
Privacy-Aware Quadratic Optimization
Using Partially Homomorphic Encryption

Yasser Shoukry(1,2), Konstantinos Gatsis(3), Amr Alanwar(2)

George J. Pappas(3), Sanjit A. Seshia(1), Mani Srivastava(2), and Paulo Tabuada(2)

Abstract— We consider a problem where multiple agents
participate in solving a quadratic optimization problem subject
to linear inequality constraints in a privacy-preserving manner.
Several variables of the objective function as well as the
constraints are privacy-sensitive and are known to different
agents. We propose a privacy-preserving protocol based on
partially homomorphic encryption where each agent encrypts
its own information before sending it to an untrusted cloud
computing infrastructure. To find the optimal solution the cloud
applies a gradient descent algorithm on the encrypted data
without the ability to decrypt it. The privacy of the proposed
protocol against coalitions of colluding agents is analyzed using
the cryptography notion of zero knowledge proofs.

I. INTRODUCTION

In this paper we consider the problem of solving an
important class of convex optimization problems frequently
appearing in estimation and control applications, namely
quadratic programs with linear inequality constraints, defined
over privacy-sensitive data. There has been a vast amount of
work in the literature targeting the problem of performing
computations over sensitive data. We classify the existing
work based on the techniques used to ensure privacy into
three classes: 1) differential privacy, 2) obfuscation, and 3)
homomorphic encryption.

The notion of differential privacy was initially introduced
in the database literature and ensures that if the user decides
to participate in a certain database, then the risk of breaching
privacy of the user’s data by means of data queries is low.
To ensure privacy of the user data against data queries, a
trusted data aggregator corrupts the output of a query by
adding appropriately structured noise [1]. If alternatively the
aggregator is not trusted, the notion of local differential
privacy specifies that every user corrupts its own data before
sending it to the aggregator. Several recent works adopted
differential privacy to solve convex optimization problems
while preserving privacy of user data [2], [3], [4], [5].

This work was partially sponsored by the NSF award CNS-1505799 and
the Intel-NSF Partnership for Cyber-Physical Systems Security and Privacy,
by the NSF award 1136174, by DARPA under agreement number FA8750-
12-2-0247, by TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA. The
U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of NSF, DARPA or the U.S.
Government.

The authors are affiliated with 1 the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley, CA, 2 the
Department of Electrical Engineering, University of California, Los Angeles,
CA, 3 the Department of Electrical and Systems Engineering, University of
Pennsylvania, PA.

These works cover different setups based on the presence or
absence of a trusted data aggregator. Besides these advances,
a major drawback of differential privacy-based protocols for
optimization is the trade-off between accuracy and privacy.
That is, to provide higher privacy guarantees a protocol needs
to add more noise, resulting in the final output differing
significantly from the desired optimal solution [3], [5], and
thus affecting the usability of the output.

The second class of work relies on obfuscation-based
techniques. A randomized transformation, known as the ob-
fuscation transformation, is applied to the actual optimization
problem before it is sent to the cloud to be solved. Upon
finding the optimal solution of the obfuscated problem, the
optimal solution of the original problem can be retrieved by
inverting the obfuscation transformation. Representative of
this class is [6], [7] which considers linear and quadratic
programming problems. Unfortunately, existing obfuscation-
based techniques are only applicable in the case where all
the data is owned by a single agent.

The third class of work, which is the one followed in
our paper, is based on homomorphic encryption techniques.
Homomorphic cryptosystems have the distinguishing ability
to perform operations on encrypted data without being able
to decrypt it [8]. A potential approach to implement convex
optimization algorithms over encrypted data is to use the
new generation of fully homomorphic encryption (FHE)
algorithms [9], [10]. Unfortunately, FHE is overwhelmingly
impractical in terms of execution time [8]. On the other
hand, partially homomorphic encryption (PHE) has been
shown to be computationally practical but comes with the
cost of supporting only limited mathematical operations over
encrypted data. Yet, in recent work PHE has been used to
perform machine learning classification [11] and statistical
estimation of time series [12]. This opens the door for
implementing practical convex optimization algorithms over
encrypted data.

Our work describes how partially homomorphic encryp-
tion can be used to solve quadratic programs with lin-
ear inequality constraints, with formal privacy guarantees.
A major advantage of our technique based on PHE in
comparison to the differential privacy approaches is that it
provides strong formal privacy guarantees without compro-
mising the optimality of the solution. In comparison to the
aforementioned PHE-based works which are tailored towards
specific applications, we show how to solve general classes
of quadratic optimization problems. For brevity, the proofs of
the main technical results are omitted here and are reported
in an extended version of the paper [13].

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1836-9/16/$31.00 ©2016 IEEE 5053

Cloud

C

Ap

Agent

A2

Agent

A1

Agent

...

Target

Node

T

bp, cp

x⇤
b2, c2

b1, c1

Fig. 1: Diagram showing the problem setup. Agents
A1, . . . ,Ap sends their private information to the cloud C
which solves the optimization problem and sends the optimal
solution to the target node T .

II. PROBLEM SETUP

A. Notation

The symbols N, Z, R, and R≥0 denote the set of natural,
integer, real, and non-negative numbers, respectively. The
integer ring of size N is denoted by ZN . The set of positive
definite matrices of size n×n is denoted by Sn++. We denote
by JaKpk the encryption of a ∈ Z using some encryption
algorithm and the public encryption key pk. Similarly, we
denote by DECRYPTsk(JaKpk) the decryption of JaKpk using
the same algorithm and the secret decryption key sk.

B. Problem Setup

We start by defining the parties involved in our problem.
As shown in Fig. 1, we have three types of parties:
• Agents A = (A1, . . . ,Ap): is a set of untrusted parties

participating in solving the optimization problem:

minimize
x∈Rn

1

2
xTQx+ cTAx (1)

subject to A x ≤ bA (2)

where bA ∈ Rm, cA ∈ Rn is privacy-sensitive infor-
mation owned by the agents (we use the subscript A
to stress the fact that this is the agents’ sensitive infor-
mation). More specifically we can decompose bA =
(b1, . . . , bp), cA = (c1, . . . , cp) so that each agent i
owns the parts bi ∈ Rmi , ci ∈ Rni with

∑p
i=1mi =

m,
∑p
i=1 ni = n. Here n,m are the dimensions of

the optimization vector x and the number of inequality
constraints, respectively. The matrices Q ∈ Sn++ and
A ∈ Rm×n are assumed to be public information and
therefore known to all parties. The optimal solution x∗

of this optimization problem is also privacy-sensitive
and needs to be kept private.

• Cloud C: An untrusted party which has a known public
key pkC and a hidden private key skC .

• Target Node T : An untrusted party which has a known
public key pkT and a hidden private key skT . The target
node is the only node that is entitled to know the final
output of the optimization problem x∗. This target node
can be physically the same as any of the agents, or it
can be an entirely different party (other than the cloud).

As shown in Figure 1 we are interested in a protocol where
the cloud collects the agents information and provides the

final solution x∗ of the optimization problem to the target
node with strong privacy guarantees, formally described next.

The quadratic optimization problem (1)-(2) arises in many
applications. For example, consider the problem of estimat-
ing the state x of a dynamical system from sensitive sensor
measurements yA. Under the assumption that the system dy-
namics are public, the state estimation problem can be cast as
a least squares problem of the form: minx∈Rn

1
2 ‖Ox− yA‖

2
2

where O is the well known observability matrix computed
from the publicly known system dynamics. In such a sce-
nario, the matrix Q in (1) and the vector cA in (2) become
Q = OTO and cA = OT yA respectively. The inequality
constraints in (2) capture the scenario where, for example,
the state is constrained to be in a polyhedron whose shape is
publicly known (captured by the matrix A) but its position
and size (captured by the vector bA) depends again on
sensitive information.

C. Adversarial Model and Privacy Goals

We consider a semi-honest adversarial model, also known
as honest but curious. A semi-honest adversary is defined
as one who follows the exact computations of a protocol
with the exception that it keeps record of all intermediate
computations and communication messages exchanged. It
may then use all recorded information along with any other
publicly available information to leak information about the
sensitive data. In addition, we assume that all messages are
exchanged using a broadcasting channel. Therefore, all the
entities can listen to all the exchanged messages

In our setup of Figure 1 different sets of parties might be
adversarial, hence we informally state our privacy notions.
No party involved in the optimization protocol should be able
to determine the values of the sensitive information owned
by other parties. This privacy guarantee should hold even if
some of the parties collude and exchange their private infor-
mation, cryptographic keys, and/or intermediate computation
results. More specifically we consider the following privacy
goals:
• Privacy against agent coalitions: By the end of the

protocol execution, if any agent colludes with up to
k other agents by exchanging their private values, the
coalition should gain zero knowledge about the non-
colluding agents’ private information.

• Privacy against cloud coalitions: By the end of the
protocol execution, if the cloud C colludes with up to
k agents by exchanging their k private values, crypto-
graphic private keys, and intermediate results computed
at C, the coalition should gain zero knowledge about the
non-colluding agents’ private information.

• Privacy against target node coalitions: By the end
of the protocol execution, if the target node T colludes
with up to k agents by exchanging their k private values,
cryptographic private keys, and the final decrypted out-
come of the optimization algorithm, the coalition should
gain zero knowledge about the non-colluding agents’
information.

In Section IV-A these privacy goals are formally defined
using the notion of zero-knowledge proofs.

5054

D. Paillier Additive Partial Homomorphic Encryption

Our protocols utilize a particular homomorphic cryp-
tosystem named “Paillier cryptosystem” [14]. The Paillier
cryptosystem is a public-key cryptosystem that enjoys the
following features:
• Probabilistic encryption: For a given integer a ∈ ZN

(where N = pq is a product of two prime num-
bers p and q), there exist N encryptions of a, i.e.,
JaKpk ∈ Enc(a) ⊂ ZN2 where Enc(a) is the set of
all encryptions of the plaintext a with |Enc(a)| = N .
At encryption time, the Paillier cryptosystem randomly
picks one possible encryption from the set Enc(a).

• Additive Homomorphism: Paillier cryptosystem al-
lows to add two encrypted values, i.e., there exists an
addition operator ⊕ such that JaKpk⊕JbKpk ∈ Enc(a+b)
for any a, b ∈ ZN .

• Multiplication by plain text: Paillier cryptosystem
allows the multiplication of an encrypted value with a
plaintext one, i.e., there exists a multiplication operator
⊗ such that a⊗ JbKpk ∈ Enc(ab) for any a, b ∈ ZN .

Note that the last two properties can be generalized to
perform multiplication between a plaintext matrix and a
vector of encrypted variables. That is, given a vector x ∈ ZnN
and a matrix M ∈ Zn×nN , we can compute MJxKpk where, for
simplicity of notation, we used the juxtaposition in MJxKpk
to denote the multiplication of a plaintext matrix M with an
encrypted vector JxKpk.

Although the Paillier cryptosystem operates over non-
signed integers, the convex optimization problem (1)-(2) is
defined over real variables. For that reason, we rely on a
variant of fixed-point arithmetic encoding [15] which allows
for both signed and fixed-precision non-integer values. Fixed-
precision arithmetic leads to a solution with finite precision
and hence introduces numerical errors to the final solution
of the optimization problem. Such errors can be decreased
by increasing the scaling factor (number of digits after the
radix point) used to represent fractions. In this paper we do
not analyze the errors due to fixed-precision arithmetic.

III. PRIVACY PRESERVING QUADRATIC PROGRAMMING

Consider the quadratic optimization problem subject to lin-
ear inequality constraints presented in (1)-(2). The difficulty
in using PHE to solve this optimization problem in a privacy-
preserving manner is that PHE only supports a limited
number of operations on encrypted data (cf. Section II-
D). Hence common interior-point methods for constrained
optimization [16, Ch. 11] require operations which might be
challenging to implement over encrypted data. We identify
instead an alternative method which is amenable to PHE-
based implementation, in particular a projected dual gradient
method.

Towards this end we associate dual variables µ ∈ Rm≥0
for the constraints in (2) and define the Lagrange dual
problem [16, Ch. 5] as follows

maximize
µ∈Rm

≥0

g(µ) = −1

2
(ATµ+cA)TQ−1(ATµ+cA)−µT bA

(3)

where g(µ) is called the dual function. We assume that the
polyhedral set (2) is strictly feasible (Slater’s condition [16,
Ch. 5.2]), i.e., there exists some x ∈ Rn such that Ax < bA.
Then the original problem (1)-(2) and its dual above have the
same optimal objective value. Moreover, the desired optimal
solution x∗ of the original problem is expressed with respect
to the optimal solution µ∗ of the dual problem as:

x∗ = −Q−1(ATµ∗ + cA), (4)

where the inverse exists as Q is assumed positive definite.
This relationship follows from the KKT optimality con-
ditions [16, Ch. 5.5.3] as the gradient of the Lagrangian
function vanishes at the primal optimal solution.

We propose hence to solve (3) and find µ∗ using the
following projected gradient ascent iteration:

µk+1 = max
{

0, µk + η∇g(µk)
}
, (5)

where:

∇g(µ) = −AQ−1(ATµ+ cA)− bA. (6)

is the gradient of the dual objective function and η > 0 is
a constant step size. The step size η can be chosen so as to
guarantee convergence to the optimal dual point µ∗.

Next we develop a privacy-preserving implementation of
the gradient algorithm (5) using the additive homomorphic
encryption cryptosystem described in Section II-D. This
is facilitated by the fact that the sensitive information cA
and bA appears additively in the gradient direction (6) and
multiplied only by publicly known matrices.

A. Protocol Description

The proposed protocol consists of the following steps:
Step1-Encrypt: Each agent Ai, i ∈ {1, . . . , p} encrypts its
sensitive information bi and ci using the public key pkT of
the target node T , followed by a second encryption using
the public key pkC of the cloud C, and sends the result as a
message to the cloud C:

msgi := (JJbiKpkT KpkC , JJciKpkT KpkC) (7)

The first encryption guarantees that the cloud C cannot
directly access the agents’ data, while the second encryption
prevents the target node T from listening to and decrypting
the messages JbiKpkT , JciKpkT using its own private key skT .
Step2-Compute: Upon receiving all messages, the cloud C
decrypts them using its own private key and constructs:

JbAKpkT =

Jb1KpkT
...

JbpKpkT

 , JcAKpkT =

Jc1KpkT
...

JcpKpkT

 . (8)

Next, the cloud initializes the dual variable µ0 = 0 and
encrypts it as Jµ0KpkT . Then following (5)-(6) the cloud
computes at every iteration:

J∇g(µk)KpkT = −AQ−1(AT JµkKpkT ⊕ JcAKpkT)	 JbAKpkT ,

Jµk+1KpkT = JµkKpkT ⊕ η J∇g(µk)KpkT . (9)

Both computations over encrypted data are enabled by addi-
tive homomorphic encryption.

5055

Agent Nodes Ai Cloud C Target Node T
Input: bi, ci Input: - Input: -

0. Uniformly generate a positive random number r;
1. Encrypt the private information:

msgi ← (8);
2. Send encrypted messages to C;

3. Decrypt all messages sent from Ai;
4. Construct the vectors: JbAKpkT , JcAKpkT ← (7);
5. Encrypt the initial iterate Jµ0KpkT = J0KpkT ;
6. Iteratively update the dual variables: Jµk+1KpkT ← (9);
7. Calculate the obfuscated vector: Jrµk+1KpkT ← (10);
8. Send Jrµk+1KpkT to T ;

9. Decrypt Jrµk+1KpkT ;
10. Send back the projected dual
variables Jrµk+1(i)KpkT ← (11)

11. Calculate the dual variables: Jµk+1KpkT ← (12);
12. Check termination condition:
if k < k

Repeat steps 6-12;
else

Compute the candidate optimal solution: JxKKpkT ← (13);
Send JxKKpkT to T ;

end if
14. Decrypt JxKKpkT and obtain xK ;

Output: - Output: - Output: xK , rµK−1, rµK

TABLE I: Protocol for privacy-aware quadratic programs with inequality constraints (thick arrows indicate the messages
exchanged between different parties).

The remaining step in order to compute the dual vari-
able Jµk+1KpkT for the next iteration would be to take the
maximum between J0KpkT and Jµk+1KpkT as in (5). Unfor-
tunately, partial homomorphic encryption does not preserve
ordering and hence comparisons over encrypted data are
not supported. That is, for two integers a ≤ b in general
JaKpkT 6≤ JbKpkT . To overcome this, we propose to offload
the comparison to the target node T . To avoid the latter
from having direct access to the value of µk+1, the cloud
obfuscates the elements of Jµk+1KpkT by multiplying them
with a uniformly drawn positive random number r ∈ R>0.
That is, the cloud computes

Jrµk+1KpkT = rI ⊗ Jµk+1KpkT (10)

where I is the identity matrix of size m ×m, and sends it
to the target node T .

Upon receiving the message, the target node T decrypts
it using its private key and projects it to the non-negatives
to obtain the obfuscated projected dual variables as:

rµk+1 = max
{

0, rµk+1

}
. (11)

These values are then encrypted again using the public key
of the target node and sent back to the cloud C. Thanks to the
properties of the partial homomorphic encryption, the cloud
C can retrieve the value of Jµk+1KpkT by performing:

Jµk+1KpkT =
1

r
I ⊗ Jrµk+1KpkT . (12)

We note that the employed obfuscation technique is known
as multiplicative blinding and is similar to the well known
additive blinding “one-time pad”. In the next section, we
show that multiplicative blinding preserves the privacy of
Jµk+1KpkT .

Step3-Termination: The iterations in the previous step ter-
minate after a fixed number of iterations K. Then the cloud
C computes the encrypted candidate optimal solution:

JxKKpkT = −Q−1(AT JµKKpkT + cA), (13)

similar to (4) and sends it to the target node T . At the end
of the protocol, the target node T declares its possession
of the final output xK . For technical reasons we artificially
include the decrypted values of the last two messages the
target received, i.e., rµK−1, rµK , as protocol outputs - see
Remark IV.7.

IV. PRIVACY ANALYSIS OF QUADRATIC PROGRAMMING
PROTOCOL

Our goal in this section is to formally analyze the pri-
vacy guarantees of the proposed optimization protocol. In
particular we show that semi-honest colluding parties do not
gain any information by participating in the protocol, or in
other words, they cannot use any polynomial time algorithm
to tell apart their actual observations from the observations
they would obtain from a different set of private data. To
make this precise we employ the notion of zero-knowledge
proofs which in turn depends on the notion of computational
indistinguishability.

A. Computational Indistinguishability and Zero Knowledge
Proofs

In this subsection, we review the standard notion of
computational indistinguishability which will be the basis
for analyzing the privacy guarantees of Protocol I.

Definition IV.1 (Computational Indistinguishability (Defini-
tion 3.2.2 [17])). Let Xi and Yi be binary random variables.
The ensembles Xw = (X1, . . . , Xw) and Yw = (Y1, . . . , Yw)

5056

are computationally indistinguishable in polynomial time,
and we write Xw ≡c Yw, if for every probabilistic polyno-
mial time algorithm D, every positive polynomial p : N →
R>0, and all sufficiently large lengths w ∈ N, the following
is satisfied:∣∣∣Pr[D(x) = 1]− Pr[D(y) = 1]

∣∣∣ < 1

p(w)

where x and y are random samples drawn from the ensem-
bles Xw and Yw, respectively.

It follows from the previous definition that even if an
adversary has access to multiple samples, as long as their
number is polynomial, the probability of distinguishing
between the two ensembles is still negligible (Theorem
3.2.6 [17]).

Consider now a protocol where messages are exchanged
between different parties to compute some function f (where
in our setup the function f is the optimal solution of the
quadratic optimization problem). First, we formally define
the information obtained by each participating party during
the execution of the protocol using the notion of the execu-
tion view of a party.

Definition IV.2 (Execution View). Let f be a deterministic
polynomial-time function and Π a multi-party protocol com-
puting f . Let A1, . . . ,Ap be a set of agents that compute
f(a1, . . . , ap) using Π, where ai is Ai’s input. The view of
a coalition of agents Aj , with j ∈ J ⊆ {1, . . . , p}, during
the execution of Π is the tuple:

VAj∈J (a1, . . . , ap) = (aj∈J ; rAj∈J ;m
Aj∈J
1 , . . . ,m

Aj∈J
t),

where rAj is Aj’s random variables and mAj

1 , . . . ,m
Aj

t are
the messages received by Aj .

The protocol privately computes f if all the information
gained by a semi-honest party during the execution of the
protocol could have also been derived just from the input and
output available to that party, i.e., without even participating
in the protocol. This happens if an algorithm S, referred to as
simulator, using only the party’s input and the final protocol
output can generate an execution view that is computationally
indistinguishable from the party’s actual execution view
obtained during the execution of the protocol. If such a
simulator S exists, then the adversarial party gains zero
knowledge by participating in the protocol. This notion of
zero-knowledge proof is captured by the following definition.

Definition IV.3 (Zero-Knowledge Proof (Definition
7.2.1 [18])). Consider the multi-party protocol Π that
computes the deterministic polynomial-time function
f = (fA1

, . . . , fAp
) where fAi

is the output of f to agent
Ai. A coalition Aj∈J of semi-honest adversaries is said
to gain zero knowledge from the execution of protocol Π
if there exists a probabilistic polynomial time algorithm
SAj∈J such that for every possible input a1, . . . , ap of f :

Sj∈J(aj∈J , fAj∈J (a1, . . . , ap)) ≡c VAj∈J (a1, . . . , ap),

where fAj∈J is all the outputs owned by the coalition Aj∈J
and VAj∈J (a1, . . . , ap) is the execution view of the coalition.

It is crucial to note that the notion of zero-knowledge
proof ensures that the distributed computation of f across
different agents leaks no more information than a centralized
computation, but it does not examine whether the final output
of the function leaks information about the function input.
The latter requires a separate analysis, which we include for
our specific optimization problem in in Section IV-C.

B. Privacy Leakage due to Communication and Internal
Computations

We start by analyzing the leakage due to the exchange
of the messages in the proposed protocol. Recall that in
Section II-C, we assume that all messages are exchanged
using a broadcast channel and hence, all the entities can
listen to all the exchanged messages. First we analyze the
case where agents collude by exchanging their private inputs
as follows.

Theorem IV.4. Consider the privacy-preserving quadratic
programming protocol (Protocol I). Assuming a semi-honest
adversarial model and broadcast communication channels,
under standard cryptographic assumptions, namely the De-
cisional Composite Residuosity (DCR) assumption1, any
coalition of up to p − 1 agents gains zero knowledge from
the execution of the protocol.

Next we analyze the case where the cloud C colludes
with agents by exchanging their private inputs and private
decryption keys. This is captured by the following result.

Theorem IV.5. Consider the privacy-preserving quadratic
programming protocol (Protocol I). Assuming a semi-honest
adversarial model and broadcast communication channels,
under standard cryptographic assumptions, namely the Deci-
sional Composite Residuosity (DCR) assumption, any coali-
tion consisting of the cloud C and up to p− 1 agents gains
zero knowledge from the execution of the protocol.

Finally, we analyze the case where the target node T
colludes with agents by exchanging their private inputs, the
final output of the protocol x∗ as well as private decryption
keys. This is captured by the following result.

Theorem IV.6. Consider the privacy-preserving quadratic
programming protocol (Protocol I). Assuming a semi-honest
adversarial model and broadcast communication channels,
under standard cryptographic assumptions, namely the Deci-
sional Composite Residuosity (DCR) assumption, any coali-
tion consisting of the target node T and up to p− 1 agents
gains zero knowledge from the execution of the protocol.

Remark IV.7. As can be seen from Definition IV.3 zero
knowledge proofs argue about leakage from messages a
party receives given its outputs. Our Protocol I includes
messages the target node receives as outputs because in

1Let N = p × q, |N | = λ be the product of two distinct odd primes p
and q. A number z is said to be an N th residue modulo N2 if there exists
a number y ∈ ZN2 such that z = yNmodN2. The DCR assumption states
that the N th residues are computationally indistinguishable from non N th
residues with respect to probabilistic polynomial time algorithms. The DCR
assumption is one of the standard assumptions in the cryptography literature
and is used to ensure the semantic security of the Paillier cryptosystem [14].

5057

general they leak private information that is not covered
under the notion of zero knowledge proofs. This privacy
concern is examined in the following section. The reason only
the last two messages suffice to be included in the output is
that due to the recursive form of the algorithm all previous
messages can be uniquely reconstructed from these two.

C. Privacy Leakage due to Protocol Output

The next step is to analyze the privacy leaked from the
final output of the protocol. Since at the end of the protocol
neither the agents nor the cloud obtain any output, we focus
only on analyzing the case for the target node. In particular
after running the protocol for infinitely long time so that it
has converged, the target node T obtains outputs: i) the final
solution which has converged to the optimal x∗, and ii) the
last two obfuscated messages which have converged to the
same limit value denoted here by rµ̄∗. To infer private input
information, the target needs to argue about what values of
the private input variables lead to this observed output.

Proposition IV.8. The private value bA cannot be uniquely
determined from the outputs x∗ and rµ̄∗ of the target node
T if and only if rµ̄∗i < 0 for some i ∈ {1, . . . ,m}.

Here rµ̄∗i < 0 implies that the corresponding optimal dual
value is zero, µ∗i = 0. This means that at least one constraint
is inactive at the optimal solution x∗ [16, Ch. 5.5.2] and
the target node cannot uniquely determine the corresponding
bound bA,i. On the other hand, if all constraints (2) are active
at the optimal solution (µ∗ ≥ 0), which can be seen by the
target as rµ̄∗i ≥ 0, then the private value bA is uniquely
determined from the output as bA = Ax∗.

Additionally, we have the following result about the pri-
vacy with respect to cost value cA.

Proposition IV.9. The private value cA cannot be uniquely
determined from the outputs x∗ and rµ̄∗ of the target node
T if and only if rµ̄∗i > 0 for some i ∈ {1, . . . ,m}.

The case rµ̄∗i > 0 corresponds now to the case where the
corresponding constraint is active at the optimal solution x∗.
Intuitively when this fails, all constraints are inactive at the
optimal solution x∗ and they do not play a role. Hence we
have an unconstrained quadratic problem in (1)-(2), i.e., the
optimal solution satisfies the first order condition Qx∗+cA =
0, which reveals the value of cA.

To guarantee privacy with respect to both private values
bA, cA we take the conjunction of the two propositions.

Theorem IV.10. The private values bA , cA cannot be
uniquely determined from the outputs x∗ and rµ̄∗ of the
target node T if rµ̄∗i < 0 and rµ̄∗j > 0 for some i, j ∈
{1, . . . ,m}.

Intuitively this happens when there are both active and
inactive constraints at the optimal solution, confusing the
target node. We also note that if the target node colludes with
a subset of agents, learning their private input data, there is
more privacy leakage than what is provided above for the
target alone. The privacy guarantees against such coalitions
become more complex and will be analyzed in future work.

We note that the above privacy guarantees do not hold for
arbitrary private data but depend on the actual quadratic
problem instance. Future work involves the determination
of algorithms with stronger privacy guarantees.

V. CONCLUSIONS

We have presented a privacy-preserving protocol for solv-
ing quadratic programs defined over private data of multiple
agents. The proposed protocol employs the Pallier addititive
homomorphic cryptosystem, and its privacy guarantees are
analyzed using the notion of zero-knowledge proof. We also
examined conditions under which the output of the protocol,
i.e., the optimal solution, does not completely reveal the
private problem information to an adversarial party. Future
work includes the development of privacy-aware protocols
for general convex optimization problems.

REFERENCES

[1] C. Dwork, “Differential privacy,” in 33rd International Colloquium
on Automata, Languages and Programming, part II (ICALP 2006),
ser. Lecture Notes in Computer Science, vol. 4052. Venice, Italy:
Springer Verlag, July 2006, pp. 1–12.

[2] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed
constrained optimization,” IEEE Transactions on Automatic Control,
2016, (To appear).

[3] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially Private
Distributed Convex Optimization via Functional Perturbation,” ArXiv
e-prints, Dec. 2015.

[4] M. T. Hale and M. Egerstedt, “Differentially private cloud-based multi-
agent optimization with constraints,” in American Control Conference
(ACC), 2015, July 2015, pp. 1235–1240.

[5] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proceedings of the 2015 International Conference on
Distributed Computing and Networking, 2015, pp. 4:1–4:10.

[6] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in INFOCOM, 2011
Proceedings IEEE, April 2011, pp. 820–828.

[7] Z. Xu and Q. Zhu, “Secure and resilient control design for cloud
enabled networked control systems,” in Proceedings of the First
ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy.
ACM, 2015, pp. 31–42.

[8] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter,
and M. Strand, “A guide to fully homomorphic encryption,” IACR
Cryptology ePrint Archive (2015/1192), Tech. Rep., 2015.

[9] K. Kogiso and T. Fujita, “Cyber-security enhancement of networked
control systems using homomorphic encryption,” in 2015 54th IEEE
Conference on Decision and Control (CDC), Dec 2015, pp. 6836–
6843.

[10] T. Fujita, K. Kogiso, K. Sawada, and S. Shin, “Security enhancements
of networked control systems using rsa public-key cryptosystem,” in
2015 10th Asian Control Conference (ASCC), May 2015, pp. 1–6.

[11] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” in 22nd Annual Network and
Distributed System Security Symposium, NDSS, 2015.

[12] E. Shi, R. Chow, T. h. Hubert Chan, D. Song, and E. Rieffel, “Privacy-
preserving aggregation of time-series data,” in In NDSS, 2011.

[13] Y. Shoukry, K. Gatsis, G. J. Pappas, S. A. Seshia, M. Srivastava,
and P. Tabuada, “Cloud-based quadratic optimization using partial
homomorphic encryption,” available on arXiv.

[14] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proceedings of the 17th International Con-
ference on Theory and Application of Cryptographic Techniques, ser.
EUROCRYPT’99, 1999, pp. 223–238.

[15] “Python-Paillier lib,” http://python-
paillier.readthedocs.org/en/latest/phe.html, accessed: 2016-3-12.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2009.

[17] O. Goldreich, Foundations of Cryptography: Volume 1, Basic Tools.
Cambridge University Press, 2007.

[18] ——, Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2004.

5058

