Accountability in Distributed Systems

Nimit Singhania
WPE II Presentation
Outline

• Why Accountability?

• Aspects of Accountability

• PeerReview

• CATS

• Network Professional

• Comparison between protocols
Outline

• Why Accountability?
• Aspects of Accountability
• PeerReview
• CATS
• Network Professional
• Comparison between protocols
Problem of fault detection

• Finding faults in Distributed Systems can be difficult
 • Localizing and isolating the faulty nodes
 • Presence of untrusted nodes
 • Such nodes might avoid detection
 • Need evidence to assign blame
• Accountability protocol can help detect such faults
Example - CDN

No way to detect C2 as faulty
Problem of fault detection

• Scenarios

 • C2 blames Source of sending \(f_2' \)

 • C2 blames C1 and C3 of lying

 • C2 claims to follow protocol even though it received \(f_2 \) and sent \(f_2' \)
Problem of fault detection

• Scenarios

• C2 blames Source of sending f2’
 • Source needs evidence of sending f2 to C2

• C2 blames C1 and C3 of lying
 • C1 and C3 need evidence of receiving f2’ from C2

• C2 claims to follow protocol even though it received f2 and sent f2’
 • Other nodes need to inspect C2 to detect that it breached protocol
Solution

- Accountability protocol
 - Each node collects evidence about their correctness
 - Evidence inspected by other nodes
 - If evidence is *incorrect*, node is *faulty*
 - Ensures that a detectably faulty node is eventually detected
 - Ensures correct node is not *falsely implicated*
Solution

Send f2 to C2
Ack f2 from C2

Recv f2' to C2
Ack f2' to C2

Recv f2' from C2
Ack f2' to C2
Scenario 1

Send f2 to C2
Ack f2 from C2

Recv f2' from C2
Ack f2' to C2

Recv f2' from Source
Fwd f2' to C1 & C3
Ack f2' from C1 & C3

Recv f2' from C2
Ack f2' to C2

Source

f1

f2

f3

C2

C1

C3

Recv f2' from Source
Fwd f2' to C1 & C3
Ack f2' from C1 & C3

Recv f2' from C2
Ack f2' to C2
Scenario 2

Source

- Send f2 to C2
- Ack f2 from C2

C2

- Recv f2 from Source
- Fwd f2 to C1 & C3
- Ack f2' from C1 & C3

C1

- Recv f2' from C2
- Ack f2' to C2

C3

- Recv f2' from C2
- Ack f2' to C2
Scenario 3

Source

Send f2 to C2
Ack f2 from C2

Recv f2' from C2
Ack f2' to C2

Recv f2 from Source
Fwd f2' to C1 & C3
Ack f2' from C1 & C3

C1
Recv f2' from C2
Ack f2' to C2

C3
Recv f2' from C2
Ack f2' to C2
Forking Attack

- Send f_2 to C_2
- Ack f_2 from C_2
- Recv f_2' from C_2
- Ack f_2' to C_2
- Recv f_2 from Source
- Fwd f_2 to C_1 & C_3
- Ack f_2 from C_1 & C_3
- Recv f_2' from Source
- Fwd f_2' to C_1 & C_3
- Ack f_2' from C_1 & C_3
- Recv f_2' from C_2
- Ack f_2' to C_2
Outline

• Why Accountability?

• Aspects of Accountability

• PeerReview

• CATS

• Network Professional

• Comparison between protocols
Aspects of Accountability Protocol

- Notion of Correctness
- Evidence Collection
- Evidence Inspection
- Probabilistic Guarantees
- Fault Detection Power
Notion of Correctness

• Correctness properties of a node
• Used to verify evidence provided by a node
• CDN - Node is *correct* if it follows the required protocol of forwarding files
Evidence Collection

- Two components of evidence
- Self-Correctness
 - Evidence of satisfying correctness properties
 - CDN - Log of sequence of actions performed
- Mutual-Correctness
 - Evidence of correct interaction with other nodes
 - CDN - Signed receipts of sending or receiving files
Evidence Inspection

• Consistency
 • Check if the evidence by a node is unique
 • Check if interaction with other nodes is correct
 • CDN - Detects fault when C2 blames Source, C1 or C3

• Audit
 • Check if the evidence satisfies correctness properties
 • CDN - Detects fault when C2 gives incorrect sequence of actions

• Challenge/Response - What if a node does not respond?
Probabilistic Guarantees

• Overhead of Evidence Collection & Inspection huge
 • Huge # of messages exchanged
 • Significant computation required

• Can be reduced with Prob. Guarantees of Fault Detection

• CDN - *Randomly* check transmission of some files from a sequence of files
Fault Detection Power

C1 and C2 give fake evidence to get away
Outline

• Why Accountability?

• Aspects of Accountability

• PeerReview

• CATS

• Network Professional

• Comparison between protocols
PeerReview

• A general accountability protocol

 • Applicable to systems where nodes follow a deterministic protocol

 • Assumes each node can sign messages that can be used as irrefutable evidence

• **Notion of Correctness**: A node is *correct*

 • if it follows a deterministic protocol

 • A reference implementation can be used to replay execution
PeerReview - Evidence Collection

- **Self-correctness**: Sequence of inputs/outputs to a node

- **Mutual-correctness**: *Authenticators* attached to messages and their acks
 - a_1, b_1, a_2, b_2 are authenticators
 - a_1 - Unique hash value of events up to (SEND m_1, b) signed by A

Log of node A
PeerReview - Evidence Inspection

- **Witness Set**(j)
 - A set of nodes responsible for inspecting node j
- Consistency - Authenticators from j are forwarded to its witness set
 - Check if all authenticators are accounted for in j’s log entries
 - Forward authenticators from j’s log to corresponding witnesses
- Audit - Each witness compares log entries against output from the reference implementation
- Challenge/Response - Node marked as suspected if it does not respond
PeerReview - Prob. Guarantees

- Message Complexity of Consistency: $O(w^2)$
 - $w =$ # of witnesses in witness set
- For complete guarantee, $w >$ # of faulty nodes
- if w allowed to have all faulty nodes,
 - $w = O(\log n)$
 - Message Complexity $= O(\log^2 n)$
Peer Review - Fault Detection Power

- Commission Faults - Node sends incorrect message
 - Caught during consistency or audit by witnesses
- Omission Faults - Node refuses to respond
 - Suspected by witnesses
- Non-Observable Faults - No incorrect messages received by correct nodes
 - Faulty nodes can get away by giving fake evidence
Outline

- Why Accountability?
- Aspects of Accountability
- PeerReview
- CATS
- Network Professional
- Comparison between protocols
CATS

- Accountability protocol for network storage
 - Server maintains a set of shared objects
 - Clients can read and write on them
- Helps detect server faults or client misbehavior
- Assumes access to a trusted publishing medium and that clients can sign messages like PeerReview
CATS - Notion of Correctness

- Server is *correct* if
 - Executes writes from authorized clients
 - Applies writes in order
 - Reads return values of latest writes
 - Writes are visible to all authorized clients
CATS - Evidence Collection

• Action Histories
 • Sequence of writes on an object
 - Write C1, O, X, #1
 - Write C4, O, Y, #2
 - Write C2, O, Z, #3

Action History for object O

• State Digests
 • Signed hash over contents of server
 • Can verify if correct values of objects used for digest
 - O1 -> V1
 - O3 -> V3
 - O5 -> V5
 -
 - On -> Vn

Signed Hash d
CATS - Evidence Inspection

- Consistency
 - State digests periodically published to public medium
 - Commits Server to unique view (forking attack not possible)
 - Clients check if their requests are consistent with digests
CATS - Evidence Inspection

- Audit
- Check if digests are computed correctly
- Digests can be checked relative to previous digests
- All correctness properties checked

\[O \rightarrow V \]

\[\ldots \]

\[\text{Write C1, O, X, #5} \]

\[\text{Write C4, O, Y, #6} \]

\[\text{Write C2, O, Z, #7} \]

\[O \rightarrow Z \]

\[\ldots \]

\[d' \]

\[d \]
CATS - Probabilistic Guarantees

- Checking all digests in a span of time - computationally expensive
 - Randomly select k digests to audit from an interval of time
 - Randomly select some objects to audit
Outline

• Why Accountability?

• Aspects of Accountability

• PeerReview

• CATS

• Network Professional

• Comparison between protocols
Network Professional

• Internet - provides no guarantees on performance
 • A path consists of multiple administrative domains

• Accountability protocol to measure domain performance on paths
 • Helps identify low performing domains and debug performance problems

• Assumes packets can be lost, reordered or delayed but not modified or inserted
Network Professional - Terminology

Input Node Output Node Peering Nodes
Network Professional - Notion of Correctness

• Performance of domains
 • Loss Rate - Amount of packet loss experienced
 • Delay - Average delay experienced by packets

• No Absolute notion of correctness

• Link Correctness - link between peering nodes faulty if packets lost, reordered or delayed beyond Δ
 • Used to check consistency
Network Professional - Evidence Collection

- Evidence: Receipts on packets at input and output nodes
 - *Packet Ids* and *Timestamps*
- Generating receipts on each packet - huge overhead
- Protocol allows tuning of overhead
 - At the expense of probably approximately correct measurements
- Each node samples a subset of packets based on *future incoming traffic*
 - If subset of packets is known a-priori, then nodes can bias performance
 - Some packets are labeled as markers and used to select older packets
Network Professional - Consistency

- Assumes receipts are transmitted correctly to all nodes and regulator (No forking attack)

- Checks correctness of link between peering nodes
 - Ensures measurements are consistent with neighboring domains
 - Checks receipts for common subset of packets sampled
 - No loss should be observed
 - Delay not more than Δ
Network Professional - Audit

- Computes measurements between input and output nodes i and j

- $S_i =$ subset of packets sampled at i and must be sampled at j

- $S_j =$ subset of packets actually sampled at j

 - Loss Rate $= (|S_i| - |S_j|)/|S_i|$

 - Effect of reordering cancels out

- Delay computed using packets sampled at both nodes
Network Professional - Fault Detection Power

- A single node cannot generate significantly biased receipts.
- Pair of peering nodes can do so.
 - For example, 5 and 6 decrease time stamps by x.
 - Suppose 4 and 7 are honest.
- N’s delay increased.
- One of the colluding domains will be at loss.
Outline

• Why Accountability?
• Aspects of Accountability
• PeerReview
• CATS
• Network Professional
• Comparison between protocols
Comparison

• Notion of Correctness

 • PeerReview - Implicitly by requiring nodes to follow the protocol

 • CATS - Explicitly via high-level correctness requirements on the service

 • Network Professional - Quantitatively via loss and delay measurements

 • Link Correctness defined to check consistency
Comparison

• Evidence
 • Peer Review - Sequence of messages sent and received
 • CATS - Sequence of messages + Periodic State Snapshots
 • Network Professional - Independent receipts on packets
Comparison

- Evidence Inspection - Audit
 - PeerReview - Complete execution needs to be replayed
 - CATS - Execution split into smaller sequences by digests
 - Some digests selected for audit
 - Auditor signals which digests to audit
 - Network Professional - Receipts on packets generated independently
 - Some packets are selected for computing measurements
 - Implicitly told for which packets to generate receipts
Conclusion

• Accountability can help detect faults in systems

• Consists of evidence collection and inspection

• Evidence checked for consistency and correctness

• Overhead can be reduced at the expense of probabilistic guarantees
References

• K. Argyraki et al. Verifiable Network-Performance Measurements, Co-Next ’10

• A. Haeberlen et al. The Fault Detection Problem, OPODIS ’09

• A. Haeberlen et al. PeerReview: Practical Accountability for Distributed Systems, SOSP ’07

• A. R. Yumerefendi. Strong Accountability for Network Storage, TOS ’07
Questions?