The Pragbot corpus

Christopher Potts
Stanford Linguistics

SUBTLE meeting, Penn, Nov 4, 2010
Overview

1. The Pragbot scenario and data-gathering tool.
2. The Pragbot corpus
 (439 transcripts; 12,280 utterances; 192,039 events).
3. Experiments: Towards a cooperative bot.
Gameboard

Yellow boxes mark cards in your line of sight.

You are on 2D

Task description: Six consecutive cards of the same suit

The cards you are holding

Move with the arrow keys or these buttons.

In 2D, which isn't too useful. There are cards to my right and below, though. I'll check them out.
Scenario

Gather six consecutive cards of a particular suit (decide which suit together). Each of you can hold only three cards at a time, so you’ll have to coordinate your efforts. You can talk all you want, but you can make only a limited number of moves.
Transcripts

Server, 0: TASK_COMPLETED2010-06-13 01:01:02
Server, 0: PLAYER_1A1OBNPQ9TFS88E
Server, 0: PLAYER_2A253Q11TZPQPIZ
Server, 56: MAX_LINEOFSIGHT3
Server, 118: CREATE_ENVIRONMENT

-----------------------;
- - - - - - - - - -;
- --- ------ - -;
- - - b - - - -;
- --- - --- -;
- - --- --- -;
- - - b --- -;
- - - - - -;
- - ----- - - - -;
- - - - -;
- ---- b--------- -;

NEW_SECTION

1,2:2D;1,7:KH;1,7:9S;1,11:6C;1,13:QC;1,14:QS;
2,18:3H;2,18:9H;
3,19:4H;4,8:AC;4,19:3D;
4,19:KD;
5,14:QH;5,15:5S;5,15:2S;5,16:4D;5,16:10C;5,18:4
6,11:KC;6,15:9C;
7,11:2H;7,13:7S;
8,2:QD;8,4:AD;8,11:JC;8,20:8S;
9,9:10S;9,9:6H;9,9:8C;9,10:7H;9,14:JS;
10,1:2C;10,10:8D;11,14:6D;11,14:10H;
11,18:4C;11,18:9D;
12,10:3S;12,12:6S;12,16:5H;12,16:JD;12,20:3C;
13,4:5C;13,4:JH;13,15:KS;
14,2:5D;14,20:10D;15,2:AH;

Server, 118: MAX_CARDS3
Server, 118: GOAL_DESCRIPTION [...]

-------- --------------;
Transcripts

Player 1, 566650: PLAYER_MOVE7,11
Player 2, 567771: CHAT_MESSAGE_PREFIX which c’s do you have again?
Player 1, 576500: CHAT_MESSAGE_PREFIX i have a 5c and an 8c
Player 2, 577907: CHAT_MESSAGE_PREFIX i jsut found a 4 of clubs
Player 1, 581474: PLAYER_PICKUP_CARD7,11:8C
Player 1, 586098: PLAYER_MOVE7,10
Sample run
The Pragbot platform

Extensible Java program developed by Karl Schultz. Handles high traffic well. Intuitive transcript design and helpful logging. Plays nicely with the outside world.

- Specify the task (or task family).
- Design the map (simple text format).
- Set all high-level contextual parameters (line of sight, max moves, max cards, hidden walls).
- Two humans, or one human and one bot.
Data collection

- Data collection in June 2010.
- PHP wrapper to Pragbot written by Victoria Schwanda.
- Server-side configuration by Chriz Czyzewicz.
- Players recruited via Amazon’s Mechanical Turk.
- Payment: $1.00 per player per game, with occasional $0.50 bonuses to especially thoughtful or competent players.
- 439 good transcripts (out of 479 in all)
- Collection time: 5 batches each lasting about 5 hours, spread out over two work weeks.
- At peak times: 30 transcripts per hour.
- Total cost: about $1,000
Email feedback from our Turkers

That was actually a pretty fun hit.

The game with chat was great and like to see more HITs from you.

These HITs were really enjoyable. Hopefully you will put more on the site. You state that we can keep doing them, but right now if I click on your HIT, it tells me there are no more available for me. Is there something I can do to try again? Thanks.

I waited 1.22 before someone showed up. They never talked to me and didn’t finish the job before leaving. Am I still out because they didn’t cooperate?
Basic corpus stats

- 439 transcripts
- 111 unique players
- Game length mean: 465 actions (median 392, sd 263)
- Actions:
 - Card pickup: 8,330
 - Card drop: 6,105
 - Move: 175,503
 - Utterance: 12,280
 - Utterance length mean: 5.28 words (median 4, sd 4.78)
 - Total word count: 64,900
 - Total vocabulary: 3,149 (stemmed and with card-reference regularization: 2,255)
Expert effects

- The more a person played, the fewer utterances they used. This is true regardless of whether their partner was also experienced.
- If both players were experienced, the effect was even more dramatic.
- Expert transcripts were not necessarily shorter, though; some experts exhaustively searched independently, gathered subsets of the cards, and then assessed what they had found.
Novice strategy

Player 1: Hello. Are you here?
Player 2: yes
Player 2: do you see any cards
Player 1: Yes. I see a yellow spot. Those are our cards. We’ll only be able to see the ones that are in our view until we move with our arrows.
Player 1: We only have a certain number of moves, so we should decide how we’re going to do this before we use them, do you think?
Player 2: sure
Player 1: Ok. So, we have to pick up six cards of the same suit, in a row...
Player 1: each of us can hold three, so...
Player 1: I think I should get my three, then you should get your three or vice versa
Player 2: ok
Player 2: you go ahead
Player 1: What suit should we do?
Player 1: And which six cards do you want to try for?
Player 2: whatever you want
Player 1: I’m Courtney, by the way- nice to meet you.
Player 2: i’m becky....nice to meet you too
Player 1: Hi Becky. How about we go for hearts? And take 234567 [...]

Expert strategy

Player 2: hi
Player 1: hi--which side r u on?
Player 2: right side
Player 2: u?
Player 1: left/middle
Player 1: ok i gathered everything in my area
Player 2: i think i have all of them also
Player 1: how bout 5C - 10C?
Player 2: ok
Player 1: i have 5C, 8C, 9C, and you should have 6C, 7C, 10C
Player 2: got them
A variation: Some games are impossible
A variation: Some games are impossible
Annotations

Syntax
Card-reference regularization ⇒
Stanford parses (Penn-style and dependency)

Pragmatics (2 annotators/transcript, resolving all issues at each stage before moving to the next)

1. Speech act boundaries.
2. Tagging with a subset of the Switchboard Dialog Act tags.
3. Tagging for which high-level discourse issue the speech-act engages.
Tags

- **Questions**
 - *qy* Y/N question (includes declarative questions)
 - *qw* Wh- question (includes declarative Wh- questions)
 - *qo* Other questions (when question but none of the above, including backchannel, rhetorical, tag, echo)

- **Answers**
 - *ny* Yes/Accept (includes affirmative non-yes, partial accept)
 - *nn* No/Reject (includes affirmative non-no, partial reject, displays of dispreference)
 - *bk* Response Acknowledgement (includes ok, uh-huh, etc.)
 - *no* Other answers (when answer but none of the above)

- **Directive** (includes imperatives and indirect suggestions)
 - *ad*

- **Politeness**
 - *fp* Conventional opening
 - *fc* Conventional closing
 - *fa* Apology
 - *ft* Thanking
 - *fo* Other politeness (when polite but none of the above)

- *o* Iff none of the above options is appropriate
High-level discourse issues

- General issues about the world or the nature of Pragbot
 - FAMILIARITY: The players’ familiarity with the game
 - GAME TYPE: How the game is played in general, the nature of the board, controllers, etc.
 - WORLD: Anything not about this particular game or how the game is played

- Cards and strategies
 - WHICH CARDS: Which cards to go for that not involving a SUIT or SEQUENCE strategy
 - WHICH SUIT: Which suit to go for that not involving a SEQUENCE strategy
 - WHICH SEQUENCE: Which sequence to go for not presupposing a SUIT
 - CARD DETAILS: Others issues about specific cards

- Game-internal player states
 - LOCATION: Any issue about the location of a player
 - ACTION: Issues concerning what the players should do
 - HOLDING: Issues concerning what the players are holding
Experiments: Towards a cooperative bot

Our goal is to implement a bot that plays like a human (though perhaps more efficiently). To do this properly, we need models of the following decisions:

1. If I hear an utterance, how should I interpret it?
2. If I am looking at a card, should I pick it up?
3. If I am holding a card, should I keep it or put it down?
4. If the state of play changes, what (if anything) should I say to my partner in response?
Language in context

Our code library turns each transcript into a data structure that is intuitively a list of temporally-ordered states

\((\text{context}, \text{event})\)

The context includes

- local information (the state of play at that point)
- historical information (the events up to that point)
- global information (limitations of the game, the task, etc.)

When the event is an utterance, we can interpret it in context.

This is what pragmatics is all about, but it is very rare to have a dataset that truly lets you do it.
Relevance and the task

Example (Gather six consecutive cards of a particular suit.)

Context: We're holding {4H, 5H}.

2H ⇒ 3H 4H 5H 6H 7H 8H 9H 10H JH QH KH AH
Relevance and the task

Example (Gather six consecutive cards of a particular suit.)

Context: We’re holding \(\{4H, 5H\} \)

\[2H \Rightarrow \]

\[\begin{align*}
 &4H, 5H, 6H, 7H, 8H, 9H, 10H, JH, QH, KH, AH, 2H \\
\end{align*} \]
Underspecified referential expressions

Goal
To use the (evolving) task to make educated guesses about what underspecified card-oriented nominals pick out.

Player 2: Look for 2.
Player 1: and the 3?

Hypothesis
For any nominal referring expression, the intended referent will be the one that is (i) consistent with the information specified; and (ii) would bring the players closest to a solution *given the cards they are holding in the context of utterance*.
Underspecified referential expressions

Goal
To use the (evolving) task to make educated guesses about what underspecified card-oriented nominals pick out.

Context: The players are holding \{4H, KH\}

Player 2: Look for 2.
Player 1: and the 3?

Hypothesis
For any nominal referring expression, the intended referent will be the one that is (i) consistent with the information specified; and (ii) would bring the players closest to a solution given the cards they are holding in the context of utterance.
Annotations

Nominals referring to cards:

[_FEATURES text]_{DENOTATION}

- I have [_3H 3H]_{3H}
- Need [_8 8]_{8H}
- I’ll drop [_9|DEF|SG the 9]_{9H}
- try [_H|INDEF|PL h]_{2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H, 10H, JH, QH, KH}
- got [_X|PRO|SG it]_{9H}
- i’ll look around to see if i can find [_X|INDEF|PL any you can pick up]_{2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H, 10H, JH, QH, KH}
Results (for 10 transcripts)

Resolving the reference of the singular definite card references:

- \[\text{(SUIT|RANK)}\text{DEF}\text{SG the (SUIT|RANK)} \{\text{CARD}\}\]
- \[\text{(SUIT|RANK)} \{\text{CARD}\}\]

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literal</td>
<td>103</td>
<td>37%</td>
</tr>
<tr>
<td>Requiring enrichment</td>
<td>172</td>
<td>63%</td>
</tr>
<tr>
<td>Total</td>
<td>275</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct inference</td>
<td>164</td>
<td>95%</td>
</tr>
<tr>
<td>Incorrect inference</td>
<td>8</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>

- The mistakes are localized: strings of card references that the system botches uniformly.
- Most inferences involve guessing the suit based on the rank, which is easier than guessing the rank based on the suit.
Pickup prediction

Goal
To build a model of how players decide whether to pick up a card.

Hypothesis
A player will decide whether to pick up a card based a number of interacting factors:

- Degree to which this card helps solve the problem, given current holdings.
- Current distance from a solution (when this high, players are more likely to pick up random cards)
- Was the card mentioned previously in the discourse?
- How many cards is the player currently holding?
- Does the card match the dominant suit of the player?
- What percentage of the way through the game are we?
- How many utterances have been made so far?
Model

8,326 pickup events and 14,276 non-pickup events (player could have picked up a card but didn’t). Logistic regression classifier.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>−2.69</td>
</tr>
<tr>
<td>CardRelevance</td>
<td>0.53</td>
</tr>
<tr>
<td>PriorDistanceToSolution</td>
<td>0.62</td>
</tr>
<tr>
<td>CardMentioned</td>
<td>1.51</td>
</tr>
<tr>
<td>HoldingsLength</td>
<td>−0.49</td>
</tr>
<tr>
<td>MatchDominantSuit</td>
<td>0.94</td>
</tr>
<tr>
<td>UtterancesSoFar</td>
<td>−0.01</td>
</tr>
<tr>
<td>RelPosition</td>
<td>1.45</td>
</tr>
</tbody>
</table>

Table: Simple fitted model (all standard errors effectively 0).
Results

Extending the previous model with a number of interaction terms achieves 83.4% accuracy and the following effectiveness scores:

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.75</td>
<td>0.82</td>
</tr>
<tr>
<td>No</td>
<td>0.88</td>
<td>0.84</td>
</tr>
</tbody>
</table>

We care more about recall (getting what is relevant) than precision (avoiding irrelevant stuff), because the cost of picking something up and then putting it down is lower than the cost of having to find something that you passed up earlier.
Looking ahead

Immediate plans

- Complete the annotations (by January 1).
- Leverage the annotations for increased accuracy and additional coverage of pragmatic issues.
- Similar analysis with the forthcoming Pragbot 2 data.
- Implement a bot based on the models we develop and use human partners to assess performance.

Questions for the group

- Additional data collection?
- New scenarios?
- Novel use cases for models that leverage context to interpret fragmentary utterances?