LTL for multiple agents

Hadas Kress-Gazit
Cornell University
2 paradigms

• Centralized:
 - one controller for a group of robots
 - Need to have full information

• Decentralized:
 - One controller for each robot
 - Little information about other robots
Centralized

• One LTL formula and one automaton for the whole group
 - Can maintain communication range
 - Global guarantees: no collisions, no deadlock
 - State space grows exponentially with the number of robots
Example

“Pick up items and take them to the appropriate room based on the material”
Decentralized

• One LTL formula and one automaton for each robot
 - Other robots are part of the environment
 - Scales well*
 - No global guarantees
Example

“Drive around while obeying traffic rules until you find a free parking space, and then park”

“Leave the block, while obeying traffic rules, through Exit i”
Challenges / future work

• Have the planning and control foundation

• Challenges / future work
 - Task-based group decomposition
 - Information passing between groups
 - Global guarantees
 - Scalability
Thank you