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Abstract—In this paper, we focus on sensor placement in
linear dynamic estimation, where the objective is to place a
small number of sensors in a system of interdependent states
so to design an estimator with a desired estimation performance.
In particular, we consider a linear time-variant system that
is corrupted with process and measurement noise, and study
how the selection of its sensors affects the estimation error
of the corresponding Kalman filter over a finite observation
interval. Our contributions are threefold: First, we prove that
the minimum mean square error of the Kalman filter decreases
only linearly as the number of sensors increases. That is, adding
extra sensors so to reduce this estimation error is ineffective, a
fundamental design limit. Similarly, we prove that the number of
sensors grows linearly with the system’s size for fixed minimum
mean square error and number of output measurements over an
observation interval; this is another fundamental limit, especially
for systems where the system’s size is large. Second, we prove that
the log det of the error covariance of the Kalman filter, which
captures the volume of the corresponding confidence ellipsoid,
with respect to the system’s initial condition and process noise
is a supermodular and non-increasing set function in the choice
of the sensor set. Therefore, it exhibits the diminishing returns
property. Third, we provide an efficient approximation algorithm
that selects a small number sensors so to optimize the Kalman
filter with respect to this estimation error —the worst-case
performance guarantees of this algorithm are provided as well.

Index Terms—Least-Squares Linear Estimator, Minimal Sen-
sor Placement, Greedy Algorithms.

I. INTRODUCTION

In this paper, we consider a linear time-variant system
corrupted with process and measurement noise. Our first goal
is to study how the placement of their sensors affects the
minimum mean square error of their Kalman filter over a
finite observation interval [1]. Moreover, we aim to select a
small number of sensors so to minimize the volume of the
corresponding confidence ellipsoid of this estimation error.
Thereby, this study is an important distinction in the minimal
sensor placement literature [2]–[13], since the Kalman filter is
the optimal linear estimator —in the minimum mean square
sense— given a sensor set [14].

Our contributions are threefold:
Fundamental limits: First, we identify fundamental limits

in the design of the Kalman filter with respect to its sensors.
In particular, given any finite number of output measurements
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over an observation interval, we prove that the minimum
mean square error of the Kalman filter decreases only linearly
as the number of sensors increases. That is, adding extra
sensors so to reduce this estimation error of the Kalman
filter is ineffective, a fundamental design limit. Similarly, we
prove that the number of sensors grows linearly with the
system’s size for fixed minimum mean square error; this is
another fundamental limit, especially for systems where the
system’s size is large. Overall, our novel results quantify the
trade-off between the number of sensors and that of output
measurements so to achieve a specified value for the minimum
mean square error.

These results are the first to characterize the effect of
the sensor set on the minimum mean square error of the
Kalman filter. In particular, in [6], the authors quantify only
the trade-off between the total energy of the consecutive
output measurements and the number of its selected sensors.
Similarly, in [12], the authors consider only the maximum-
likelihood estimator for the system’s initial condition and only
for a special class of stable linear time-invariant systems.
Moreover, they consider systems that are corrupted merely
with measurement noise, which is white and Gaussian. Finally,
they also assume an infinite observation interval, that is, infi-
nite number of consecutive output measurements. Nonetheless,
we assume a finite observation interval and study the Kalman
estimator both for the system’s initial condition and for the
system’s state at the time of the last output measurement. In
addition, we consider general linear time-variant systems that
are corrupted with both process and measurement noise, of any
distribution (with zero mean and finite variance). Overall, our
results characterize the effect of the cardinality of the sensor
set on the minimum mean square error of the Kalman filter,
that is, the optimal linear estimator.

Submodularity: Second, we identify properties for the
log det of the error covariance of the Kalman filter, which
captures the volume of the corresponding confidence ellipsoid,
with respect to the system’s initial condition and process noise
over a finite observation interval as a sensor set function —
the design of an optimal Kalman filter with respect to the
system’s initial condition and process noise implies the design
of an optimal Kalman filter with respect to the system’s state.
Specifically, we prove that it is a supermodular and non-
increasing set function in the choice of the sensor set.

In contrast, in [15], the authors study sensor placement for
monitoring static phenomena with only spatial correlations.
To this end, they prove that the mutual information between
the chosen and non-chosen locations is submodular. Notwith-
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standing, we consider dynamic phenomena with both spatial
and temporal correlations, and as a result, we characterize as
submodular a richer class of estimation performance metrics.
Furthermore, in the sensor scheduling literature [16], the
log det of the error covariance of the Kalman filter has been
proven submodular but only for special cases of systems with
zero process noise [17] and [18]. Nevertheless, we consider
the presence of process noise, and prove our supermodularity
result for the general case.1

Algorithms: Third, we consider the problem of sensor
placement so to optimize the log det of the error covariance
of the Kalman filter with respect to the system’s initial
condition and process noise over a finite observation interval
—henceforth, we refer to this error as log det error, and to
the latter problem as P1. Naturally, P1 is combinatorial, and
in particular, it involves the minimization of a supermodular
set function, that is, the minimum mean square error. Because
the minimization of a general supermodular function is NP-
hard [19], we provide efficient approximation algorithms for
their general solution, along with their worst-case performance
guarantees. Specifically, we provide an efficient algorithm
for P1 that returns a sensor set that satisfies the estimation
guarantee of P1 and has cardinality up to a multiplicative
factor from the minimum cardinality sensor sets that meet the
same estimation bound. Moreover, this multiplicative factor
depends only logarithmically on the problem’s P1 parameters.2

In contrast, the related literature has focused either on
the optimization of average estimation performance metrics,
such as the log det of the error’s covariance, or on heuristic
algorithms that provide no worst-case performance guarantees.
In particular, in [26], the authors minimize the log det of
the error’s covariance matrix of the Kalman estimator for
the case where there is no process noise in the system’s
dynamics —in contrast, in our framework we assume both
process and measurement noise. Moreover, to this end they
use convex relaxation techniques that provide no performance
guarantees. Furthermore, in [27] and [28], the authors design
an H2-optimal estimation gain with a small number of non-
zero columns. To this end, they also use convex relaxation
techniques that provide no performance guarantees. Finally,
in [29], the author designs an output matrix with a desired
norm so to minimize the minimum mean square error of the
corresponding Kalman estimator; nonetheless, the author does
not minimize the number of selected sensors. Overall, with this

1In [18], the authors prove with a counterexample in the context of sensor
scheduling that the minimum mean square error of the Kalman filter with
respect to the system’s state is not in general a supermodular set function. We
can extend this counterexample in the context of minimal sensor placement
as well: the minimum mean square error of the Kalman with respect to the
system’s state is not in general a supermodular set function with respect to
the choice of the sensor set.

2Such algorithms, that involve the minimization of supermodular set
functions, are also used in the machine learning [20], leader selection [2],
[21], [22], sensor scheduling [17], [18], actuator placement [4], [7], [8], [11],
[13], [23] and sensor placement in static environments [15], [24] literature.
Their popularity is due to their simple implementation — they are greedy
algorithms — and provable worst-case approximation factors, that are the
best one can achieve in polynomial time for several classes of supermodular
functions [19], [25].

paper we are the first to optimize the minimum mean square
error of the Kalman filter using a small number of sensors and
to provide worst-case performance guarantees.

The remainder of this paper is organized as follows. In
Section II, we introduce our model, and our estimation and
sensor placement framework, along with our sensor placement
problems. In Section III, we provide a series of design and
performance limits and characterize the properties of the
Kalman estimator with respect to its sensor set; in Section
IV, we prove that the log det estimation error of the Kalman
filter with respect to the system’s initial condition and process
noise is a supermodular and non-increasing set function in the
choice of the sensor set; and in Section V, we provide efficient
approximation algorithms for selecting a small number of
sensors so to design an optimal Kalman filter with respect
to its log det error —the worst-case performance guarantees
of these algorithms are provided as well. Finally, Section VI
concludes the paper. Due to space limitations, the proofs of all
of our results, as well as, the corresponding simulations, are
omitted; they can be found in the full version of this paper,
located at our websites.

II. PROBLEM FORMULATION

Notation: We denote the set of natural numbers
{1, 2, . . .} as N, the set of real numbers as R, and the set
{1, 2, . . . , n} as [n], where n ∈ N. Given a set X , |X |
is its cardinality. Matrices are represented by capital letters
and vectors by lower-case letters. For a matrix A, A> is its
transpose and Aij its element located at the i−th row and j−th
column. ‖A‖2 ≡

√
A>A is its spectral norm, and λmin(A)

and λmax(A) its minimum and maximum eigenvalues, re-
spectively. Moreover, if A is positive semi-definite or positive
definite, we write A � 0 and A � 0, respectively. Furthermore,
I is the identity matrix —its dimension is inferred from
the context; similarly for the zero matrix 0. Finally, for a
random variable x ∈ Rn, E(x) is its expected value, and
C(x) ≡ E

(
[x− E(x)] [x− E(x)]

>
)

its covariance. The rest
of our notation is introduced when needed.

A. Model and Estimation Framework

For k ≥ 0, we consider the linear time-variant system

xk+1 = Akxk + wk,

yk = Ckxk + vk,
(1)

where xk ∈ Rn (n ∈ N) is the state vector, yk ∈ Rc
(c ∈ [n]) the output vector, wk the process noise and vk
the measurement noise —without loss of generality, the input
vector is assumed zero. The initial condition is x0.

Assumption 1 (For all k ≥ 0, the initial condition, the
process noise and the measurement noise are uncorrelated
random variables). x0 is a random variable with covariance
C(x0) = σ2I , where σ ≥ 0. Moreover, for all k ≥ 0,
C(wk) = C(vk) = σ2I as well. Finally, for all k, k′ ≥ 0
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such that k 6= k′, x0, wk and vk, as well as, wk, wk′ , vk and
vk′ , are uncorrelated.3

Moreover, for k ≥ 0, consider the vector of measurements
ȳk, the vector of process noises w̄k and the vector of measure-
ment noises v̄k, defined as follows: ȳk ≡ (y>0 , y

>
1 , . . . , y

>
k )>,

w̄k ≡ (w>0 , w
>
1 , . . . , w

>
k )>, and v̄k ≡ (v>0 , v

>
1 , . . . , v

>
k )>,

respectively; the vector ȳk is known, while the w̄k and v̄k
are not.

Definition 1 (Observation interval and its length). The interval
[0, k] ≡ {0, 1, . . . , k} is called the observation interval of (1).
Moreover, k + 1 is its length.

Evidently, the length of an observation interval [0, k] equals
the number of measurements y0, y1, . . . , yk.

In this paper, given an observation interval [0, k], we con-
sider the minimum mean square linear estimators for xk′ , for
any k′ ∈ [0, k] [1]. In particular, (1) implies

ȳk = Okzk−1 + v̄k, (2)

whereOk is the c(k+1)×n(k+1) matrix [L>0 C
>
0 , L

>
1 C
>
1 , . . . ,

L>k C
>
k ]>, L0 the n×n(k+1) matrix [I, 0], Li, for i ≥ 1, the

n×n(k+1) matrix [Ai−1 · · ·A0, Ai−1 · · ·A1, . . . , Ai−1, I, 0],
and zk−1 ≡ (x>0 , w̄

>
k−1)>. As a result, the minimum mean

square linear estimate of zk−1 is the ẑk−1 ≡ E(zk−1) +

O>k
(
OkO>k + I

)−1
(ȳk −OkE(zk−1)− E(v̄k)); its error co-

variance is

Σzk−1
≡ E

(
(zk−1 − ẑk−1)(zk−1 − ẑk−1)>

)
= σ2

(
I −O>k

(
OkO>k + I

)−1Ok) (3)

and its minimum mean square error

mmse(zk−1) ≡ E
(
(zk−1 − ẑk−1)>(zk−1 − ẑk−1)

)
= tr

(
Σzk−1

)
.

(4)

As a result, the corresponding minimum mean square linear
estimator of xk′ , for any k′ ∈ [0, k], is

x̂k′ = Lk′ ẑk−1, (5)

(since xk′ = Lk′zk−1), with minimum mean square error

mmse(xk′) ≡ tr
(
Lk′Σzk−1

L>k′
)
. (6)

In particular, the recursive implementation of (5) results to the
Kalman filtering algorithm [30].

In this paper, in addition to the minimum mean square error
of x̂k′ , we also consider per (5) the estimation error metric
that is related to the η-confidence ellipsoid of zk−1 − ẑk−1
[26]. Specifically, this is the minimum volume ellipsoid that
contains zk−1 − ẑk−1 with probability η, that is, the Eε ≡
{z : z>Σzk−1

z ≤ ε}, where ε ≡ F−1
χ2
n(k+1)

(η) and Fχ2
n(k+1)

is the cumulative distribution function of a χ-squared random
variable with n(k+1) degrees of freedom [31]. Therefore, the

3This assumption is common in the related literature [26], and it translates
to a worst-case scenario for the problem we consider in this paper.

volume of Eε,

vol(Eε) ≡
(επ)n(k+1)/2

Γ (n(k + 1)/2 + 1)
det

(
Σ1/2
zk−1

)
, (7)

where Γ(·) denotes the Gamma function [31], quantifies the
estimation’s error of ẑk−1, and as a result, for any k′ ∈ [0, k],
of x̂k′ as well, since per (5) the optimal estimator for zk−1
defines the optimal estimator for xk′ .

Henceforth, we consider the logarithm of (7),

log vol(Eε) = β + 1/2 log det
(
Σzk−1

)
; (8)

β is a constant that depends only on n(k+ 1) and ε, in accor-
dance to (7), and as a result, we refer to the log det

(
Σzk−1

)
as the log det estimation error of the Kalman filter of (1):

Definition 2 (log det estimation error of the Kalman filter).
Given an observation interval [0, k], the log det

(
Σzk−1

)
is

called the log det estimation error of the Kalman filter of (1).

In the following paragraphs, we present our sensor place-
ment framework, that leads to our sensor placement problems.

B. Sensor Placement Framework

In this paper, we study among others the effect of the se-
lected sensors in (1) on mmse(x0) and mmse(xk). Therefore,
this translates to the following conditions on Ck, for all k ≥ 0,
in accordance with the minimal sensor placement literature [4].

Assumption 2 (C is a full row-rank constant zero-one matrix).
For all k ≥ 0, Ck = C ∈ Rc×n, where C is a zero-one
constant matrix. Specifically, each row of C has one element
equal to one, and each column at most one, such that C has
rank c.

In particular, when for some i, Cij is one, the j-th state of
xk is measured; otherwise, it is not. Therefore, the number of
non-zero elements of C coincides with the number of placed
sensors in (1).

Definition 3 (Sensor set and sensor placement). Consider a
C per Assumption 2 and define S ≡ {i : i ∈ [n] and Cji =
1, for some j ∈ [r]}; S is called a sensor set or a sensor
placement and each of its elements a sensor.

C. Sensor Placement Problems

We introduce three objectives, that we use to define the
sensor placement problems we consider in this paper.

Objective 1 (Fundamental limits in optimal sensor placement).
Given an observation interval [0, k], i ∈ {0, k} and a desired
mmse(xi), identify fundamental limits in the design of the
sensor set.

As an example of a fundamental limit, we prove that the
number of sensors grows linearly with the system’s size for
fixed estimation error mmse(xi) —this is clearly a major
limitation, especially when the system’s size is large. This
result, as well as, the rest of our contributions with respect to
Objective 1, is presented in Section III.
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Objective 2 (log det estimation error as a sensor set function).
Given an observation interval [0, k], identify properties of the
log det

(
Σzk−1

)
as a sensor set function.

We address this objective in Section IV, where we prove
that log det

(
Σzk−1

)
is a supermodular and non-increasing set

function with respect to the choice of the sensor set —the
basic definitions of supermodular set functions are presented
in that section as well.

Objective 3 (Algorithms for optimal sensor placement). Given
an observation interval [0, k], identify a sensor set S that
solves the minimal sensor placement problem:

minimize
S⊆[n]

|S|

subject to log det
(
Σzk−1

)
≤ R.

(P1)

That is, with P1 we design an estimator that guarantees a
specified error and uses a minimal number of sensors. The
corresponding algorithm is provided in Section V.

All of our contributions with respect to the Objectives 1, 2
and 3 are presented in the following sections.

III. FUNDAMENTAL LIMITS IN OPTIMAL SENSOR
PLACEMENT

In this section, we present our contributions with respect to
Objective 1. In particular, given any finite observation interval,
we prove that the minimum mean square error decreases only
linearly as the number of sensors increases. That is, adding
extra sensors so to reduce the minimum mean square estima-
tion error of the Kalman filter is ineffective, a fundamental
design limit. Similarly, we prove that the number of sensors
grows linearly with the system’s size for fixed minimum mean
square error; this is another fundamental limit, especially for
systems where the system’s size is large. On the contrary, given
a sensor set of fixed cardinality, we prove that the length of the
observational interval increases only logarithmically with the
system’s size for fixed minimum mean square error. Overall,
our novel results quantify the trade-off between the number
of sensors and that of output measurements so to achieve a
specified value for the minimum mean square error.

To this end, given i ∈ {0, k}, we first determine a lower
and upper bound for mmse(xi).4

Theorem 1 (A lower and upper bound for the estimation
error with respect to the number of sensors and the length of
the observation interval). Consider a sensor set S, any finite
observation interval [0, k] and a non-zero σ. Moreover, let
µ ≡ maxm∈[0,k] ‖Am‖2 and assume µ 6= 1. Given i ∈ {0, k},

nσ2li

|S|
(
1− µ2(k+1)

)
/ (1− µ2) + 1

≤ mmse(xi) ≤ nσ2ui,

(9)

where l0 = 1, u0 = 1, lk = λmin

(
L>k Lk

)
and uk = (k +

1)λmax

(
L>k Lk

)
.

4The extension of Theorem 1 to the case µ = 1 is straightforward, yet
notationally involved; as a result, we omit it.

The upper bound corresponds to the case where no sensors
have been placed (C = 0). On the other hand, the lower bound
corresponds to the case where |S| sensors have been placed.

As expected, the lower bound in (9) decreases as the number
of sensors or the length of the observational interval in-
creases; the increase of either should push the estimation error
downwards. Overall, this lower bound quantifies fundamental
limits in the design of the Kalman estimator: first, this bound
decreases only inversely proportional to the number of sensors.
Therefore, the estimation error of the optimal linear estimator
decreases only linearly as the number of sensors increases.
That is, adding extra sensors so to reduce the minimum mean
square estimation error of the Kalman filter is ineffective,
a fundamental design limit. Second, this bound increases
linearly with the system’s size. This is another fundamental
limit, especially for systems where the system’s size is large.
Finally, for fixed and non-zero λmin

(
L>k Lk

)
, these scaling

extend to the mmse(xk) as well, for any finite k.

Corollary 1 (Trade-off among the number of sensors, estima-
tion error and the length of the observation interval). Consider
any finite observation interval [0, k], a non-zero σ, and for
i ∈ {0, k}, that the desired value for mmse(xi) is α (α > 0).
Moreover, let µ ≡ maxm∈[0,k] ‖Am‖2 and assume µ 6= 1. Any
sensor set S that achieves mmse(xi) = α satisfies:

|S| ≥
(
nσ2li/α− 1

) 1− µ2

1− µ2(k+1)
. (10)

where l0 = 1 and lk = λmin

(
L>k Lk

)
.

The above corollary shows that the number of sensors
increases as the minimum mean square error or the number
of output measurements decreases. More importantly, it shows
that the number of sensors increases linearly with the system’s
size for fixed minimum mean square error. This is again a
fundamental design limit, especially when the system’s size is
large.5

IV. SUBMODULARITY IN OPTIMAL SENSOR PLACEMENT

In this section, we present our contributions with respect to
Objective 2. In particular, we first derive a closed formula for
log det

(
Σzk−1

)
and then prove that it is a supermodular and

non-increasing set function in the choice of the sensor set.
We now give the definition of a supermodular set function,

as well as, that of an non-decreasing set function —we follow
[32] for this material.

Denote as 2[n] the power set of [n].

Definition 4 (Submodularity and supermodularity). A function
h : 2[n] 7→ R is submodular if for any sets S and S ′, with
S ⊆ S ′ ⊆ [n], and any a /∈ S ′,

h(S ∪ {a})− h(S) ≥ h(S ′ ∪ {a})− h(S ′).

5For fixed and non-zero λmin

(
L>
k Lk

)
, the comments of this paragraph

extend to the mmse(xk) as well, for any finite k —on the other hand, if
λmin

(
L>
k Lk

)
varies with the system’s size, since λmin

(
L>
k Lk

)
≤ 1, the

number of sensors can increase sub-linearly with the system’s size for fixed
mmse(xk).
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A function h : 2[n] 7→ R is supermodular if (−h) is
submodular.

An alternative definition of a submodular function is based
on the notion of non-increasing set functions.

Definition 5 (Non-increasing and non-decreasing set function).
A function h : 2[n] 7→ R is a non-increasing set function
if for any S ⊆ S ′ ⊆ [n], h(S) ≥ h(S ′). Moreover, h is a
non-decreasing set function if (−h) is a non-increasing set
function.

Therefore, a function h : 2[n] 7→ R is submodular if, for
any a ∈ [n], the function ha : 2[n]\{a} 7→ R, defined as
ha(S) ≡ h(S ∪ {a})− h(S), is a non-increasing set function.
This property is also called the diminishing returns property.

The first major result of this section follows, where we let

Ok ≡ O>k Ok,

given an observation interval [0, k].

Proposition 1 (Closed formula for the log det error as a sensor
set function). Given any finite observation interval [0, k] and
non-zero σ, irrespective of Assumption 2,

log det
(
Σzk−1

)
=

2n(k + 1) log (σ)− log det (Ok + I) . (11)

Therefore, the log det
(
Σzk−1

)
depends on the sensor set

through Ok. Now, the main result of this section follows,
where we make explicit the dependence of Ok on the sensor
set S.

Theorem 2 (The log det error is a supermodular and non-in-
creasing set function with respect to the choice of the sensor
set). Given any finite observation interval [0, k], the

log det
(
Σzk−1

,S
)

=

2n(k + 1) log (σ)− log det (Ok,S + I) : S ∈ 2[n] 7→ R

is a supermodular and non-increasing set function with respect
to the choice of the sensor set S.

The above theorem states that for any finite observation
interval, the log det error of the Kalman filter is a super-
modular and non-increasing set function with respect to the
choice of the sensor set for any finite k. Hence, it exhibits
the diminishing returns property: its rate of reduction with
respect to newly placed sensors decreases as the cardinality
of the already placed sensors increases. On the one hand,
this property implies another fundamental design limit, in
accordance to that of Theorem 1: adding new sensors, after
a first few, becomes ineffective for the reduction of the
estimation error. On the other hand, it also implies that greedy
approach for solving P1 is effective [19], [25]. Thereby, we
next use the results from the literature on submodular function
maximization [33] and provide an efficient algorithm for P1.

V. ALGORITHMS FOR OPTIMAL SENSOR PLACEMENT

In this section, we present our contributions with respect
to Objective 3: P1 is combinatorial, and in Section IV we
proved that it involves the minimization of the supermodular
set function log det error. In particular, because the mini-
mization of a general supermodular function is NP-hard [19],
in this section we provide efficient approximation algorithms
for the general solution of P1, along with their worst-case
performance guarantees.

Specifically, we provide an efficient algorithm for P1 that
returns a sensor set that satisfies the estimation bound of P1

and has cardinality up to a multiplicative factor from the
minimum cardinality sensor sets that meet the same estimation
bound. More importantly, this multiplicative factor depends
only logarithmically on the problem’s P1 parameters.

To this end, we first present a fact from the supermodular
functions minimization literature that we use so to construct
an approximation algorithm for P1 —we follow [32] for this
material. In particular, consider the following problem, which
is of similar structure to P1, where h : 2[n] 7→ R is a
supermodular and non-increasing set function:

minimize
S⊆[n]

|S|

subject to h(S) ≤ R.
(P)

The following greedy algorithm has been proposed for its
approximate solution, for which, the subsequent fact is true.

Algorithm 1 Approximation Algorithm for P .
Input: h, R.
Output: Approximate solution for P .
S ← ∅
while h(S) > R do

ai ← a′ ∈ arg maxa∈[n]\S (h(S)− h(S ∪ {a}))
S ← S ∪ {ai}

end while

Fact 1. Denote as S? a solution to P and as S0,S1, . . . the
sequence of sets picked by Algorithm 1. Moreover, let l be the
smallest index such that h(Sl) ≤ R. Then,

l

|S?|
≤ 1 + log

h([n])− h(∅)
h([n])− h(Sl−1)

.

For several classes of submodular functions, this is the best
approximation factor one can achieve in polynomial time [19].
Therefore, we use this result to provide the approximation
Algorithm 2 for P1, where we make explicit the dependence
of log det

(
Σzk−1

)
on the selected sensor set S. Moreover, its

performance is quantified with Theorem 3.

Algorithm 2 Approximation Algorithm for P1.

For h(S) = log det
(
Σzk−1

,S
)
, where S ⊆ [n], Algorithm

2 is the same as Algorithm 1.
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Theorem 3 (A Submodular Set Coverage Optimization for
P1). Denote a solution to P1 as S? and the selected set by
Algorithm 2 as S. Then,

log det
(
Σzk−1

,S
)
≤ R, (12)

|S|
|S?|

≤ 1 + log
log det

(
Σzk−1

, ∅
)
− log det

(
Σzk−1

, [n]
)

R− log det
(
Σzk−1

, [n]
)

≡ Fi, (13)

where log det
(
Σzk−1

, ∅
)
≤ n(k + 1) log(σ2). Finally, the

computational complexity of Algorithm 2 is O(n2(nk)3).

Therefore, Algorithm 2 returns a sensor set that meets the
estimation bound of P1. Moreover, the cardinality of this
set is up to a multiplicative factor of Fi from the minimum
cardinality sensor sets that meet the same estimation bound
—that is, Fi is a worst-case approximation guarantee for
Algorithm 2. Additionally, Fi depends only logarithmically on
the problem’s P1 parameters. Finally, the dependence of Fi on
n, R and σ2 is expected from a design perspective: increasing
the network size n, requesting a better estimation guarantee by
decreasing R, or incurring a noise of greater variance, should
all push the cardinality of the selected sensor set upwards.

VI. CONCLUDING REMARKS

We considered a linear time-variant system and studied
the properties of its Kalman estimator given an observation
interval and a sensor set. Our contributions were threefold.
First, in Section III we presented several design limits. For
example, we proved that the number of sensors grows linearly
with the system’s size for fixed minimum mean square error;
this is a fundamental limit, especially for systems where the
system’s size is large. Second, in Section IV we proved that
the log det error is a supermodular and non-increasing set
function with respect to the choice of the sensor set. Third,
in Section V, we used this result to provide an efficient
approximation algorithm for the solution of P1, along with
its worst-case performance guarantees. Our future work is
focused on extending the results of this paper to the problem
of sensor scheduling.

REFERENCES

[1] T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation. Prentice
Hall Upper Saddle River, NJ, 2000, vol. 1.

[2] A. Clark, L. Bushnell, and R. Poovendran, “On leader selection for
performance and controllability in multi-agent systems,” in IEEE 51st
Annual Conference on Decision and Control (CDC), Dec 2012, pp. 86–
93.

[3] F. Lin, M. Fardad, and M. R. Jovanovic, “Design of optimal sparse
feedback gains via the alternating direction method of multipliers,” IEEE
Transactions on Automatic Control, vol. 58, no. 9, pp. 2426–2431, 2013.

[4] A. Olshevsky, “Minimal controllability problems,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 3, pp. 249–258, 2014.

[5] S. Pequito, G. Ramos, S. Kar, A. P. Aguiar, and J. Ramos, “On the
Exact Solution of the Minimal Controllability Problem,” arXiv preprint
arXiv: 1401.4209, 2014.

[6] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics,
limitations and algorithms for complex networks,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 40–52, March 2014.

[7] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity
and controllability in complex dynamical networks,” arXiv preprint
arXiv:1404.7665, 2014.

[8] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal
actuator placement with bounds on control effort,” IEEE Transactions
on Control of Network Systems, 2015, in press.

[9] N. Matni and V. Chandrasekaran, “Regularization for design,” in IEEE
53rd Annual Conference on Decision and Control (CDC), 2014, pp.
1111–1118.

[10] S. Pequito, S. Kar, and A. Aguiar, “A framework for structural in-
put/output and control configuration selection in large-scale systems,”
IEEE Transactions on Automatic Control, vol. PP, no. 99, pp. 1–1, 2015.

[11] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal
actuator placement with optimal control constraints,” in Proceedings of
the American Control Conference, July 2015, pp. 2081 – 2086.

[12] G. Yan, G. Tsekenis, B. Barzel, J.-J. Slotine, Y.-Y. Liu, and A.-L.
Barabási, “Spectrum of controlling and observing complex networks,”
Nature Physics, no. 11, pp. 779–786, 2015.

[13] Y. Zhao and J. Cortés, “Gramian-based reachability metrics for bilinear
networks,” arXiv preprint arXiv:1509.02877, 2015.

[14] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Fluids Engineering, vol. 82, no. 1, pp. 35–45,
1960.

[15] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” The Journal of Machine Learning Research, vol. 9, pp. 235–284,
2008.

[16] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
sensor coverage,” Automatica, vol. 42, no. 2, pp. 251–260, 2006.

[17] M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor selection:
Leveraging submodularity,” in 49th IEEE Conference on Decision and
Control (CDC),, 2010, pp. 2572–2577.

[18] S. T. Jawaid and S. L. Smith, “Submodularity and greedy algorithms in
sensor scheduling for linear dynamical systems,” Automatica, vol. 61,
pp. 282–288, 2015.

[19] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM,
vol. 45, no. 4, pp. 634–652, Jul. 1998.

[20] A. Krause and C. Guestrin, “Beyond convexity: Submodularity in
machine learning.”

[21] A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization
framework for leader selection under link noise in linear multi-agent
systems,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp.
283–296, Feb 2014.

[22] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Minimizing
convergence error in multi-agent systems via leader selection: A su-
permodular optimization approach,” IEEE Transactions on Automatic
Control, vol. 59, no. 6, pp. 1480–1494, June 2014.

[23] V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Minimal reachability
problems,” in 54th IEEE Conference on Decision and Control (CDC),
December 2015, to appear.

[24] C. Jiang, Y. Chai Soh, and H. Li, “Sensor placement by maximal
projection on minimum eigenspace for linear inverse problem,” arXiv
preprint arXiv: 1506.00747, 2015.

[25] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating
the maximum of a submodular set function,” Mathematics of operations
research, vol. 3, no. 3, pp. 177–188, 1978.

[26] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Transactions on Signal Processing, vol. 57, no. 2, pp. 451–462, 2009.

[27] N. K. Dhingra, M. R. Jovanovic, and Z.-Q. Luo, “An admm algorithm for
optimal sensor and actuator selection,” in IEEE 53rd Annual Conference
on Decision and Control (CDC), 2014, pp. 4039–4044.

[28] U. Munz, M. Pfister, and P. Wolfrum, “Sensor and actuator placement for
linear systems based on h2 and h∞ optimization,” IEEE Transactions
on Automatic Control, vol. 59, no. 11, pp. 2984–2989, Nov 2014.

[29] M.-A. Belabbas, “Geometric methods for optimal sensor design,” arXiv
preprint arXiv: 1503.05968, 2015.

[30] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I,
3rd ed. Athena Scientific, 2005.

[31] S. Venkatesh, The Theory of Probability: Explorations and Applications.
Cambridge University Press, 2012.

[32] L. A. Wolsey, “An analysis of the greedy algorithm for the submodular
set covering problem,” Combinatorica, vol. 2, no. 4, pp. 385–393, 1982.

[33] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization. New York, NY, USA: Wiley-Interscience, 1988.

196


