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Abstract   
Modular, self-reconfigurable robots show the promise of 
great versatility, robustness and low cost. However, 
programming such robots for specific tasks, with hundreds 
of modules and each of which with multiple actuators and 
sensors, can be tedious and error-prone. The extreme 
versatility of the modular systems requires a new paradigm 
in programming. In this paper, we present new software 
architecture for this type of robot, in particular PolyBot, 
which has been developed through its third generation. The 
architecture, based on the properties of the PolyBot 
electro-mechanical design, features a multi-master/multi-
slave structure in a multi-threaded environment, with three 
layers of communication protocols.  The architecture is 
currently being implemented for Motorola PowerPC using 
vxWorks. 

1. Introduction 

Modular self-reconfigurable robotic systems are those 
systems that are composed of modules that can be 
disconnected and reconnected automatically in different 
arrangements to form a new system enabling new 
functionalities. In many cases, the number of modules is 
much larger than the types of modules within such systems, 
i.e., the systems tend to be more homogenous than 
heterogeneous. The general philosophy underlying these 
systems is to simplify the design and construction of 
components while enhancing functionality and versatility 
through larger numbers of modules. There are a growing 
number of modular self-reconfigurable robotic systems that 
fit this kind of design philosophy 
[4,5,7,8,10,13,14,15,16,17,18,19]. These systems claim to 
have many desirable properties including versatility, 
robustness and low cost. However, the practical 
application outside of research has yet to be seen. One 
outstanding issue for such systems is the increasing 
complexity for effectively programming a large distributed 
system, with hundreds or even thousands of nodes in 
changing configurations. In this paper, we focus on the 
software architecture issue for this type of modular self-
reconfigurable robots, in particular, PolyBot [18]. PolyBot 
has been designed for applications including planetary 

exploration, undersea mining, search and rescue and other 
tasks in unstructured, unknown environments. PolyBot has 
been developed through its third generation at the Xerox 
Palo Alto Research Center. The latest design features 
smaller module size (5cm), more sensors (IR range, touch, 
force) and multiple actuators for locomotion, manipulation 
and reconfiguration, as well as bridged networks. 

Architecture is considered to form the backbone of 
complete robotic systems [3]. However, even though 
modular self-reconfigurable robots have been studied for a 
decade or so, there has been less emphasis on the software 
architecture for such systems. On the other hand, there are 
many robotic architectures [1,2,11], however, none of 
these architectures completely fit the properties of modular 
self-reconfigurable robots, i.e., high modularity, deeply 
embedded and large scale: the hardware modularity 
requires software modularity to take the advantages of 
modularity to its extreme; the control software needs to be 
embedded on board with the modules to achieve the 
autonomy of the systems; the system should be scalable 
from 10’s to 100’s and even 1000’s of modules. 
Furthermore, the system is a tightly coupled distributed 
system with coordination, real-time constraints and 
synchronization among tasks over the modules. In 
addition, each software module typically needs to run in a 
multi-threaded environment for timely response to multiple 
sensory inputs and to handle multiple simultaneous 
actuations. All these pose new challenges in software 
architecture design and a new programming paradigm.  

In this paper, we present a software architecture that 
features a multi-master/multi-slave structure in a multi-
threaded environment, with three layers of communication 
protocol. The first layer conforms to the data link 
communication on the physical media; the second layer 
provides higher-level data integrity between any two 
addressable nodes with network routing; the third layer 
defines the application middleware components and 
protocol based on an attribute/service model.  

This architecture enables the programming of complex 
tasks on these highly distributed reconfiguring systems by 
making transparent the locality of where processes run, by 
simplifying the synchronization of multiple concurrently



 

changing data, by protecting that shared data and by using 
a simple unified interface for communication. The 
architecture is currently being implemented on Motorola 
PowerPC MPC555 under the real-time operating system 
vxWorks. 

This paper is organized as follows. Section 2 presents the 
PolyBot design, the basis for the software architecture. 
Section 3 describes Massively Distributed Control Net 
(MDCN), a CANbus-based (Controller Area Network) 
communication protocol. Section 4 defines the 
Attribute/Service model, the components of the 
architecture. Section 5 lays out the multi-master/multi-
slave structure of the overall system. 

2. PolyBot Hardware Design 

PolyBot is a modular reconfigurable robot system 
composed of two types of modules, one called a segment 
and the other called a node. The segment module has two 
connection ports and one degree of freedom (DOF) 
motion. The node module is a rigid cube with six 
connection ports but no internal DOF. 

Two PolyBot generations have been built and 
experimented with, and a third generation is in design. The 
first is called G1 that is a simple quickly made prototype 
and was built using laser-cut plastic parts. Up to 32 
modules were bolted together and controlled via gait 
control tables with off board computing [18]. Generation 2 
(G2) (see Figure 1) has more sensors, including the IR 
range sensor and the latch mechanisms, which enables self-
docking, and powerful on-board computation and 
communication.  Generation 3 (G3) is currently in design 
but will have 100+ units fabricated in 2001. Compared to 
G2, G3 features smaller size (5cm), more sensors (such as 
touch and force sensors) and more robust structure, but it 
will use the same micro-controller. The software 
architecture is therefore based on G2 with refinements and 
new features for G3. 

A G2 segment module is composed of two connection 
plates, actuation mechanisms for one DOF rotation and 
docking, and a Motorola PowerPC MPC555 embedded 
processor with 448K internal flash ROM and 1M of 
external RAM [18]. The connection plate serves two 
purposes: to attach two modules physically together as well 
as electrically; both power and communications are passed 
from module to module. Each connection plate has IR 
photo transistors and IR LEDs. Combinations of IR 
intensity measurements allow the determination of the 
relative 6 DOF position and orientation of mating plates. 
This aids in the closed loop docking of two modules and 
their connection plates [12]. Each module communicates 
over a global CAN bus with up to 1M bps. The node 

module is a rigid cube made of 6 connection plates (one for 
each face). For G3 the node will host 6 CAN controllers 
(one for each connection plate). It serves three purposes: 
(1) to allow for non-serial chains/parallel structures, (2) to 
house higher power computation and power supplies, and 
(3) to perform transparent media access control (MAC) 
layer bridging between networks.   

 

 

 

 

 

 

 

 

 

Figure 1:  G2 modules attached together in a spider 
configuration. 

The PolyBot systems have demonstrated versatility by 
showing multiple modes of locomotion with a variety of 
characteristics, distributed manipulation and the ability to 
self-reconfigure [12,17,18]. 

3. Massively Distributed Control Nets 
(MDCN): A CANbus-based Protocol 

As described in Section 2, the communication medium for 
the PolyBot system uses CANbus. CAN has gained 
widespread popularity not only in the automotive industry 
but also in the industrial automation arena [9]. CAN has 
also proven that it fits very well into the suite of field-buses 
or sensor/actuator buses because of its low price, multiple 
sources, highly robust performance and already widespread 
acceptance [6].  Each CAN message provides a standard 
11 bits or an extended 29 bits of prioritized destination 
identification, and eight bytes of data. Priority arbitration, 
error detection and re-transmission are all handled by the 
CAN controller hardware. We are successfully using CAN 
for all of G2 communications. However, CAN is low level, 
directly linked to the physical media, which makes the 
communication programming not only tedious but also ad 
hoc. For most applications, a higher-level protocol is 
necessary. In general, a higher-level protocol handles the 
following issues: 

• Communication buffers: ingress and egress 
queues. 

• Communication configuration: master/slave, 
point-to-point, broadcast, group communications. 



 

• Communication patterns: block/non-block 
read/write, confirmation or handshaking, 
subscribe/publish structures, etc. 

• Fragmentation and reassembly of large messages. 
• High-level error detection and correction. 

Several high-level CAN protocols exist and are widely 
used, such as CANopen, DeviceNet, SDS and OSEK [6]. 
For our application, the main limitation of these protocols 
is their inability to address more than 200 communication 
nodes, which restricts the scalability of modular 
reconfigurable systems. Furthermore, most of these 
protocols are far more complex than our purpose requires. 

We have developed a high-level CAN protocol, called 
Massively Distributed Control Nets (MDCN).  MDCN 
features a simple set of APIs, with the following 
functionalities: 

• Addressing of up to 254 nodes and groups in 
standard CAN format (8 out of 11 ID bits for 
addresses), and up to 100,000’s in extended CAN 
format (17 out of 29 ID bits for addresses). 

• Three types of communication: individual, group 
and broadcast, with eight priority levels. 

• I/O (node-to-node) and port (point/process-to-
point/process) communications, where I/O type is 
mostly reserved for system processes with high 
priorities and short message sizes that can be 
encoded in one data frame, and port type is for 
user applications, with lower priorities and 
possibly large message sizes encoded in many 
data frames. 

For detailed MDCN protocol specification, please refer to 
[20]. MDCN is implemented in C on top of CANpie (CAN 
Programming Interface Environment [22]), which is open 
source software. The core of CANpie has been 
implemented on the MPC555 TouCAN controller, under 
the real time operation system vxWorks. Input and output 
queues in CANpie have been modified to be thread-safe 
since MDCN is designed for multi-threaded environments. 
The set of MDCN APIs is very similar to those in socket 
programming, including functions such as create and             
destroy port connections (I/O comm.), add and remove 
groups (I/O comm.), read/write a message from/to a port 
(port comm.). For example, the following code fragment 
shows that a client is creating a connection and then 
sending out a message, and the server is accepting the 
connection and receiving a message.  
Client: 
 //create connection request 
 port = createConnection(type, id); 
 //write to the connection port 
 write(port, message, length, priority); 
 

Server: 
 //accept the connection request 

port = acceptConnection(); 
//read from the connection port 

 read(port, message, &length, timeout); 
 
In the above code fragment, type can be INDIVIDUAL, 
GROUP, or BROADCAST. This allows addressing 
individual modules, subsets of modules (GROUP) or all 
modules (BROADCAST). The id parameter is the 
communication MAC ID for INDIVIDUAL type, or group 
ID for GROUP type, and read can be blocking or non-
blocking depending on the timeout value: -1 means 
blocking, 0 means non-blocking and any positive number 
indicates the maximum block time. 
 
Even though MDCN protocol can address up to 100,000 
communication nodes, CAN bus has a limitation on the 
number of CAN controllers on one network (e.g. 64). 
Hence we have also implemented MDCN bridging that 
runs in PolyBot nodes for transferring messages between 
multiple CAN buses. The implementation of the bridge is 
primarily based on ANSI/IEEE Standard on “Media 
Access Control (MAC) Bridges”, 802.1D, which 
automatically configures a routing table according to 
current network configuration. The maximum number of 
controller nodes allowed on the CANbus limits the 
maximum number of PolyBot segments in a chain. In the 
case of 100,000 modules, the number of hops from one 
module to another can be large, which can cause noticeable 
delay in communication. A hierarchical structure for 
control and communication is the key to reduce 
communication overall. 

Attribute/Service Model: The Component-
based Software Architecture 

PolyBot G3 consists of 100+ modules, each of which has 
an embedded micro-processor MPC555 with built-in 
CANbus. PolyBot modules have multiple I/O for sensing 
(IR, touch/force sensors) and actuation (motor control, 
latch control) as well as multiple threads of computation. 
Multi-threading is essential for efficient handling of 
multiple hardware requests and computation in real-time. 
Furthermore, global tasks such as locomotion and 
reconfiguration require communication between different 
modules. We propose the Attribute/Service model as a 
general and simple framework for applications that require 
programming with multiple tasks/threads on multiple 
processors. The Attribute/Service model is a component-
based architecture, where components are either attributes 
or services distributed over the communication network. 



 

Component-based software architecture has been promoted 
highly in the software engineering community. There are 
several Java packages for the coordination of services in 
distributed environments, all are based on Java’s RMI 
(Remote Method Invocation): Enterprise JavaBeans, Jini, 
and JavaSpace. The Attribute/Service Model borrows some 
of the ideas from these architectures. However, the most 
important difference is that all of these architectures are for 
systems implementing secure business transactions, with 
buy/sell/bid/lease type of activities. The Attribute/Service 
model focuses more on coordination among sensors and 
actuators in multi-threaded/multi-processor environments. 
Furthermore, the implementation needs to be more efficient 
than the general RMI implementation to maintain the real-
time aspects of embedded systems. 

The Attribute/Service model is a programming framework 
that applies to any application that requires multiple 
tasks/threads on multiple processors. Attributes are 
abstractions for shared memory/resources among multiple 
threads located in one or more processors. An example of 
attributes can be a desired joint angle that is set by a high 
level task, from a gait table or an inverse kinematics 
routine, and used by the low level PID controller. 
Structures built into the attributes protect the shared 
resources as well as support synchronization between 
multiple services. In particular, each attribute is associated 
with a block of data that has multi-thread protection, i.e., at 
any time, there is only one thread that can access the data. 
In addition to “get” and “set” methods that are provided for 
all attributes, there are two ways that the block of data can 
be synchronized. One is called SyncGet: the thread getting 
data will wait until the data is set (by another thread); the 
other is called SyncSet: the thread setting data will wait 
until the data is used (get from another thread). The 
combination of these two produces four possible ways for a 
particular attribute to synchronize with services that access 
the data.  

On the other hand, services are abstractions of hardware or 
software routines. In general, hardware services correspond 
to settings in registers controlling hardware peripherals and 
software services are threads that run for particular tasks. 
An example of a hardware service can be actuating a latch 
for docking; an example of a software service can be 
tracking a desired setting, or solving a set of constraints 
over time. A service is also associated with a set of 
parameters that can be set when the service is called. All 
services are associated with “start”, “stop” and “reset” 
methods. 

Both attributes and services are accessible either locally or 
remotely. For remote access of attributes and services, 
proxies are used as handles for remote accessing and a 
server daemon has to be running on each processor. The 
server running on every micro-processor is responsible for 

dispatching and invoking the correct actions for remote 
attributes and services. 

As an example of local services and attributes, Figure 2 
shows a motor control component that consists of two 
attributes: DAngle and CSetting, and a service routine that 
tracks the desired angle (DAngle) using the given control 
setting (CSetting). CSetting  here includes the gains for 
the PID control, servo rate as well as the type of 
interpolation between the current and the desired angles 
such as LINEAR or STEP, etc. The current joint angle that 
used by PID is sensed within MotorTracking service. The 
attribute DAngle is set to be SyncGet (using the 
Attribute_Sync function), so that Attribute_Get from 
MotorTracking service will block until a new DAngle is 
set. 

 

 

 

 

 

 

Figure 2:  Local attribute and service coordination 
(services in rectangular, attributes in ellipse, links show 
the data flow for Attribute_Get). 

As an example of a remote attribute setting, Figure 3 shows 
the inverse kinematics service running on a PolyBot node, 
that, given the desired end-point goal position in the 
workspace, which is an attribute set either locally or 
remotely by another service, produces desired joint angles 
for segments in the chain, which are remote attributes 
distributed in the segments. 

 

 

 

 

 

 

Figure 3. Remote attribute setting (services in 
rectangulars, attributes in ellipses, links pointing to the 
service show Attribute_Get and dashed links pointing 
from the service show Proxy_Attribute_Set). 

DAngle CSetting

Motor 
Tracking 

GoalPosition 

InverseKinematics 

DAngle 1 DAngle N 



 

Proxies of attribute and services are designed and 
implemented in such a way that the communication 
between modules is hidden from the users point of view. 
The proxy structure includes the port of the 
communication, as well as the ID of the remote class and 
object it represents. Functions defined on proxies share the 
same structures as those defined on their correspondent 
remote objects, but the excecution of the proxy functions 
triggers communication between two modules. For 
example, the Attribute_Get function for a proxy will first 
send a request through the port to the remote server, then 
wait for the remote server to get the attribute value and 
send it back. In addition to use Attribute_Get for getting 
remote attributes, Publish/Subscribe mechanism is also 
implemented. Publish/Subscribe mechanism works as 
follows. A local attribute can subscribe to a remote 
attribute of the same class. Whenever the remote attribute 
publishes its current data, all the subscribers will receive it. 
For example, a node may subscribe to current joint angles 
of all segments attached to it. Whenever a segment changes 
joint angle, the node will update its correspondent value. 
For a more detailed description of the Attribute/Service 
model, please refer to [21]. 

We have implemented the Attribute/Service model on 
MDCN in both C and Java. Java provides a better 
programming structure. In the Java API, proxies and their 
corresponding real entities share the same interface, 
therefore, from the user point of view, local and remote 
acesses work the same way.  On the other hand, C 
implementation is more efficient and has smaller footprints 
for embedded processors. 

4. Multi-Master/Multi-Slave: Modular 
Software for Modular Hardware  

Master/slave architectures have been used widely in 
software design and development. Both G1 and G2 have 
successfully applied this type of architecture, where the 
master for G1 is running on a PC off board or on a separate 
CPU carried by the modules and the master for G2 is 
running on board on a PolyBot node. In both cases, there is 
one master and multiple slaves. However, it is easy to see 
that the one master architecture does not scale very well, 
not to mention the resulting communication bottleneck to 
and from the master. On the other hand, we could have all 
modules acting both as masters and slaves, letting the roles 
be determined at run time. Such a design would be very 
robust and flexible, if it works. However, our experience 
shows that the code would be very complex and difficult to 
debug. 

We have chosen a multi-master/multi-slave architecture for 
PolyBot G3, where masters are running on PolyBot nodes 

and slaves are running on PolyBot segments. Both masters 
and slaves are multi-threaded. Typically, both master and 
slaves run some common components, such as MDCN and 
Attribute/Service servers, IR ranging and other local 
sensing attached to the module. Masters also run MDCN 
routers, global computation such as planning and inverse 
kinematics, global environment sensing etc. Slaves run 
motor control and local gait table generation.  

In general, devices or computational routines are 
implemented as services and shared resources or data 
structures accessable by multiple services are implemented 
as attributes. The communication between masters/nodes 
and slaves/segments uses the Attribute/Service model.  

We can characterize PolyBot tasks into three categories: 
locomotion, manipulation and reconfiguration, where 
locomotion is essentially a dual of manipulation [18]. To 
show an example of how a complex task can be 
decomposed using the Attribute/Service model, Figure 4 
illustrates a general reconfiguration problem solver, 
consisting of services such as reconfiguration planning, 
path planning, dock position sensor signal conditioning and 
inverse kinematics. The reconfiguration planning service 
would output  the reconfiguration sequence, which is the 
sequence of docks and disconnects, and the goal position  
attribute is the set of goal positions for all of the moving 
segments. 

 

 

 

 

 

 

 

 

Figure 4. Reconfiguration using the Attribute/Service 
model. 

For a complex configuration (Figure 5), a hierarchical 
structure will be deployed, such that segments only 
communicate with the nodes attached to them. 

 

 

 

Figure 5. A PolyBot configuration (78 modules) 
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5. Conclusions 

The challenges of designing software that is highly 
modular, deeply embedded and easy to scale require a new 
programming paradigm. Much work has been done in 
modular self-reconfigurable robots, however, mostly on 
hardware and control algorithms.  We have started looking 
into the software architecture issues, and designed and 
implemented such architecture on real hardware. The 
architecture provides the following features that are 
essential for multi-thread multi-processor programming: 
(1) transparency among local and remote attributes and 
services, (2) synchronization between services accessing 
attributes, (3) multi-thread protection on attributes, and (4) 
unified interface for communication, built on the top of 
MDCN and the CAN protocol. The right software 
architecture, we believe, will not only make the system 
easy to develop and maintain, but also produce re-useable 
components that can be applied to other similar 
applications as well. 
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