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ABSTRACT 

Despite the significant amount of research on single-wall 
carbon nanotubes, their thermal conductivity has not been well 
established.  To date only one experimental thermal 
conductivity measurement has been reported for these 
molecules around room temperature, with large uncertainty in 
the thermal conductivity values. Existing theoretical predictions 
based on molecular dynamics simulation range from several 
hundred to 6600 W/m-K.  In an attempt to clarify the order-of 
magnitude discrepancy in the literature, this paper utilizes 
molecular dynamics simulation to systematically examine the 
thermal conductivity of several (10, 10) single-wall carbon 
nanotubes as a function of length, temperature, boundary 
conditions and molecular dynamics simulation methodology.  
The present results indicate that thermal conductivity ranges 
from about 30 – 300 W/m-K depending on the various 
simulation conditions.  The results are unconverged and keep 
increasing at the longest tube length, 40 nm.  Agreement with 
the majority of literature data is achieved for the tube lengths 
treated here.  Discrepancies in thermal conductivity magnitude 
with experimental data are primarily attributed to length effects, 
although simulation methodology, stress, and intermolecular 
potential may also play a role.  Quantum correction of the 
calculated results reveals thermal conductivity temperature 
dependence in qualitative agreement with experimental data.   

 
Keywords: thermal conductivity, molecular dynamics 
simulation, phonon, single-wall carbon nanotube 

NOMENCLATURE  
ijB  = bond order term in BOP 

BOP = bond order potential 
c = speed of sound 

( )D ω  = density of states 
ε  = atomic energy including both potential and kinetic 
EMD = equilibrium molecular dynamics 
Epot = total bonded potential energy 

ijf
JJG

 = force on atom i due to atom j 

eF
JJG

 = external force field in homogeneous NEMD 

iF
JJG

 = total force on atom i 
HCACF = heat current autocorrelation function 
=  = Planck constant / 2π 
J = heat current 
k = thermal conductivity 
kB = Boltzmann constant 
L = tube length 
m = atomic mass 
MD = molecular dynamics 
MWNT = multi-wall carbon nanotube 
N = number of atoms 
Ncell = number of unit cells 
NEMD = nonequilibrium molecular dynamics 
PBC = periodic boundary conditions 
rij = distance between atom i and j 
r
G

 = atomic position vector 
SWNT = single-wall carbon nanotube 
tcorr = correlation time 
trun = simulation run time 
τ1, τ2 = time constant in double exponential fit for HCACF 
T = temperature 
TMD = MD temperature 
UB(rij) = bonded potential energy between atom i and j 
υ  = frequency 
v
G

 = atomic velocity vector 
V = volume 
VA(rij) = attractive pair term in BOP 
VR(rij) = repulsive pair term in BOP 
ω  = angular frequency 
ω
JG

 = angular velocity of simulation system 
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Dω  = Debye frequency 
 x = Cartesian coordinate 

kσ  = probable error of thermal conductivity 

Tσ  = probable error of temperature 

( ) (0)J t Jσ< >  = probable error of HCACF 
< > = ensemble average  

SUBSCRIPTS 
α , β  = directional index 
i, j, k = summation index, atom index 
 

 
INTRODUCTION 

Recent advances in shrinking the size of micro and nano 
devices have made thermal management critically important to 
continued high performance, reliability and lifetime. Materials 
that have high thermal conductivity and therefore help transfer 
heat efficiently are of great interest in those applications where 
operating temperatures have a significant impact on devices. 
Carbon nanotubes (CNTs) show thermal properties that are 
remarkably different from other known materials and are 
expected to be a promising candidate in many applications.  
Most measurements of k (T) on nanotube materials show that k 
increases monotonically with increasing T even above ambient 
temperature. Kim et al. [1] observed that the thermal 
conductivity of an individual MWNT with a diameter of 14nm 
is more than 3000 W/m-K at room temperature. Hone et al. [2] 
found that the thermal conductivity of aligned single-wall 
nanotube (SWNT) crystalline ropes is about 250 W/m-K at 
300K and estimated that the longitudinal thermal conductivity 
of a single SWNT ranges from 1750 to 5800 W/m-K. Tubes 
can be microns long and the predominant diameter of each 
individual tube is 1.4nm. A recent measurement on an isolated 
SWNT reveals a higher thermal conductivity than that of 
MWNT [3], but there is large uncertainty in the measured 
values.   

Molecular dynamics simulation (MD) [4] is an alternative 
method to determine the thermal conductivity of carbon 
nanotubes, and yields additional atomistic information useful 
for analyzing thermal energy transport in SWNT and in carbon 
nanotube based materials. Classical MD involves integration of 
Newton’s equations of motion for atoms interacting with each 
other through an empirical interatomic potential that does not 
include modeling electrons and therefore cannot simulate 
electron-electron or electron-phonon interactions. 
Measurements indicate that phonon contribution for thermal 
conductivity is dominant in both MWNTs and SWNTs at all 
temperatures [5], which justifies neglecting electronic effects in 
simulations of carbon nanotubes. 

In general there are three ways to compute the thermal 
conductivity in a solid. Nonequilibrium molecular dynamics 
(NEMD) [6] is based on Fourier’s law which relates the heat 
current to the temperature gradient through thermal 
conductivity 

- /J k T xα αβ β
β

= ∂ ∂∑                                                          (1) 

NEMD, also called the direct method, imposes either a fixed 
temperature gradient or a heat flux to a system. In order for fast 
 

convergence of the resultant heat flux or temperature field and 
also because of the nanoscale size of SWNT, NEMD involves 
large temperature gradients beyond the range that can be 
reached experimentally. A disadvantage of NEMD is that in 
order to obtain the thermal conductivity along multiple 
coordinate directions in a solid, a separate simulation must be 
run in each direction. In contrast, a thermal conductivity tensor 
can be obtained in just one simulation by equilibrium molecular 
dynamics (EMD) [7].   The EMD method is based on the 
Green-Kubo formula derived from linear response theory [8] 

2 0

1 ( ) • (0)
B

k J t J dt
Vk Tαβ α β

∞
= < >∫                               (2) 

where the heat current is written as [9] 

( ) ( )i i
i

dJ r t t
dt

ε= ∑
JG JG

                                                             (3) 

and the term inside the brackets represents the heat current 
autocorrelation function (HCACF).  The temporal decay of the 
HCACF represents the time scale of thermal transport. 

The atomic energy that each individual atom has is taken to 
be 

1 1• ( )
2 2

i ii i B ij
j

m v v u rε = + ∑
G G

                                           (4) 

The third method, homogeneous NEMD[10], is an 
nonequilibrium approach in which an external field is applied 
to the system to represent the effects of heat flow without 
physically imposing a temperature gradient or flux.  eF

JJG
is the 

external field that adds an extra force to each individual atom 
by 

( )

( )

( ) ( )

1 ( )

i i e ij ij e
j i

jk jk e
jk j k

F F f r F

f r F
N

ε ε
≠

≠

∆ = − < > −

+

∑

∑

JJG JJG JJG JG JJG
i

JJJG JJG JJG
i

                              (5) 

Extrapolation to zero force [10] allows the thermal 
conductivity to be determined from 

0

( , )lim lim
e

e

tF
e

J F tk
F TV
α

α →∞→

< >
= JJG

JJG
                                               (6) 

where the heat current ( , )eJ F tα

JJG
is also evaluated as in Eq. 3. 

This method is computationally efficient, but the extrapolation 
to zero eF

JJG
can be a challenge as is shown later. 

Several classical MD simulations have been performed in 
order to pinpoint the thermal conductivity of isolated SWNT 
[11-16].  These results, which vary from several hundred to 
6600 W/m-K, show an order of magnitude discrepancy.  The 
range of this spread is comparable to that observed in the 
experimental measurement [3], but in general the simulated 
values are lower. As the structural details of the tube measured 
in the experiment are not known, it is difficult to compare to 
simulations on specific tube chiralities. There is still significant 
uncertainty as to the correct value of SWNT thermal 
conductivity. 
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Berber et al. [11] used homogeneous NEMD for an 
isolated (10, 10) SWNT with periodic boundary conditions 
(PBC). Cross sectional area, which affects thermal conductivity 
through the volume V in Eq. (2), was calculated based upon the 
fact that tubes have an interwall separation about 3.4Å in 
nanotube bundles. The thermal conductivity increases with 
increasing temperature, then reaches a peak at around 100K, 
finally decreasing to about 6600 W/m-K at room temperature. 
Osman et al. [12] also found a peaking behavior of thermal 
conductivity before falling off around 400K for (10, 10) 
SWNTs. NEMD and PBC were used. The thermal conductivity 
is about 1700W/m-K at 300K. A ring of van der Waals 
thickness 3.4Å was used in the calculations as the cross 
sectional area for heat flow. Che et al. [13] applied EMD based 
on the Green-Kubo theory with PBC and claimed to find length 
convergent behavior of thermal conductivity for (10, 10) 
SWNT about 2980 W/m-K at room temperature. The maximum 
length tube was around 40 nm (6400 atoms) and a ring of 1Å 
thickness for the cross sectional area was chosen as the 
geometric configuration. Padgett et al. [14] used NEMD with 
PBC and predicted thermal conductivity about 160 W/m-K for 
61.5 nm long (10, 10) SWNT at 300K. Moreland et al. [15] 
used NEMD with PBC and found that the thermal conductivity 
of (10, 10) SWNT at 300K increases from 215W/m-K at 50 nm 
to 831 W/m-K at 1000 nm tube length. The cross sectional area 
was calculated as the area of a circle with circumference 
defined by the centers of the atoms around the nanotube, which 
is different from [13]. Only Maruyama [16] did not use PBC to 
simulate finite-length SWNTs. The cross sectional area was 
defined in the same way as that in [12]. The thermal 
conductivity is around 600W/m-K for a 404nm long tube and 
still steadily increasing with an exponent of 0.27.  The latter 
two results indicate that length convergence is still not achieved 
even for the longest tubes simulated. 

Table 1 lists the room temperature thermal conductivity 
results found in the above studies.  Part of the difference 
between the results of the various groups can be attributed to 
differing choices for nanotube cross sectional area, but scaling 
all tubes by the same area still does not eliminate the 
differences.  All of the simulations described above, except 
[14], use the Tersoff-Brenner bond order potential (BOP) [17] 
to model the carbon nanotubes.  Padgett et al [14] use the 
reactive bond order potential [18].  Differences in simulation 
methodology, boundary conditions, tube length, and potential 
may contribute to the observed differences. 
 
Table 1 Thermal Conductivity Values from Different Groups 
 k (W/m-

K) 
tube length 

(nm) 
cross 

sectional 
area (m2) 

Berber et al. [11] 6600 2.5 29×10-19 
Osman et al. [12] 1700 30 14.6×10-19 
Che et al. [13] 2980 40 4.3×10-19 
Padgett et al. [14] 160 61.5 14.6×10-19 
Moreland et al. [15] 215 50 14.6×10-19 
Maruyama [16] 310 40 14.6×10-19 

Experimental measurement 
Kim et al. [1] 3000 W/m-K for MWNT 
Yu et al. [3] more than 3000 W/m-K for SWNT 

All values are at 300K 
 

 

Moreland et al. [15] determined the stress-free tube length 
by running simulations with free boundaries at the tube ends to 
allow for longitudinal expansion/contraction, and then applied 
PBC for the remainder of the simulations.  They found much 
lower thermal conductivity than that from experiments and 
from some simulations of other researchers above.  As no 
mention of efforts to mitigate stress by relaxing the structure is 
discussed in these papers, it is possible that some of the high 
calculated values [11-13] may be caused by compression of the 
tubes, but this is not certain.  Stress/strain effects have already 
been demonstrated to be important in other nanostructures [19]. 
The stress state of the experimental measurements is unknown.  

It is not clear whether EMD or NEMD is better for 
simulating SWNT [15]. The effect of artificially imposing a 
highly nonlinear temperature gradient or heat flux in NEMD 
compared to EMD remains to be seen, if both techniques use 
the same BOP code and apply to the same SWNT. Another 
important difference between EMD and NEMD comes from the 
axial boundary condition. The phonon mean free path in SWNT 
is several microns [20]. Therefore thermal conductivity is 
believed to be length dependent not only because longer tubes 
can sustain more phonon modes but because the tube 
boundaries introduce another phonon scattering mechanism in 
addition to phonon-phonon scattering. For a finite-length tube 
in which the phonons are scattered at the ends, it is more 
physically meaningful to use free boundary conditions in the 
simulations. If PBC are used, phonons will reenter the 
simulation box and interfere with themselves, resulting in 
artificial self-correlation effects at times longer than the time 
for the phonons to cross the simulation domain [21].  To get 
thermal conductivity for the micron-scale lengths used in real 
applications, several simulations for shorter tubes could be run 
to do extrapolations or parallelization could be another 
approach.  

This paper investigates the length, temperature, and 
simulation method dependence of thermal conductivity for (10, 
10) SWNTs. Both PBC and free boundary conditions are used. 
To better understand phonon modes and phonon scattering, 
longitudinal phonon density of states is also calculated. 

COMPUTATIONAL PROCEDURE 
In order to study the temperature and length dependence of 

thermal conductivity, four different (10, 10) SWNTs are 
investigated using classical MD. They have 800, 1600, 3200 
and 6400 atoms, respectively. These numbers of atoms 
correspond to nanotube lengths of about 5, 10, 20, and 40 nm. 
The temperature ranges from 100K to 500K. The initial 
configuration of (10, 10) SWNT is constructed by using a bond 
length of 1.42Å. To study the effect of different boundary 
conditions, both free boundary and PBC are used. In PBC 
simulations, an extra simulation is run first with free boundaries 
to get the stress-free tube length. This length is very close to the 
original starting length. 

To model the bonded carbon-carbon interactions, the 
second-generation reactive empirical bond order (REBO) 
potential is used [18]. The improved potential form can give 
much better description of bond energies, lengths and force 
constants for hydrocarbon molecules relative to the earlier 
Tersoff-Brenner version [17]. The interactions between non-
bonded atoms are modeled using the Lennard-Jones potential.  
3 Copyright © 2004 by ASME 



The total bonded potential energy of the simulation system 
is expressed as 

( ) [ ( ) ( )]ijpot B ij R ij A ij
i j i i j i

E u r V r B V r
> >

= = −∑ ∑ ∑ ∑     (7) 

The potential form in Eq. (7) appears to be pair-wise, but it 
should be noted that multi-body information is implicitly 
included in the bond order ijB . As in Eq. (4), the potential 

energy ( )B iju r  in Eq. (7) is assumed to be split evenly between 
the two atoms i and j.  There is more than one way to partition a 
many body potential among atoms, but the thermal conductivity 
for most cases is not sensitive to a particular partition (e.g. for 
silicon results computed by EMD, [22]).  As the bond order 
potential used here does not have an explicit many body term, 
the partition used in Eq. (4) is reasonable.  Substituting for 
atomic energy, the heat current expression becomes 

,

1( ) ( • )
2

iji ii ij
i ij i j

J t v r f vε
≠

= +∑ ∑
JG G G JG G

                                   (8) 

The total initial linear and angular momenta are removed 
by subtracting the linear and angular velocity components [23] 

- / -
new old old

i
i i j

j
N rv v v ω= ×∑
JG GG G G

                                       (9) 

This procedure ensures that the isolated carbon nanotube 
does not have translational or rotational movement, which 
simplifies the calculation of the heat current along the tube axis. 
In all simulations, zero linear and angular momenta are well 
conserved. Details on the calculation of the instantaneous 
angular velocity of the system can be found in [24]. The 
resulting velocities are scaled to match the initial temperature. 
The time step is 1 fs for all cases. For the first 40 ps an NVT 
simulation with the Nosé-Hoover thermostat is used [25] to 
equilibrate the system to the desired temperature. Then a 400 ps 
long simulation is performed in the microcanonical ensemble to 
compute the heat current along the tube axis. The HCACF is 
calculated up to 200 ps, after which time it has decayed 
approximately to zero. A 3.4Å thickness cylinder is chosen as 
the geometric configuration. 

In each simulation, the general expression for error 
propagation [26] is used to calculate the probable error of 
thermal conductivity 

 

2 2 2 2
( ( ) (0) )( ) ( )

( ) (0)k T J t J
k k
T J t J

σ σ σ < >
∂ ∂

= +
∂ ∂ < >i i

   

                                                                                               (10) 
Because thermal expansion of the tube is negligible [27], 

variation of the tube volume is not included in error estimation. 
The standard error of the HCACF depends on the simulation 
run time trun and the correlation time tcorr [28] 

2
( ) (0) 2 (0) (0) /J t J corr runt J J tσ< > = < >i i                          (11) 

where the correlation time is defined by 
2

0
2 2

( ( ) (0) )
2corr

J t J J dt
t

J J

∞
< > − < >

=
< > − < >

∫ i
                       (12) 

 

 

 

RESULTS AND DISCUSSION 
 
Temperature Dependence 

For both free boundary and PBC cases, thermal 
conductivity decreases with increasing temperature as shown in 
Figure 1.  

0

50

100

150

200

250

100 200 300 400 500

TMD (K)

U
nc

or
re

ct
ed

 k
 (W

/m
-K

)  800 atoms with free
boundary
1600 atoms with free
boundary
3200 atoms with free
boundary
6400 atoms with free
boundary

 
(a) 

0

50

100

150

200

250

300

100 200 300 400 500

TMD (K)

U
nc

or
re

ct
ed

 k
 (W

/m
-K

)

 800 atoms with PBC
1600 atoms with PBC
3200 atoms with PBC
6400 atoms with PBC

 
(b) 

Figure 1 Thermal conductivity versus temperature for (10, 10) 
SWNTs of 800, 1600, 3200 and 6400 atoms with both (a) free 
and (b) periodic boundary conditions 
 

Temperature in MD simulations (TMD) is typically 
calculated from the mean kinetic energy by 

 
1

3 1
2 2

N

B MD i i
i

Nk T m v v
=

= ∑
JG JG
i                                               (13) 

When TMD is lower than the Debye temperature, which is 
2230 K for diamond and may be even higher for carbon 
nanotubes, quantum corrections for both temperature and 
thermal conductivity may be necessary especially at low 
temperature. By assuming the system energy to be twice the 
mean kinetic energy at TMD and equal to the total phonon 
energy of the system at quantum temperature T, correction is 
made though [29]   

/
0

13 ( )[ ]
( -1)

D

BB MD k TNk T D d
e

ω

ωω ω ω= ∫ = =                      (14) 

where ( )D ω is the phonon density of states and the zero point 
energy is neglected.  Essentially, this procedure corrects for the 
low temperature specific heat variation with temperature.  To 
get a simple estimate of the quantum correction, the 1D Debye 
density of states is used [30] with Debye frequency value 251 
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THz as the upper limit to the integral. The Debye frequency is 
estimated by [30] 

/D cellcN Lω π=                                                                 (15) 
A 6400 atom (10, 10) SWNT has 160 unit cells and the 

tube length is about 40nm. The speed of sound c is taken to be 
20km/s [5]. The relation between TMD and T is shown in Figure 
2. TMD and quantum temperature T are the same at high 
temperatures but diverge at low temperatures.   
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Figure 2 Relation between MD temperature TMD and quantum 
temperature T for (10, 10) single-wall carbon nanotubes 
 

The quantum correction is incorporated in the thermal 
conductivity expression by multiplying the thermal 
conductivity in Fourier’s law by a factor dTMD/dT [31]:  

- / ( / )( / )MD MDJ k T x k T x T Tα αβ β αβ β
β β

= ∂ ∂ = − ∂ ∂ ∂ ∂∑ ∑
      (16) 

The corrected results are shown in Figure 3.  They should 
be viewed as qualitative in nature due to the simplifying 
assumptions about density of states and zero point energy that 
have been used.  The corrected thermal conductivity increases 
with increasing temperature and begins to decrease after 400K. 
This trend is consistent with thermal conductivity 
measurements for single-wall carbon nanotubes [2] and multi-
wall carbon nanotubes [1]. It is questionable that some other 
studies [11-12] using classical molecular dynamics simulations 
can also get this peaking behavior without a quantum 
correction.  

 
Effect of Boundary Condition 

Figure 3 illustrates that thermal conductivity in tubes with 
free boundaries is lower than that with periodic boundary 
conditions.  The reason for the jagged increase for the PBC 
case is not currently understood. The effect of the free 
boundary is to reduce the phonon lifetime due to additional 
scattering at the tube ends, which reduces the correlation of 
heat flux vector at time t with the initial heat flux vector.  This 
reduction is very strong in the 800 atom tubes. In Figure 4 it is 
seen that the HCACF decays to zero very quickly and then 
fluctuates about this value, which leads to much lower thermal 
conductivity compared to that of PBC case. With increasing 
tube length the effect of boundary scattering is less severe, as 
indicated in Figure 5 for the 6400 atom free boundary case. The 
HCACF curve starts to have a long decaying tail and becomes 
similar to that of the PBC. 
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Figure 3 Quantum corrected thermal conductivity versus 
temperature for (10, 10) SWNTs of 800, 1600, 3200 and 6400 
atoms with both (a) free and (b) periodic boundary conditions  
 

For all PBC simulations and for free simulations of 3200 
atoms or greater, the HCACF has a fast decay followed by a 
long lasting decay.  As suggested by Che et al. [32], the decay 
can be fitted by a double exponential function 

1 1 2 2exp( / ) exp( / )HCACF A t A tτ τ= − + −                 (17) 

where 1τ and 2τ are time constants associated with fast and 

slow decays, respectively. Physically 1τ is interpreted as half of 
the period for energy transfer between two neighboring atoms 
[33].  The time constant 2τ has been interpreted as the average 
phonon-phonon scattering time [33]. The double exponential fit 
is only performed up to a certain ‘early’ time which is the time 
a phonon takes to travel the tube. After this time self 
interference effects will become important and will adversely 
impact the HCACF. The early time is estimated in the present 
simulations by L/c. Thermal conductivity is found by directly 
integrating the HCACF before this early time after which time 
the fitted function is used for the integral. For all free boundary 
and PBC cases, 1τ is about 10 fs showing no length or 
temperature dependence. In general PBC give longer decay and 
bigger 2τ than free boundary conditions, which leads to higher 
thermal conductivity. For both cases, HCACF decays slower 
with increasing length, leading to a length dependent thermal 
conductivity. 
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Figure 4 Normalized HCACF for (10, 10) SWNT of 800 atoms 
at 300K 
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Figure 5 Normalized HCACF for (10, 10) SWNT of 6400 
atoms at 300K 
 
Length Dependence 

With increased system size, more phonon modes are 
included and thermal conductivity is increased for both free and 
PBC cases shown in Figure 6. Because the longest tube length 
is 40nm, the thermal conductivity is still far from being 
converged. The thermal conductivity value is 157.92 W/m-K 
for 40nm tube at 300K similar to about 160W/m-K at 61.5nm 
long [14] and lower than the reported value 215W/m-K at 
50nm long [15]. Taking the length effect into account, the 
reason might be that a slightly different bond order potential is 
used. 

Figure 7 shows the time constant 2τ versus length for PBC 
cases. The curves increase at low temperatures but look very 
flat at 400K and 500K, showing almost no length dependence. 
Since speed of sound tends to decrease with temperature, the 
double exponential function may need to be fitted to a shorter 
time for low temperature cases. The reason for flatness at high 
temperatures may be interplay between increasing number of 
modes that increases k and increased scattering from newly 
created modes which decreases k. Figures 6 and 7 have 
different trends: k always increasing and 2τ  flat for some 

cases.  A simple scaling of k with 2τ , as from kinetic theory 
estimates of thermal conductivity, is not observed here for all 
cases.  This may indicate that the single quantity 2τ is not 
 

adequate to represent the detailed length-dependent thermal 
conductivity behavior here, which will be influenced by the 
addition of longer wavelength phonons that tend to have longer 
scattering times.  Indeed, Kubo et al. [34] mentions that 
frequency dependent scattering is important to consider. 
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Figure 6 Thermal conductivity versus length with both (a) free 
and (b) periodic boundary conditions 
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Figure 7 Time constant 2τ versus length with periodic 
boundary conditions 
 
Phonon Density of States 

Thermal properties of carbon nanotubes strongly depend 
on the phonon density of states. Figure 8 shows the longitudinal 
phonon density of states at 300K for (10, 10) SWNTs with four 
different lengths and two different boundary conditions. This is 
calculated as  

( ) ( ) (0)i t
z z zD dte v t vωω −= < >∫ i                         (18) 

4000 temporal points are used in calculating the Fourier 
transform of the velocity autocorrelation function. Therefore 
the spectral resolution is 0.25 THz. All graphs have a strong 
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peak around 50 THz, which is characteristic of the 2D graphene 
sheet phonon spectrum [35]. This value, which corresponds to a 
20 fs period of vibration, agrees well with the 10 fs value of 

1τ since the characteristic time scale of energy transport at short 
time scales can be considered as half the period of oscillation of 
the carbon-carbon bond [33].  In all plots with free boundaries, 
there is a low frequency peak that does not exist in PBC cases. 
The physical meaning of this is that there is an additional 
vibrational mode not present in the PBC tubes. This mode 
represents the periodic expansion and contraction of the tube 
along its axis. Dickey et al. [36] also found a similar low 
frequency mode for small particles with free surfaces. For the 
800 atom case such a peak is not easily observed, obscured by 
neighboring peaks. For 1600 and 6400 atoms, this peak is 
clearly seen. Its frequency is reduced with tube length but does 
not scale linearly as indicated in Table 2.  
  

Table 2 Low frequency vibrational peaks for tubes with free 
boundaries 

Atom 
number 800 1600 3200 6400 

L (nm) 5 10 20 40 
ν (THz) 2.25 1.25 0.75 0.5 
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Figure 8 Longitudinal phonon density of states at 300K for (10, 
10) carbon nanotubes of 800, 1600 and 6400 atoms with both 
free and periodic boundary conditions 
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Figure 9 Thermal conductivity versus Fe 
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Homogeneous Nonequilibrium Molecular Dynamics 
To determine the effect of MD simulation method on 

calculated thermal conductivity, the homogeneous NEMD 
method is applied to 800 atom and 1600 atom SWNTs with 
PBC at 300K. The thermal conductivity values and the data 
points at 100K taken from Berber’s paper [11] are plotted in 
Figure 9 for comparison as their 300K data are not available.  

Extrapolation to zero eF
JJG

by a single exponential fit gives 
thermal conductivities 267 W/m-K for 800 atom and 285 W/m-
K for 1600 atom SWNT at 300K.  These values are 
significantly higher than the corresponding values calculated in 
this paper by the EMD method (50 W/m-K for EMD with PBC 
for 1600 atom SWNT at 300K), but still much lower than 
Berber’s reported room temperature value of 6600 W/m-K. 
Extrapolation of their 100K data using an exponential fit yields 
around 560 W/m-K at 100K, which is much smaller than their 
claimed 100 K extrapolation value of 37000 W/m-K.   
 
Comparison to Literature Values 

Although extrapolation using different fitting functions 
will result in different thermal conductivity values from 
homogeneous NEMD, it is not clear how the presented k versus 
Fe data in Berber’s paper could be extrapolated to yield such a 
high 100 K thermal conductivity value.  This also brings into 
question the value of 6600 W/m-K reported at 300K.  Moreland 
et al. [15], Maruyama [16], and recently Padgett et al. [14] all 
used direct NEMD and found similar conductivity values, 
despite using different potentials and boundary conditions. 
Results in the present paper for both EMD and homogeneous 
NEMD cases are similar to those in the above three papers but 
are much smaller than that from Che et al. [13] who used EMD 
and the same boundary conditions. The only difference is the 
potential, REBO versus Tersoff-Brenner, which did not appear 
to play a significant role in the three  direct NEMD simulations 
above. The reason for the difference between Che’s and the 
present data are thus still not clear, although scaling by the 
same cross sectional area reduces the discrepancy to a factor of 
3-4.  Osman et al. [12] used the same NEMD and heat flux 
control technique as Padgett et al. [14] but got much higher 
values.  At present, these discrepancies are also not understood, 
unless they are a result of stress or some other unknown factor.  
As the majority of reported values, including the values in the 
present paper, are of the order of a few hundred W/m-K for the 
tube lengths considered, and because the papers in agreement 
are more recent than those reporting very high thermal 
conductivities, it is believed that the simulations reporting 
lower thermal conductivity are more likely to be correct.  The 
ultimate test of correctness is, however, similarity to 
experimental data.  The ‘correct’ simulations in Table 1 are an 
order of magnitude lower than available experimental data, but 
are also performed on tubes that are short (< 100 nm) relative to 
the expected experimental lengths of a few microns in order to 
enable comparison of a variety of papers.  Simulations on 
longer tubes (400 nm [16] and 1000 nm [15]) indicate that 
thermal conductivity has still not converged and will continue 
to increase with tube length.  This behavior is expected due to 
the long phonon mean free path and is a likely reason for the 
low ‘correct’ values.  Additionally, the homogeneous NEMD 
method yields values almost a factor of 6 higher for the EMD 
method for the same tube length.  This indicates that calculated 
 

values approaching experimental values may be attainable for 
simulations performed on sufficiently long tubes.  It remains to 
be seen whether differences in intermolecular potential will 
have a significant effect at longer tube lengths.  

CONCLUSIONS 
Using molecular dynamics simulations we have calculated 

the thermal conductivity for (10, 10) single-wall carbon 
nanotubes as function of temperature, length, and simulation 
method for both free boundary and periodic boundary 
conditions. To qualitatively account for the quantum effect, a 
correction is made to the thermal conductivity. The corrected 
values increase with increasing temperature and fall off at high 
temperature showing a trend that is consistent with 
experimental observations. The free boundaries reduce phonon 
lifetime due to additional phonon scattering at tube ends and 
therefore give lower thermal conductivity than that of periodic 
boundary conditions. Thermal conductivity increases with 
length at all temperature and boundary conditions but still 
shows no convergence at the longest tube length 40nm.   An 
uncorrected value of about 160 W/m-K is found at 300K for 
this tube length using equilibrium molecular dynamics.  
Homogeneous nonequilibrium molecular dynamics simulation 
indicates a factor of ~6 increase as compared to equilibrium 
molecular dynamics for 10 nm tubes at 300K (285 vs. 50 W/m-
K). The time constant 2τ  of the double exponential fit for the 
heat current autocorrelation function increases with length at 
low temperature but shows no length dependence at high 
temperatures.  It remains to be seen how appropriate a single 
frequency independent value is in predicting thermal 
conductivity. Comparison of the present values to those 
reported previously indicate that the lower values calculated in 
Refs. [14-16] are more likely to be correct than the others.  
Discrepancies between simulated and experimental values are 
attributed to length effects, and may also arise the effects of 
simulation method, stress, and intermolecular potential.  
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