be more homogenous than
heterogeneous. The general philosophy underlying these
systems is to simplify the design and construction of
components while enhancing functionality and versatility
through larger numbers of modules. There are a growing
number of modular self-reconfigurable robotic systems that
fit this kind of design philosophy
[4,5,7,8,10,13,14,15,16,17,18,19]. These systems claim to
have many desirable properties including versatility,
robustness and low cost. However, the practical
application outside of research has yet to be seen. One
outstanding issue for such systems is the increasing
complexity for effectively programming a large distributed
system, with hundreds or even thousands of nodes in
changing configurations. In this paper, we focus on the
software architecture issue for this type of modular self-
reconfigurable robots, in particular, PolyBot [18]. PolyBot
has been designed for applications including planetary

exploration, undersea mining, search and rescue and other
tasks in unstructured, unknown environments. PolyBot has
been developed through its third generation at the Xerox
Palo Alto Research Center. The latest design features
smaller module size (5cm), more sensors (IR range, touch,
force) and multiple actuators for locomotion, manipulation
and reconfiguration, as well as bridged networks.

Architecture is considered to form the backbone of
complete robotic systems [3]. However, even though
modular self-reconfigurable robots have been studied for a
decade or so, there has been less emphasis on the software
architecture for such systems. On the other hand, there are
many robotic architectures [1,2,11], however, none of
these architectures completely fit the properties of modular
self-reconfigurable robots, i.e., high modularity, deeply
embedded and large scale: the hardware modularity
requires software modularity to take the advantages of
modularity to its extreme; the control software needs to be
embedded on board with the modules to achieve the
autonomy of the systems; the system should be scalable
from 10’s to 100’s and even 1000’s of modules.
Furthermore, the system is a tightly coupled distributed
system with coordination, real-time constraints and
synchronization among tasks over the modules. In
addition, each software module typically needs to run in a
multi-threaded environment for timely response to multiple
sensory inputs and to handle multiple simultaneous
actuations. All these pose new challenges in software
architecture design and a new programming paradigm.

In this paper, we present a software architecture that
features a multi-master/multi-slave structure in a multi-
threaded environment, with three layers of communication
protocol. The first layer conforms to the data link
communication on the physical media; the second layer
provides higher-level data integrity between any two
addressable nodes with network routing; the third layer
defines the application middleware components and
protocol based on an attribute/service model.

This architecture enables the programming of complex
tasks on these highly distributed reconfiguring systems by
making transparent the locality of where processes run, by
simplifying the synchronization of multiple concurrently

changing data, by protecting that shared data and by using
a simple unified interface for communication. The
architecture is currently being implemented on Motorola
PowerPC MPC555 under the real-time operating system
vxWorks.

This paper is organized as follows. Section 2 presents the
PolyBot design, the basis for the software architecture.
Section 3 describes Massively Distributed Control Net
(MDCN), a CANbus-based (Controller Area Network)
communication protocol. Section 4 defines the
Attribute/Service model, the components of the
architecture. Section 5 lays out the multi-master/multi-
slave structure of the overall system.

2. PolyBot Hardware Design

PolyBot is a modular reconfigurable robot system
composed of two types of modules, one called a segment
and the other called a node. The segment module has two
connection ports and one degree of freedom (DOF)
motion. The node module is a rigid cube with six
connection ports but no internal DOF.

Two PolyBot generations have been built and
experimented with, and a third generation is in design. The
first is called G1 that is a simple quickly made prototype
and was built using laser-cut plastic parts. Up to 32
modules were bolted together and controlled via gait
control tables with off board computing [18]. Generation 2
(G2) (see Figure 1) has more sensors, including the IR
range sensor and the latch mechanisms, which enables self-
docking, and powerful on-board computation and
communication. Generation 3 (G3) is currently in design
but will have 100+ units fabricated in 2001. Compared to
G2, G3 features smaller size (5cm), more sensors (such as
touch and force sensors) and more robust structure, but it
will use the same micro-controller. The software
architecture is therefore based on G2 with refinements and
new features for G3.

A G2 segment module is composed of two connection
plates, actuation mechanisms for one DOF rotation and
docking, and a Motorola PowerPC MPC555 embedded
processor with 448K internal flash ROM and 1M of
external RAM [18]. The connection plate serves two
purposes: to attach two modules physically together as well
as electrically; both power and communications are passed
from module to module. Each connection plate has IR
photo transistors and IR LEDs. Combinations of IR
intensity measurements allow the determination of the
relative 6 DOF position and orientation of mating plates.
This aids in the closed loop docking of two modules and
their connection plates [12]. Each module communicates
over a global CAN bus with up to 1M bps. The node

module is a rigid cube made of 6 connection plates (one for
each face). For G3 the node will host 6 CAN controllers
(one for each connection plate). It serves three purposes:
(1) to allow for non-serial chains/parallel structures, (2) to
house higher power computation and power supplies, and
(3) to perform transparent media access control (MAC)
layer bridging between networks.

Figure 1: G2 modules attached together in a spider
configuration.

The PolyBot systems have demonstrated versatility by
showing multiple modes of locomotion with a variety of
characteristics, distributed manipulation and the ability to
self-reconfigure [12,17,18].

3. Massively Distributed Control Nets
(MDCN): A CANbus-based Protocol

As described in Section 2, the communication medium for
the PolyBot system uses CANbus. CAN has gained
widespread popularity not only in the automotive industry
but also in the industrial automation arena [9]. CAN has
also proven that it fits very well into the suite of field-buses
or sensor/actuator buses because of its low price, multiple
sources, highly robust performance and already widespread
acceptance [6]. Each CAN message provides a standard
11 bits or an extended 29 bits of prioritized destination
identification, and eight bytes of data. Priority arbitration,
error detection and re-transmission are all handled by the
CAN controller hardware. We are successfully using CAN
for all of G2 communications. However, CAN is low level,
directly linked to the physical media, which makes the
communication programming not only tedious but also ad
hoc. For most applications, a higher-level protocol is
necessary. In general, a higher-level protocol handles the
following issues:

• Communication buffers: ingress and egress
queues.

• Communication configuration: master/slave,
point-to-point, broadcast, group communications.

• Communication patterns: block/non-block
read/write, confirmation or handshaking,
subscribe/publish structures, etc.

• Fragmentation and reassembly of large messages.
• High-level error detection and correction.

Several high-level CAN protocols exist and are widely
used, such as CANopen, DeviceNet, SDS and OSEK [6].
For our application, the main limitation of these protocols
is their inability to address more than 200 communication
nodes, which restricts the scalability of modular
reconfigurable systems. Furthermore, most of these
protocols are far more complex than our purpose requires.

We have developed a high-level CAN protocol, called
Massively Distributed Control Nets (MDCN). MDCN
features a simple set of APIs, with the following
functionalities:

• Addressing of up to 254 nodes and groups in
standard CAN format (8 out of 11 ID bits for
addresses), and up to 100,000’s in extended CAN
format (17 out of 29 ID bits for addresses).

• Three types of communication: individual, group
and broadcast, with eight priority levels.

• I/O (node-to-node) and port (point/process-to-
point/process) communications, where I/O type is
mostly reserved for system processes with high
priorities and short message sizes that can be
encoded in one data frame, and port type is for
user applications, with lower priorities and
possibly large message sizes encoded in many
data frames.

For detailed MDCN protocol specification, please refer to
[20]. MDCN is implemented in C on top of CANpie (CAN
Programming Interface Environment [22]), which is open
source software. The core of CANpie has been
implemented on the MPC555 TouCAN controller, under
the real time operation system vxWorks. Input and output
queues in CANpie have been modified to be thread-safe
since MDCN is designed for multi-threaded environments.
The set of MDCN APIs is very similar to those in socket
programming, including functions such as create and
destroy port connections (I/O comm.), add and remove
groups (I/O comm.), read/write a message from/to a port
(port comm.). For example, the following code fragment
shows that a client is creating a connection and then
sending out a message, and the server is accepting the
connection and receiving a message.
Client:
 //create connection request
 port = createConnection(type, id);
 //write to the connection port
 write(port, message, length, priority);

Server:
 //accept the connection request

port = acceptConnection();
//read from the connection port

 read(port, message, &length, timeout);

In the above code fragment, type can be INDIVIDUAL,
GROUP, or BROADCAST. This allows addressing
individual modules, subsets of modules (GROUP) or all
modules (BROADCAST). The id parameter is the
communication MAC ID for INDIVIDUAL type, or group
ID for GROUP type, and read can be blocking or non-
blocking depending on the timeout value: -1 means
blocking, 0 means non-blocking and any positive number
indicates the maximum block time.

Even though MDCN protocol can address up to 100,000
communication nodes, CAN bus has a limitation on the
number of CAN controllers on one network (e.g. 64).
Hence we have also implemented MDCN bridging that
runs in PolyBot nodes for transferring messages between
multiple CAN buses. The implementation of the bridge is
primarily based on ANSI/IEEE Standard on “Media
Access Control (MAC) Bridges”, 802.1D, which
automatically configures a routing table according to
current network configuration. The maximum number of
controller nodes allowed on the CANbus limits the
maximum number of PolyBot segments in a chain. In the
case of 100,000 modules, the number of hops from one
module to another can be large, which can cause noticeable
delay in communication. A hierarchical structure for
control and communication is the key to reduce
communication overall.

Attribute/Service Model: The Component-
based Software Architecture

PolyBot G3 consists of 100+ modules, each of which has
an embedded micro-processor MPC555 with built-in
CANbus. PolyBot modules have multiple I/O for sensing
(IR, touch/force sensors) and actuation (motor control,
latch control) as well as multiple threads of computation.
Multi-threading is essential for efficient handling of
multiple hardware requests and computation in real-time.
Furthermore, global tasks such as locomotion and
reconfiguration require communication between different
modules. We propose the Attribute/Service model as a
general and simple framework for applications that require
programming with multiple tasks/threads on multiple
processors. The Attribute/Service model is a component-
based architecture, where components are either attributes
or services distributed over the communication network.

Component-based software architecture has been promoted
highly in the software engineering community. There are
several Java packages for the coordination of services in
distributed environments, all are based on Java’s RMI
(Remote Method Invocation): Enterprise JavaBeans, Jini,
and JavaSpace. The Attribute/Service Model borrows some
of the ideas from these architectures. However, the most
important difference is that all of these architectures are for
systems implementing secure business transactions, with
buy/sell/bid/lease type of activities. The Attribute/Service
model focuses more on coordination among sensors and
actuators in multi-threaded/multi-processor environments.
Furthermore, the implementation needs to be more efficient
than the general RMI implementation to maintain the real-
time aspects of embedded systems.

The Attribute/Service model is a programming framework
that applies to any application that requires multiple
tasks/threads on multiple processors. Attributes are
abstractions for shared memory/resources among multiple
threads located in one or more processors. An example of
attributes can be a desired joint angle that is set by a high
level task, from a gait table or an inverse kinematics
routine, and used by the low level PID controller.
Structures built into the attributes protect the shared
resources as well as support synchronization between
multiple services. In particular, each attribute is associated
with a block of data that has multi-thread protection, i.e., at
any time, there is only one thread that can access the data.
In addition to “get” and “set” methods that are provided for
all attributes, there are two ways that the block of data can
be synchronized. One is called SyncGet: the thread getting
data will wait until the data is set (by another thread); the
other is called SyncSet: the thread setting data will wait
until the data is used (get from another thread). The
combination of these two produces four possible ways for a
particular attribute to synchronize with services that access
the data.

On the other hand, services are abstractions of hardware or
software routines. In general, hardware services correspond
to settings in registers controlling hardware peripherals and
software services are threads that run for particular tasks.
An example of a hardware service can be actuating a latch
for docking; an example of a software service can be
tracking a desired setting, or solving a set of constraints
over time. A service is also associated with a set of
parameters that can be set when the service is called. All
services are associated with “start”, “stop” and “reset”
methods.

Both attributes and services are accessible either locally or
remotely. For remote access of attributes and services,
proxies are used as handles for remote accessing and a
server daemon has to be running on each processor. The
server running on every micro-processor is responsible for

dispatching and invoking the correct actions for remote
attributes and services.

As an example of local services and attributes, Figure 2
shows a motor control component that consists of two
attributes: DAngle and CSetting, and a service routine that
tracks the desired angle (DAngle) using the given control
setting (CSetting). CSetting here includes the gains for
the PID control, servo rate as well as the type of
interpolation between the current and the desired angles
such as LINEAR or STEP, etc. The current joint angle that
used by PID is sensed within MotorTracking service. The
attribute DAngle is set to be SyncGet (using the
Attribute_Sync function), so that Attribute_Get from
MotorTracking service will block until a new DAngle is
set.

Figure 2: Local attribute and service coordination
(services in rectangular, attributes in ellipse, links show
the data flow for Attribute_Get).

As an example of a remote attribute setting, Figure 3 shows
the inverse kinematics service running on a PolyBot node,
that, given the desired end-point goal position in the
workspace, which is an attribute set either locally or
remotely by another service, produces desired joint angles
for segments in the chain, which are remote attributes
distributed in the segments.

Figure 3. Remote attribute setting (services in
rectangulars, attributes in ellipses, links pointing to the
service show Attribute_Get and dashed links pointing
from the service show Proxy_Attribute_Set).

DAngle CSetting

Motor
Tracking

GoalPosition

InverseKinematics

DAngle 1 DAngle N

Proxies of attribute and services are designed and
implemented in such a way that the communication
between modules is hidden from the users point of view.
The proxy structure includes the port of the
communication, as well as the ID of the remote class and
object it represents. Functions defined on proxies share the
same structures as those defined on their correspondent
remote objects, but the excecution of the proxy functions
triggers communication between two modules. For
example, the Attribute_Get function for a proxy will first
send a request through the port to the remote server, then
wait for the remote server to get the attribute value and
send it back. In addition to use Attribute_Get for getting
remote attributes, Publish/Subscribe mechanism is also
implemented. Publish/Subscribe mechanism works as
follows. A local attribute can subscribe to a remote
attribute of the same class. Whenever the remote attribute
publishes its current data, all the subscribers will receive it.
For example, a node may subscribe to current joint angles
of all segments attached to it. Whenever a segment changes
joint angle, the node will update its correspondent value.
For a more detailed description of the Attribute/Service
model, please refer to [21].

We have implemented the Attribute/Service model on
MDCN in both C and Java. Java provides a better
programming structure. In the Java API, proxies and their
corresponding real entities share the same interface,
therefore, from the user point of view, local and remote
acesses work the same way. On the other hand, C
implementation is more efficient and has smaller footprints
for embedded processors.

4. Multi-Master/Multi-Slave: Modular
Software for Modular Hardware

Master/slave architectures have been used widely in
software design and development. Both G1 and G2 have
successfully applied this type of architecture, where the
master for G1 is running on a PC off board or on a separate
CPU carried by the modules and the master for G2 is
running on board on a PolyBot node. In both cases, there is
one master and multiple slaves. However, it is easy to see
that the one master architecture does not scale very well,
not to mention the resulting communication bottleneck to
and from the master. On the other hand, we could have all
modules acting both as masters and slaves, letting the roles
be determined at run time. Such a design would be very
robust and flexible, if it works. However, our experience
shows that the code would be very complex and difficult to
debug.

We have chosen a multi-master/multi-slave architecture for
PolyBot G3, where masters are running on PolyBot nodes

and slaves are running on PolyBot segments. Both masters
and slaves are multi-threaded. Typically, both master and
slaves run some common components, such as MDCN and
Attribute/Service servers, IR ranging and other local
sensing attached to the module. Masters also run MDCN
routers, global computation such as planning and inverse
kinematics, global environment sensing etc. Slaves run
motor control and local gait table generation.

In general, devices or computational routines are
implemented as services and shared resources or data
structures accessable by multiple services are implemented
as attributes. The communication between masters/nodes
and slaves/segments uses the Attribute/Service model.

We can characterize PolyBot tasks into three categories:
locomotion, manipulation and reconfiguration, where
locomotion is essentially a dual of manipulation [18]. To
show an example of how a complex task can be
decomposed using the Attribute/Service model, Figure 4
illustrates a general reconfiguration problem solver,
consisting of services such as reconfiguration planning,
path planning, dock position sensor signal conditioning and
inverse kinematics. The reconfiguration planning service
would output the reconfiguration sequence, which is the
sequence of docks and disconnects, and the goal position
attribute is the set of goal positions for all of the moving
segments.

Figure 4. Reconfiguration using the Attribute/Service
model.

For a complex configuration (Figure 5), a hierarchical
structure will be deployed, such that segments only
communicate with the nodes attached to them.

Figure 5. A PolyBot configuration (78 modules)

Reconfig
Sequence

Path Planning

GoalPosition
Dock
sensor

Inverse
Kinematics

Reconfig
Planning

Figure 3

Figure 2

node

segment

5. Conclusions

The challenges of designing software that is highly
modular, deeply embedded and easy to scale require a new
programming paradigm. Much work has been done in
modular self-reconfigurable robots, however, mostly on
hardware and control algorithms. We have started looking
into the software architecture issues, and designed and
implemented such architecture on real hardware. The
architecture provides the following features that are
essential for multi-thread multi-processor programming:
(1) transparency among local and remote attributes and
services, (2) synchronization between services accessing
attributes, (3) multi-thread protection on attributes, and (4)
unified interface for communication, built on the top of
MDCN and the CAN protocol. The right software
architecture, we believe, will not only make the system
easy to develop and maintain, but also produce re-useable
components that can be applied to other similar
applications as well.

Acknowledgements:

This work is funded in part by the Defense Advanced
Research Project Agency (DARPA) contract # MDA972-
98-C-0009. Thanks to Craig Eldersh for helping debugging
the system and referees for constructive comments.

 References
[1] R. Alami, R. Chatila, S. Fleury, et. al. “Around the Lab in

40 days…,” Proc. of the IEEE Int. Conf. on Robotics and
Automation, pp. 88-94, 2000.

[2] J.S. Albus, “4-D/RCS Reference Model Architecture for
Unmanned Ground Vehicles,” Proc. of the IEEE Int. Conf.
on Robotics and Automation, pp. 3260-3265, 2000.

[3] E. Coste-Maniere, R. Simmons, “Architecture, the
Backbone of Robotic Systems,” Proc. of the IEEE Int. Conf.
on Robotics and Automation, pp. 67-72, 2000.

[4] T. Fukuda, S. Nakagawa, “Dynamically Reconfigurable
Robotic System,” Proc. of the IEEE Int. Conf. on Robotics
and Automation, pp. 1581-1586, 1988.

[5] K. Kotay, D. Rus, M. Vona, C. McGray, “The Self-
reconfiguring Robotic Molecule,” Proc. of the IEEE
International Conf. on Robotics and Automation, pp424-
431, May 1998.

[6] W. Lawrenz, CAN System Engineering: From Theory to
Practical Applications, Springer, 1997.

[7] S. Murata, H. Kurokawa, S. Kokaji, “Self-Assembling
Machine,” Proc. of the IEEE International Conf. on
Robotics and Automation, pp441-448, May 1994.

[8] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, S. Kokaji,
“A 3D Self-Reconfigurable Structure,” Proc. of the IEEE
International Conf. on Robotics and Automation, pp432-
439, May 1998.

[9] B. Negley, “Getting Control Through CAN,” Sensors, vol.
17, no. 10, pp18-34, October 2000, also available in
http://www.sensorsmag.com/.

[10] A. Pamecha, C. Chiang, D. Stein, G.S. Chirikjian, “Design
and Implementation of Metamorphic Robots,” Proc. of the
1996 ASME Design Engineering Technical Conf. and
Computers in Engineering Conf., Irvine, California, August
1996.

[11] L.E. Parker, “ALLIANCE: An Architecture for Fault
Tolerant Multirobot Cooperation,” IEEE Trans. On
Robotics and Automation, vol. 14, no. 2, pp220-230, April
1998.

[12] K. Roufas, Y. Zhang, D. Duff, M. Yim, “Six Degree of
Freedom Sensing for Docking using IR LED Emitters and
Receivers,” Seventh International Symposium on
Experimental Robots, Dec. 2000.

[13] D. Rus, M. Vona, “Self-reconfiguration Planning with
Compressible Unit Modules,” Proc. of the IEEE
International Conf. on Robotics and Automation, pp2513-
2520, May 1999.

[14] K. Tomita et al, “Development of a Self-Reconfigurable
Modular Robotic System,” Proc. of SPIE Sensor Fusion and
Decentralized Control in Robotic Systems III, Vol. 4196.

[15] C. Unsal , P.K. Khosla, “Solutions for 3-D Self-
reconfiguration in a Modular Robotic System:
Implementation and Path Planning,” Proc. of SPIE Sensor
Fusion and Decentralized Control in Robotic Systems III,
Vol. 4196.

[16] P. Will, A. Castano, W-M Shen, “Robot modularity for self-
reconfiguration,” SPIE Intl. Symposium on Intelligent Sys.
and Advanced Manufacturing, Proceeding Vol. 3839, pp.
236-245, Sept. 1999.

[17] M. Yim, “New Locomotion Gaits,” Proc. of the IEEE
International Conf. on Robotics and Automation, pp. 2508-
2514, May 1994.

[18] M. Yim, D. Duff, K. Roufas, “PolyBot: a Modular
Reconfigurable Robot” Proc. of the IEEE Int. Conf. on
Robotics and Automation, April 2000.

[19] M. Yim, Y. Zhang, J. Lamping, E. Mao, “Distributed
Control for 3D Metamorphosis,” Autonomous Robots 10,
special issue on self-reconfigurable robots, pp41-56, 2001.

[20] Y. Zhang, K. Roufas, M. Yim, “Massively Distributed
Control Nets: a High Level CAN-based Protocol,” web site
http://www.parc.xerox.com/modrobots/Publications/publicat
ions.htm

[21] Y. Zhang, K. Roufas, M. Yim, “Attribute/Service Model: a
Multi-threaded Coordination Structure for Distributed
Control Systems,” web site
http://www.parc.xerox.com/modrobots/Publications/publicat
ions.htm

[22] CAN Programming Interface Environment, web site
http://www.microcontrol.net/CANpie/index.html

