
Online Portfolio Selection with Group Sparsity

Puja Das and Nicholas Johnson and Arindam Banerjee
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

{pdas, njohnson, banerjee}@cs.umn.edu

Abstract

In portfolio selection, it often might be preferable to focus
on a few top performing industries/sectors to beat the mar-
ket. These top performing sectors however might change over
time. In this paper, we propose an online portfolio selec-
tion algorithm that can take advantage of sector informa-
tion through the use of a group sparsity inducing regularizer
while making lazy updates to the portfolio. The lazy updates
prevent changing ones portfolio too often which otherwise
might incur huge transaction costs. The proposed formula-
tion leads to a non-smooth constrained optimization problem
at every step, with the constraint that the solution has to lie
in a probability simplex. We propose an efficient primal-dual
based alternating direction method of multipliers algorithm
and demonstrate its effectiveness for the problem of online
portfolio selection with sector information. We show that our
algorithm OLU-GS has sub-linear regret w.r.t. the best fixed
and best shifting solution in hindsight. We successfully estab-
lish the robustness and scalability of OLU-GS by performing
extensive experiments on two real-world datasets.

1 Introduction
Investors often follow a top down approach which usually
involves group selection followed by identifying the most
profitable stocks within a group. One of the ways investors
group stocks is by the type of business. The idea is to put
companies in similar sectors together. However, not all sec-
tors can yield profit and not all stocks in a particular sec-
tor can be profitable. Moreover, sectors might react differ-
ently during different economic conditions (Li, Vassalou,
and Xing 2006; Arouri and Nguyen 2010). For example, de-
fensive sectors like utilities and consumer staples are robust
to economic downturns whereas cyclical sectors which in-
clude technology, financials, health care, etc., tend to react
quickly to fluctuations in the market. We are particularly in-
terested in taking advantage of and exploiting any underly-
ing structure amongst the stocks for the problem of online
portfolio selection.

Online portfolio selection has largely been a success
story (Cover 1991; Helmbold et al. 1998; Cesa-Bianchi
and Lugosi 2006; Agarwal et al. 2006; Borodin, El-Yaniv,
and Gogan 2004; Das and Banerjee 2011; Li et al. 2011;
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Das, Johnson, and Banerjee 2013; Li and Hoi 2014) over
the last two decades. These new methods for portfolio se-
lection have been designed to not make any statistical as-
sumptions regarding the movement of stocks (Cover 1991;
Cover and Ordentlich 1996; Helmbold et al. 1998). More-
over, in a well-defined technical sense, such methods are
guaranteed to perform competitively with certain families of
adaptive portfolios even in an adversarial market. However,
the existing work has not attempted to take advantage of the
group structure that could exist amongst the stocks.

We specifically focus on using a group sparsity induc-
ing regularizer in an online learning framework where the
updates to the solutions are sparse. Such lazy updates are
motivated by our desire to handle proportional transaction
costs in the portfolio selection problem. An investor could
incur substantial transaction costs if his portfolio changes
aggressively everyday (Das, Johnson, and Banerjee 2013;
Blum and Kalai 1997; Davis and Norman 1990).

In this paper, we first propose our general online lazy
updates with group sparsity framework and go on to show
that the online portfolio selection with sector information
is a special case of this framework. Next, we introduce our
OLU-GS algorithm which induces group sparsity and en-
sures that the updates are lazy. This results in solving a con-
strained non-smooth convex optimization problem at every
iteration. We propose a novel alternating direction method
of multipliers (ADMM) algorithm to solve this problem ef-
ficiently. In our analysis, which applies to any convex com-
posite function with lazy updates, we show that our algo-
rithm has O(

√
T ) regret for general convex functions and

O(log T ) regret for strongly convex functions. Additionally,
we prove regret bounds with respect to a shifting solution
which has the benefit of hindsight.

We conduct extensive experiments on two real-world
datasets and use the Global Industry Classification Standard
to group the stocks into sectors for 22 years of the bench-
mark NYSE dataset with 30 stocks and 8 sectors and 22
years of a S&P500 dataset with 243 stocks and 9 sectors.
Our experiments show that our sparse group lazy portfolios
can take advantage of the sector information to beat the mar-
ket and are scalable with transaction costs. It shows an in-
teresting group switching behavior and could be especially
beneficial for individual investors who have expertise in se-
lect market sectors and are averse to changing their portfolio.



2 Online Portfolio Selection
We consider a stock market consisting of n stocks
{s1, . . . , sn} over a span of T periods. For ease of expo-
sition, we will consider a period to be a day, but the analysis
presented holds for any valid definition of a ‘period’ such
as an hour or a month. Let xt(i) denote the price relative
of stock si in day t, i.e., the multiplicative factor by which
the price of si changes in day t. Hence, xt(i) > 1 implies
a gain, xt(i) < 1 implies a loss, and xt(i) = 1 implies
the price remained unchanged. We assume, xt(i) > 0 ∀ i, t.
Let xt = 〈xt(1), . . . , xt(n)〉 denote the vector of price rel-
atives for day t, and let x1:t denote the collection of such
price relative vectors up to and including day t. A portfolio
pt = 〈pt(1), . . . , pt(n)〉 on day t can be viewed as a prob-
ability distribution over the stocks that prescribes investing
pt(i) fraction of the current wealth in stock si. Note that the
portfolio pt has to be decided before knowing xt which will
be revealed only at the end of the day. The multiplicative
gain in wealth at the end of day t is then simply pTt xt =∑n
i=1 pt(i)xt(i). For a sequence of price relatives x1:t−1 =

{x1, . . . ,xt−1} up to day (t − 1), the sequential portfolio
selection problem in day t is to determine a portfolio pt
based on past performance of the stocks. At the end of day
t, xt is revealed and the actual performance of pt gets deter-
mined by pTt xt. Over T periods, for a sequence of portfo-
lios p1:T = {p1, . . . ,pT }, the multiplicative gain in wealth
is ST (p1:T , x1:T ) =

∏T
t=1

(
pTt xt

)
and the logarithmic gain

in wealth is, LST (p1:T , x1:T ) =
∑T
t=1 log

(
pTt xt

)
. Ideally,

for a costless environment (no transaction costs) we would
like to maximize LST (p1:T , x1:T ) over p1:T . However, on-
line portfolio selection cannot be posed as an optimization
problem due to the temporal nature of the choices: xt is not
available when one has to decide on pt. Further, (statistical)
assumptions regarding xt can be difficult to make.

3 Portfolio Selection with Group Sparsity
We focus on the problem of online portfolio selection with
group sparsity where the groups are the pre-specified market
sectors. The goal is to adaptively identify and invest in a
few top performing sectors at any given period. In order to
make our approach practical, we do not want the portfolios
to change drastically everyday as an investor will have to
pay transaction costs. So we encourage lazy updates to our
portfolios along with group sparsity.

3.1 Related Work
Previous work (Cover 1991; Helmbold et al. 1998; Agarwal
et al. 2006; Das and Banerjee 2011) have shown that their al-
gorithms are guaranteed to perform competitively with cer-
tain families of adaptive portfolios even in an adversarial
market in a costless setting without making any statistical
assumptions regarding the movement of the stocks. (Das,
Johnson, and Banerjee 2013) considers transaction costs in
their formulation, and can be posed as a special case of
our framework which we are about to present. Heuristics
have been shown to have empirical advantages in certain
settings (Borodin, El-Yaniv, and Gogan 2004; Li et al. 2011;

Li and Hoi 2014). However, none of the existing work in on-
line portfolio selection has attempted to investigate or take
advantage of the group structure (pre-specified or modeled)
within the stocks in their algorithm setting.

3.2 Problem Formulation
We present a general formulation for our online lazy algo-
rithm with group sparsity and go on to show how the port-
folio selection problem is a special case of our setting. In
an online lazy setting, the optimization proceeds in rounds
where in round t the algorithm has to pick a solution from
a feasible set, pt ∈ P , such that it is sparse in the number
of groups picked and close to the previous solution pt−1.
Nature then reveals a convex loss function, ft, and we ob-
serve its value ft(pt). Ideally, over T rounds we would like
to minimize the quantity,

T∑
t=1

{ft(pt) + λ1Ω(pt)}+ λ2

T−1∑
t=1

||pt+1 − pt||1 . (1)

In (1), the Ω(·) penalty function can be any group norm
which will ensure group sparsity. We adopt the “groupwise”
`2-norm used in group lasso (Yuan and Lin 2006; Friedman,
Hastie, and Tibshirani 2010) as our regularizer, i.e.,

λ1Ω(p) = λ1

G∑
g=1

wg‖p|g‖ . (2)

We call G our set of groups and ∀g ∈ G, g ⊆ {1, · · · , n}.
p|g is the vector whose coordinates are equal to those of p
for indices in the set g. (wg)g∈G denotes positive weights
and ‖ · ‖ is the euclidean norm. To introduce group sparsity,
it is also possible to impose other joint regularization on the
weight, e.g. the `1,∞-norm (Quattoni et al. 2009). We con-
sider the case where the groups are disjoint, i.e. G is separa-
ble over {1, · · · , n}, however our framework and algorithm
can be extended to the overlapping group lasso case (Jacob,
Obozinski, and Vert 2009). The `1 penalty term in (1) en-
sures that the updates to the solution pt are lazy.

Absolute minimization of (1) is not reasonable because
we do not know the sequence of ft a priori. If the fts are
known, (1) reduces to a batch optimization problem: a spe-
cial case is the fused group lasso when ft is quadratic (Fried-
man, Hastie, and Tibshirani 2010; Tibshirani et al. 2005) or
TV regularization (Rudin, Osher, and Fatemi 1992). Alter-
natively, over T iterations we intend to select a sequence of
pt such that the following regret bound is sub-linear in T ,

RT =

T∑
t=1

ψt(pt)− min
p∗∈P

T∑
t=1

ψt(p
∗) ≤ o(T ) (3)

where ψt(p) = ft(p) + λ1Ω(p) + λ2||p − pt−1||1
is non-smooth and p∗ is the minimizer of

∑T
t=1 ψt

in hindsight. Note that while the pts can change
over time, p∗ is fixed. That is, the minimizer,
p∗=argminp

∑T
t=1 ψt(p)=argminp

∑T
t=1ft(p)+λ1Ω(p),

since it incurs zero `1 penalty in every iteration.
Additionally, we examine the case where the comparator

class can also change over time. In particular, we consider



the sequence {p∗1, · · · ,p∗T } which has the power of hind-
sight. Then, over T iterations we ensure that the following
shifting regret bound is sub-linear in T :

T∑
t=1

ψt(pt)− min
p∗1 ,··· ,p∗T

T∑
t=1

ψt(p
∗
t ) (4)

≤ o(T ) + c size(〈p∗1, · · · ,p∗T 〉) ,

where size(〈p∗1, · · · ,p∗T 〉) intuitively measures the amount
of shifting that occurs in the best sequence of solutions
in hindsight and c is a constant. Online portfolio selection
with group sparsity can now be viewed as a special case of
the above setting where ft(p) = − log(pTxt) and the `1
penalty term on the difference of two consecutive portfolios
measures the fraction of wealth traded. The parameters λ1
controls how many groups are selected (setting λ1 = 0 re-
duces to (Das, Johnson, and Banerjee 2013)) and λ2 controls
the amount that can be traded every day.

4 Online Lazy Updates with Group Sparsity
We now present our Online Lazy Updates with Group Spar-
sity (OLU-GS) algorithm. In the sequel, we show that using
the solutions generated by OLU-GS, we can achieve sub-
linear regret for the non-shifting (3) and shifting case (4). At
the beginning of day t + 1, we find a new solution pt+1 by
minimizing the following:

pt+1 = argmin
p∈4n

〈∇ft(pt),p〉+ λ1Ω(p) (5)

+ λ2||p− pt||1 +
1

2η
||p− pt||22,

where we have linearized ft around pt. Our objective
function in (5) is composite with smooth and non-smooth
terms with the probability simplex as a constraint set.
Although there is literature on solving composite func-
tions (J. Duchi et al. 2010; Yu 2013), composite functions
with linear constraints have not been adequately investi-
gated. We propose an Alternating Direction Method of Mul-
tipliers (ADMM) (Boyd et al. 2011) based efficient primal-
dual algorithm to solve (5). ADMM has been applied in
many large scale statistics and machine learning problems
because of its computational benefits and fast convergence
in practice (Boyd et al. 2011). We rewrite (5) in ADMM
form by introducing auxiliary variables y and z

argmin
p∈4n,p=y,p−pt=z

〈∇ft(pt),p〉+ λ1Ω(y) + λ2||z||1 (6)

+
1

2η
||p−pt||22 .

Using variable splitting, we write the augmented lagrangian
as, L(p,y, z,w,v) = 〈∇ft(pt),p〉+ λ1Ω(y) + λ2‖z‖1 +
1
2η ||p−pt||

2
2+β

2 ||p−y+w||22+β
2 ||p−pt−z+v||22, where w

and v are the scaled dual variables and p∈4n. Splitting
the variables as we do in (6) has two advantages. Firstly, we
will show there is a closed form solution for each update.
Secondly, the updates for y and z can be done in parallel
and the same is true for the scaled dual variables w and v.

Algorithm 1 OLU-GS Algorithm with ADMM
1: Input pt,xt,∇ft(pt),G, λ1, λ2, η, β
2: Initialize p,y, z,w,v ∈ 0n, k = 0

3: Set â = 1+ηβ
1+2ηβ

and b̂ = ηβ
1+2ηβ

and ĉ = η
1+2ηβ

4: ADMM iterations

pk+1
t+1=

∏
p∈4n

{̂
apt−ĉ∇ft(pt)+b̂(y(k)+z(k)−w(k)−v(k))

}
(12)

y
(k+1)

|g = Sλ1/β(p
(k+1)

|g − pt|g +w
(k)

|g ), ∀g ∈ G (13)

z(k+1) = Sλ2/β(p
k+1
t+1 − pt + vk) (14)

w(k+1) = w(k) + (p(k+1) − y(k+1) +w(k)) (15)

v(k+1) = v(k) + (p(k+1) − pt − z(k+1) + v(k)) (16)

where
∏

4n
is the projection to the simplex and Sρ is the

shrinkage operator.
5: Continue until Stopping Criteria is satisfied

ADMM consists of the following iterations for solving pt+1,

p
(k+1)
t+1 =argmin

p∈4n

〈∇ft(pt),p〉+
1

2η
||p− pt||22 (7)

+
β

2
||p− y(k) + w(k)||22 +

β

2
||p− pt − z(k) + v(k)||22

y(k+1) = argmin
y

λ1Ω(y) +
β

2
||p(k+1)

t+1 −y+w(k)||22 (8)

z(k+1)=argmin
z

λ2||z||1+
β

2
||p(k+1)

t+1 −pt−z+v(k)||22 (9)

w(k+1) = w(k) + (p
(k+1)
t+1 − y(k+1)) (10)

v(k+1) = v(k) + (p
(k+1)
t+1 − pt − z(k+1)) . (11)

p-update: We take the derivative of (7) w.r.t. p and set it to
zero to get a closed form update of p as ∇ft(pt)+ 1

η (p −
pt)+β(p−y(k)+w(k))+β(p−pt−z(k)+v(k))=0. Rear-
ranging this and setting â= 1+ηβ

1+2ηβ , b̂= ηβ
1+2ηβ , and ĉ= η

1+2ηβ ,
we get (12).

∏
p∈4n

is the projection operator which is
carried out as in (Duchi, Singer, and Chandra 2008).
y-update: We can rewrite (8) as

y(k+1) = argmin
y

1

2
||p(k+1)+w(k)−y||22+

λ1
β

Ω(y) . (17)

When Ω(·) is a group lasso penalty with l2-norm, with G
being a partition of {1, · · · , n}, (17) is separable in every
group, and the solution is a generalization of the soft thresh-
olding operator to groups of variables (Jenatton et al. 2010):

∀g ∈ G,y|g =

{
0 if ||q|g||2 6 λ̃
||q|g||2−λ̃
||q|g||2

q|g otherwise
(18)

where q=p(k+1)+w(k), λ̃=λ1

β and y|g is a vector of size n
whose coordinates are equal to those of y for indices in the
set g. We obtain a closed form solution for zk+1 by using
the soft-thresholding operator Sρ(a) (Boyd et al. 2011). The



Algorithm 2 Portfolio Selection with Group Sparsity
1: Input G, λ1, λ2, η, β; Transaction cost γ
2: Initialize p1,g = 1

|G| , g = 1, . . . , |G|; p0 = p1;Sγ0 = 1

3: For t = 1, . . . , T
4: Receive xt, the vector of price relatives
5: Compute cumulative wealth: Sγt = Sγt−1× (pTt xt)−
γ × Sγt−1 × ||pt − pt−1||1

6: Update portfolio:
7: pt+1 = OLU-GS(pt,xt,− xt

pTxt
,G, λ1, λ2, η, β)

8: end for

updates for w(k+1) and v(k+1) are already in closed form.
We iterate over the updates until convergence according to
the stopping criteria in (Boyd et al. 2011). Algorithm 1 sum-
marizes the ADMM updates for OLU-GS.

Algorithm 2 outlines our algorithm for computing the
transaction cost-adjusted wealth SγT , where γ is a propor-
tional transaction cost (Das, Johnson, and Banerjee 2013).

5 Analysis
In this paper, we consider updates of the following form:

pt+1 =argmin
p∈P

{
η〈∇ft(pt),p〉+ ηr(p)

+ ηλ2‖p− pt‖1+dφ(p,pt)

}
,

(19)

where r is any non-smooth regularizer and dφ is a
Bregman divergence. Note, that our analysis is different
from (J. Duchi et al. 2010), because of the presence of the
‖p − pt‖1 term in our updates. We call such class of up-
dates: Composite Objective with Lazy Updates. Our OLU-
GS updates in Section 4 are a special case of (19), r = λ1Ω
and dφ(p,pt) = 1

2 ||p − pt||22. In this section we prove re-
gret bounds for two cases: when (1) fts are general con-
vex functions and (2) fts are strongly convex. Moreover, we
prove shifting bounds, where the comparator class can itself
change over time. The proofs of the theorems will be made
available in a longer version of the paper.
(a) General Convex Functions: We assume that ft are gen-
eral convex functions with bounded (sub)gradients, i.e., for
any ĝ ∈ ∂ft(p) we have ‖ĝ‖ ≤ G.

Theorem 1 Let the sequence of {pt} be defined by (19).
Let ft be a Lipschitz continuous function for which
‖∇ft(pt)‖22 ≤ G. Then, by choosing η ∝ 1√

T
and λ2 ∝

1√
T

, we have

T∑
t=1

[ft(pt)+r(pt)+λ2‖pt+1−pt‖1−f(p∗)−r(p∗)]

≤ O(
√
T ) .

(20)

(b) Strongly Convex Functions: We assume that ft are
all β-strongly convex functions. For any (p,pt), ft(p) ≥
ft(pt) + 〈p− pt,∇ft(pt)〉+ β

2 ‖p− pt‖2 .

Sector Example Companies
Consumer Discretionary Nike Inc., Target Corp.

Consumer Staples Costco Co., Beam Inc.
Energy Chevron Corp., Noble Corp.

Financials Equifax Inc., AFLAC Inc.
Health Care Cerner, Pfizer Inc.
Industrials Raytheon Co., 3M Co.

Information Tech Apple Inc., Dell Inc.
Materials Alcoa Inc., Ecolab Inc.
Utilities AGL Resources, AES Corp.

Table 1: Overview of GICS sectors used in our dataset.

Theorem 2 Let the sequence of {pt} be defined by (19).
Let ft be all β-strongly convex. Then, for any λ2 < β/4,
choosing ηt = 2

γt , where γ ∈ (0, β4 − λ2], we have

T∑
t=1

[ft(pt) + r(pt) + λ2‖pt+1 − pt‖1 − f(p∗)− r(p∗)]

≤ O(log(T )) . (21)

(c) Shifting Bounds: For general convex functions as de-
fined in Section 5, we can show the following shifting regret
bound.

Theorem 3 Let {p∗1, · · · ,p∗T } be the best sequence ob-
tained by minimizing (1). For, ‖ 5φ(pt+1)‖∞ ≤ ζ we have

T∑
t=1

[ft(pt)+r(pt)−ft(p∗t )−r(p∗t )]+λ2
T−1∑
t=1

[‖pt+1−pt‖1

−‖p∗t+1−p∗t ‖1]≤O(
√
T )+ ζ

T−1∑
t=1

‖p∗t−p∗t+1‖1. (22)

Here,
∑T−1
t=1 ||p∗t −p∗t+1||1 measures the amount of shifting

that occurs for the best sequence of p∗t s.

6 Experiments and Results
Dataset: The experiments were conducted on data taken
from the New York Stock Exchange (NYSE) and Stan-
dard & Poor’s 500 (S&P 500) stock market index. The
NYSE dataset (Helmbold et al. 1998; Agarwal et al. 2006;
Borodin, El-Yaniv, and Gogan 2004; Cover 1991) consists
of 36 stocks with data accumulated over a period of 22 years
from July 3, 1962 to December 31, 1984. The dataset cap-
tures the bear market that lasted between January 1973 and
December 1974. The S&P500 dataset consists of 258 stocks
with data accumulated over a period of 22 years from 1991
to 2012. The dataset captures the bull and bear markets of
recent times such as the dot-com bubble which occurred
between 1997-2000, the following bubble burst starting in
March 2000 and continuing through 2002, and the recent fi-
nancial and housing bubble burst between 2007-2009.

We used the Global Industry Classification Standard to
group the stocks in the datasets into their designated sectors.
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Figure 1: As λ1 increases the (a) total group lasso value and
(b) number of active group changes decrease.

This resulted in 8 sectors and 30 stocks in the NYSE dataset
and 9 sectors and 243 stocks in the S&P500 dataset. Table 1
shows the sectors represented in the two datasets, and a cou-
ple representative companies from each sector.
Methodology and Parameter Setting: In all experiments
we started with $1 as our initial investment and an ini-
tial portfolio uniformly distributed over the groups to avoid
group bias. We use OLU-GS to obtain our portfolios sequen-
tially and compute the transaction cost-adjusted wealth for
each day. The parameters consist of λ1: weight on group
sparsity norm, λ2: lazy updates weight, η: weight on the `2
norm, and β: the parameter for the augmentation term. For
all our experiments, we set β = 2 which we found to give
reasonable accuracy and use group lasso for group sparsity.

Since the two datasets are very different in nature (stock
composition and duration), we experimented extensively
with a large range of λ1, λ2, and η values from 1e−9 to
1 to observe their effect on group sparsity and lazy updates
to our portfolio. Moreover, we chose a reasonable range of
γ values between 0% and 2% to compute the proportional
transaction costs incurred due to the portfolio update every
day. We have illustrated some of our results with representa-
tive plots from either the NYSE or S&P500 dataset.

We use the wealth obtained (without transaction costs)
from the EG algorithm with experimentally tuned parame-
ters, a Buy-and-Hold strategy, and the best single stock as
benchmarks for our experiments with initial investments of
$1. EG has been shown to outperform a uniform constantly
rebalanced portfolio (Helmbold et al. 1998; Das and Baner-
jee 2011). For the Buy-and-Hold case we start with a uni-
formly distributed portfolio and do a hold on the positions
thereafter (i.e. no trades). For the best single stock case we
observe how the market performs and select the stock that
has accumulated the most wealth at the end of the period.
Note, in a real world situation, this strategy is infeasible
since it is not possible to know the best stock a priori.

6.1 Effect of λ1 for Group Sparsity (Ω(p))
The regularization parameter λ1 for the group lasso term
(Ω(p)) is varied from [1e−9, 1] to obtain different levels of
group sparsity. The value of λ1 has a strong effect on (a)
the total group lasso penalty value, (b) the number of active
groups, and (c) which groups are active.
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Figure 2: As λ1 increases the number of days with high
group lasso value and the number of active groups decrease.

(a) Total Group Lasso penalty: Figure 1(a) plots the value
of the total group lasso penalty (

∑T
t=1 Ω(pt)) as we increase

λ1, keeping λ2 and η fixed. For both the NYSE and S&P500
datasets, we observe that

∑T
t=1 Ω(pt) decreases as we in-

crease λ1, which is in conformance with our objective. Since
the two datasets are different in terms of the total number of
stocks and the number of stocks composing each sector, Fig-
ure 1(a) specifically illustrates how to choose λ1 to attain a
desired level of sparsity for each of the datasets. Figure 2(a)
plots a histogram of the total per day group lasso penalty
with increasing λ1 values for the S&P500. It is fairly evi-
dent that there is a decrease in the number of days with high
group lasso penalty as λ1 increases.
(b) Active Groups: We compute the active groups each day
by selecting the groups in which the majority (80%) of the
wealth is invested. Figure 2(b) plots the number of active
groups per day for the NYSE dataset. With λ1 = 1e−3,
OLU-GS picks up to 4 groups on a particular day. For a
higher value of λ1 = 1 a maximum of 2 groups are selected
to invest in. In particular, the two sectors picked are Basic
Materials and Consumer Discretionary.
(c) Active Groups Changes: Figure 1(b) plots the total
number of times the active groups change for the NYSE
dataset (over 22 years) as λ1 increases. We consider an
active group change as anytime the group composition
changes. The individual line plots indicate different values
of λ2 and η. For λ1 between 1e−6 to 1e−2: with low values
for λ2, the total number of changes in the active groups are
quite high but for a higher value of λ2 = 1e−2 we see a
decrease in the number of active group changes illustrating
the portfolio laziness. With larger values of λ1 ≥ 1e− 2 we
see a dramatic drop in the number of active group changes
and high λ2 values only reemphasize this behavior.

6.2 Wealth and Group Sparsity
To evaluate the practical application of our proposed algo-
rithm, we now analyze its performance when calculating the
transaction cost-adjusted cumulative wealth. Figure 4 shows
how the choice of different λ1 values affect the transaction
cost-adjusted cumulative wealth for the NYSE dataset (for a
fixed λ2 and η value). Figure 5 demonstrates that there exists
a combination of λ1 and λ2 values which make an optimal
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Figure 3: Picking non-cyclic sectors, sectors that tend to perform well during economic downturns, during the 1970s and
dot-com bear markets and cyclic sectors, sectors that perform well during economic booms, during the dot-com bull market.

choice between group sparsity and lazy updates.
EG, Buy-and-Hold, Best Single Stock: We compared the
total wealth without transaction costs of OLU-GS with that
of EG, a Buy-and-Hold strategy, and the best performing
single stock. These strategies are plotted as horizontal lines
and we can see that for the NYSE dataset EG returns $20.89,
Buy-and-Hold returns $20.88, and the best single stock,
Phillip Morris (MO), returns $54.14. In comparison, OLU-
GS returns $71.18 without transaction costs. OLU-GS re-
turns over 3x as much wealth for the NYSE dataset as EG or
Buy-and-Hold do and about $15 more than the best stock.
Figure 4 also shows that OLU-GS is able to return more
wealth than EG and Buy-and-Hold with reasonable trans-
action costs (0.001%, 0.005%, and 0.01%).

6.3 Switching Sectors
We desire that OLU-GS is able to identify the best sectors
automatically. We illustrate the strength of OLU-GS in se-
lecting the best sectors with two examples. A recurring trend
that we observe from our experiments with both the NYSE
and S&P500 datasets is that OLU-GS selects stocks in Con-
sumer Staples during the bear markets. Figure 3(a) clearly
shows that OLU-GS selects and invests in this defensive
sector during the historical bear markets of 1969-1971 and
1975-1977. Another example of a defensive or non-cyclic
sector is Utilities. Figure 3(b) shows that the weight on the
Utilities sector sees a considerable increase during the dot-
com crash. This is interesting because unlike other areas of
the economy, even during bear markets, the demand for Con-
sumer Staples and Utilities do not slow down. These sectors

0.01 0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.6
0

10

20

30

40

50

60

70

80

W
ea

lth

λ
1

 

 
No transaction cost

γ=1e−05

γ=5e−05

γ=0.0001

γ=0.0005

EG

Buy−and−Hold

Best Stock (MO)

Figure 4: Transaction cost-adjusted wealth. OLU-GS returns
more than competing algorithms even with transaction costs.

consist of stocks which are defensive in nature and usually
outperform the S&P500 Index during bearish markets and
under-perform during bullish markets. Sectors like Informa-
tion Technology and Financials comprise of cyclical stocks
which are sensitive to market movements and can take ad-
vantage of the bullish markets. In Figure 3(b), we see that In-
formation Technology sector is picked up during the bullish
markets which preceded the dot-com bubble.

7 Conclusion
In this paper, we have developed a general lazy online
learning with group sparsity framework and an online
learning algorithm (OLU-GS) and show how it can be
applied to the problem of online portfolio selection with
sector information and transaction costs. Our analysis
shows that OLU-GS is competitive with reasonable fixed
and shifting strategies which have the power of hindsight.
Our experimental results illustrate the behavior of group
sparsity and lazy updates and show that OLU-GS is able to
outperform baseline strategies with reasonable transaction
costs. Finally, we demonstrate that OLU-GS is able to
select the best performing sectors during different economic
conditions. In the future we wish to explore the possibility
of learning the group structure from the data itself.
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