The SUBTLE NLP Pipeline
(and an integrated system preview)

Constantine Lignos
SUBTLE MURI Year 4 Review
10/21/2011
Goal: Natural language to a logical controller

1. Commander's instructions
2. Parsed sentences
3. Semantic representation
4. MetaPAR/LTL
5. Automaton
How do we get there?

- **Pipeline of systems:**
 - Tagging: Assign a part of speech tag to each word
 - Maximum Entropy Tagger (Ratnaparkhi, 1997)
 - Parsing: Assign a syntactic structure to the sentence
 - Head-driven lexicalized parsing (Collins 1999; Bikel, 2004)
 - Additional function tags (Kulick, 2006)
 - Null element restoration: Reconstruct movement of words in parse (Gabbard, 2010)
Limitations of the pipeline

• Models are still built on Wall Street Journal text
 • Poor handling of imperatives
 • Reliance on punctuation
• Feed-forward system means that parse/tagging errors are fatal and cannot be recovered from
• Demonstration of system
 • Keep in mind parsing components span 15+ years of work and 3 PhD Theses, while semantics work is very young
Brief demonstration
Moving forward

- User interface for exploring parsing allows us to see the limitations of the current system and identify weak points
- Retraining models on more appropriate data is the next major step
Broadening the audience

• We want to make these tools publicly available!
• Web demo to show how the components perform
• Open source code releases planned:
 • MXPOST: Release-ready
 • Modified Bikel Parser: Currently reviewing modifications to verify they’re release-ready
 • Gabbard Null Element Restorer: Some work needed before release
A Preview of the Integrated System
Rewind: Goals of last year’s integrated system

- Give a basic end-to-end demo of the current software components in the project
- Demonstrate the following:
 - Specifying a plan using natural language
 - Naturally answering questions about the robot’s state
 - Visualization of the controller being executed and interacting with the simulated robot
- Provide a software structure for more detailed development
Steps from last year’s systems

• Two silos:
 • Natural language → LTL → Automaton → Simulated robot (Penn)
 • Structured language → LTL → Automaton → Real robot (Lowell)

• Clearly, it was time to connect the two together: Natural language → LTL → Automaton → Real robot
 • Easy, right? Not at all, but a lot was learned.
 • Key issue: we had not found the right way to represent the “real” world in the logical world in a consistent fashion

• We found the assets on each side could not scale the way we’d like: time to design a new system!
Integrated system overview

Language Processing
- NLP Pipeline
- Semantic Parsing

Planning
- LTLBroom
- LTLMoP

Logical Controller

Robot Controller

iPad Interface

User Input

Map Information

Orders

Sensor Data

Control Commands

World Knowledge

World Updates

Orders/Responses
Natural language major improvements

Focus: Scalable systems ready for integration with more sophisticated pragmatics, able to handle a known map and frontier-based exploration.

- Ability to execute complex plans, previously: fixed search plan, only giving standing orders
- Integration of more LTLMoP assets
- Replacing keyword-spotting semantics with more sophisticated system
- World knowledge to serve as basis for pragmatic inference
Integrating with multiple environments

Goal: One code base for web interface and multiple robot systems

Results:

- Deep integration with Lowell system (demo later)
- Integration in progress with ARL Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS)
 - ARL’s .NET-based system proved particularly challenging
 - All SUBTLE NLP Pipeline components running in SS-RICS
 - Semantics running in SS-RICS
 - Limited natural language commands functional
 - World knowledge still needs to be integrated
SUBTLE NLP in SS-RICS
Summary

• Junior’s NLP system is growing up
 • Mature assets close to public release
 • Semantics growing quickly in scope and capabilities
 • User interface to identify issues and improve system
• Significant integration progress year over year
 • Language, logical, and robotic systems tightly connected
 • Integrating richer pragmatics is the next frontier
• Promising but still nascent work with ARL cognitive robotics group