2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

Sequential Composition of Robust Controller Specifications

Jerome Le Ny and George J. Pappas

978-1-4673-1405-3/12/$31.00 ©2012 IEEE

Abstract— We present a general notion of robust con-
troller specification and a mechanism for sequentially com-
posing them. These specifications form tubular abstractions
of the trajectories of a system in different control modes,
and are motivated by the techniques available for certifying
the performance of low-level controllers. The notion of
controller specification provides a rigorous interface for
connecting a planner and lower-level controllers that are
designed independently. With this approach, the planning
layer does not integrate the closed-loop system dynamics
and does not require the knowledge of how the controllers
operate, but relies only on the specifications of the output
tracking performance achieved by these controllers. The
control layer aims at satisfying specifications that account
quantitatively for robustness to unmodeled dynamics and
various sources of disturbance and sensor noise, so that this
robustness does not need to be revalidated at the planning
level. As an illustrative example, we describe a randomized
planner that composes different controller specifications
from a given database to guarantee that any corresponding
sequence of control modes steers a robot to a given region
while avoiding obstacles.

I. INTRODUCTION

Formalisms available for the analysis of cyber-
physical systems such as robotic systems, based for
example on hybrid automata mixing discrete events
with differential equations, are arguably unwieldy to
use for system design purposes. Descriptions based
on such general formalisms lead to ubiquitous state-
space explosion problems and often accidentally include
undesired behaviors complicating the analysis, such as
Zeno phenomena. To address these complexity issues,
increasing emphasis is being placed on compositional
design frameworks that allow one to build such systems
from components and derive system properties from the
separate analysis of the individual components [1].

In robot motion planning, several compositional
frameworks have been proposed, including motion de-
scription languages [2], [3] and the maneuver automaton
[4], as well as the sequential composition of funnels
[5]-[7] based on preimage backchaining [8]. In these
examples, a set of controllers is available to execute
specific atomic behaviors, and one wishes to build more

The authors are with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA 19104,
USA jeromel, pappasg@seas.upenn.edu.

complex behaviors from these atoms. A drawback of
most of these frameworks however is that they do not
establish a clear or rigorous separation between the
planning module and lower-level controllers. Hence they
either produce computationally complex planners, which
attempt at verifying low-level properties directly at the
planning level without relying on dedicated control-
theoretic tools such as Lyapunov analysis, or they fail to
provide rigorous guarantees for the overall system, e.g.,
by assuming that the tracking errors of the controllers
can be neglected by the planner. Moreover, the planner
must generally directly integrate the complete system
dynamics, in typically high-dimensional state spaces,
which complicates its task significantly.

The approach of Burridge et al. [5] to sequential
composition of behaviors was an important step in bridg-
ing planning and Lyapunov analysis while enforcing a
certain separation between the design of the different
layers. They limited their study to the class of regulating
controllers however, and did not address quantitatively
certain issues, such as robustness to noise, disturbance,
and unmodeled dynamics. Note that composing only
regulators can be difficult because the Lyapunov analysis
needs to find large basins of attraction for the successive
target points in the state space, see e.g. [7] for recent
work in that direction.

This paper proposes a rigorous interface for connect-
ing and designing relatively independently the planning
and control layers. We do not advocate here the use
of particular planning algorithms or controller design
techniques, but instead we are interested in compact
summaries of the closed loop dynamics that can be
used by a planner in place of detailed differential equa-
tions. Section II introduces such an abstract notion of
controller specification, together with a mechanism for
sequentially composing them. Essentially, a specification
defines a tube around a reference trajectory describing
how accurately a control mode tracks this reference.
Disturbances prevent perfect tracking, but the role of
a controller is to quickly bring the tracking errors
sufficiently close to zero, and numerous design tech-
niques have been devised to achieve this objective with
theoretical guarantees [9]. The funnels of Burridge et al.
[5] correspond to a situation with no external disturbance

5190

and all reference trajectories consisting of fixed points in
the state space. We also specialize our definitions to the
important case of input to output stability specifications,
for which the system in each control mode is required
to be input to output stable [10] with respect to the
disturbance inputs and the tracking error outputs. This
notion provides a suitable concrete way of parametrizing
the tubes, using standard Lyapunov analysis techniques.

With a notion of control mode specification and of
sequential composition of such specifications, we can
then consider the general problem of searching for a
sequence of specifications achieving a desired behavior.
To illustrate these ideas, Section III focuses on steering
a robot from one region to another while avoiding ob-
stacles, and describes how to combine the specifications
with a Rapidly-exploring Random Tree (RRT) planner
[11]. The approach is then applied in Section IV to the
motion planning problem for a curvature constrained
vehicle equipped with a family a simple line tracking
controllers satisfying formal performance specifications.

II. ROBUST CONTROLLER SPECIFICATIONS
A. Notation

For s € R and a map t € R — F'(t), we define
the time shifted map F*° by F*(t) := F(t + s). P(X)
denotes the set of subsets of a set X. We denote the
Euclidean norm of a vector x by |z|. B,(zo) denotes the
Euclidean ball with center zy and radius p > 0. Finally,
we denote the sup norm of a signal ¢t — w(t) over the
interval [0,?) by [lw|l; := supep) [w(t)|, including
|lw]|co When t = co in the definition.

B. Controller Specifications

Consider a system with open-loop dynamics described
in local coordinates by

&= fz,u,w), (D
y = Huz, 2

where z(t) € X 2 R" is the state, u a control input, and
w a disturbance input that can also account for modeling
errors. We wish to steer the output y € Y = RP (a
linear transformation of the state) in the obstacle free
subset Y. C Y. For example, y can be a subset of the
coordinates of x that are subject to collision avoidance
constraints. We assume that H is full row rank.

We use a set of predesigned tracking controllers
to steer the robot. A control mode m consists of a
reference trajectory ¢ — r,,(t) € X, together with a
controller K, specifying the input u(-) as long as the
mode is engaged. The controller is designed so that the
state x tracks 7, and hence the output y tracks the

signal Hr,,. In some cases, only an output reference
trajectory Yrefm could be specified and then we can
typically define r,, = H'y,cfm, where HT is the
Moore-Penrose pseudo-inverse of H, see [12, chap. 4].
In addition, a particular control setup can introduce
additional disturbances denoted v,,, e.g., measurement
noise. Hence a control mode is also associated to a
particular disturbance signal w,, = [w’, L], possibly
of larger dimension than the open-loop disturbance w.

For planning purposes, we only rely on certain per-
formance specifications for a controller and not on the
knowledge of the actual controller design or implemen-
tation. More precisely, we need the following data for a
given control mode.

Definition 1: A controller specification for a control
mode m engaged on the interval [t,,,t)) is a tuple
Om = ("ms Cm, Emy Zm, Dim) Where

1) r, : Ry — X is called the reference trajectory.
We then define the tracking error e, : Ry — X
by e (t) =zt (t) — rp(8), 0 <t <t — tp.

2) C,, C X is called the enabling condition and one
must have e,,(0) € C,,.

3) Em Ry — P(X) is a set-valued function of time,
satisfying &,,(0) C C,;, and e,,, () € &y, (t) for all
0<t<t, —tm.

4) Z,, : Ry — P(Y) is a set-valued function of time,
satisfying He,,(t) € Z,(t) forall 0 < ¢ < ¢, —
tm-

5) D,, is a set of of admissible disturbance signals for
the mode.

A controller specification represents the tracking per-
formance of a controller for a specific reference trajec-
tory. The enabling condition must be met by the system
state in order to engage the controller. The sets &,,(t)
and Z,,(t) represent the tracking errors in the state
and output space respectively. Note that we can always
choose Z,,(t) = HE,,(t) in Definition 1-4). The reason
for a separate definition is that one can sometime get
a better estimate for the output tracking error than for
the state tracking error. The next subsection provides
more concrete representations of these tracking error
sets. Next, we introduce a mechanism for sequentially
composing motion specifications and recording the prop-
agation of the tracking error during switching.

Definition 2: Two controller specifications o, , Om,
for two modes m; and ms can be sequentially composed
after a time d; in mode m;, denoted oy, >4, Om,, if
they satisfy rp,, (d1) + Em, (d1) C 7m,(0) + Gy In
this case, we define the tracking error transition map

i : P(X) x P(Y) = P(X) x P(Y) by

T (gml (dl)v Zm, (dl)) = (&nz (0), Zin, (0))

Omy:0mg

5191

Hence two controller specifications can be sequen-
tially composed after duration d; in mode m; if we
know with certainty that mode m; steered the state close
enough to 73(0) in order to engage mode ms. In this
case, the transition map transforms the set of possible
tracking errors for mode m; at the time of switching
to an initial set of possible tracking errors for mode
my. Finally, the planning problem that we address more
specifically in this paper is the following.

Problem 1: Given a set S C X of possible initial
states x(0) for the system, and a set G C Ypee Of
desired outputs to reach, given a family F of controller
specifications, does there exist K € N and sequences
OmgsOmys---Omy € F and dp,...,dg > 0 such that

1) Sc Gy,

2) Om; Dd; Omyy, 0 <0 <K — 1,

3) Hrpm, (t) + 20, (t) € Yiee, for all 0 < i < K,0 <
t < d; (i.e., collisions are avoided),

4) Hrpmp (di) + Zmy (di) C G.

That is, we are looking at the planning level for a
sequence of specifications that is guaranteed to lead
from a starting region to a goal region while keeping
the output in the obstacle free space Yipee.

C. Input to Output Stability Specifications

The previous subsection defines specifications in ab-
stract set-theoretic terms. In practice, we need to instan-
tiate Definition 1 to versions that are computationally
more convenient and motivated by the tools available
for the analysis and design of controllers.

If some control mode m with a controller K, track-
ing a known continuously differentiable trajectory t —
rm(t) € X is engaged from time ¢,, onward, the closed-
loop system follows the dynamics, for ¢ > 0,

grn = fm(ta Sm; wm)a em(o) S Cm,y (3)
Zm =y — Hry = Hep, Wy, € Dy, 4)

where e, denotes the tracking error as in Definition 1
and the state of the closed-loop system &, = el (LT
includes the state (,,, of the controller K,,. The distur-
bance signal is w,, = [wT, L] as explained previously.

Example 2.1: Consider a dynamic controller with er-
ror feedback,

Cm = U(Cma h(em) + Vm)
U = G(CHL)?

where v, is a noise contaminating a tracking error
measurement i (e,,). Then we have for the closed-loop

system

ém = f(em + Tm>9(Cm)7w) - 'rm

Cm = 77((m7 h(em) + Vm)
Zm = Hem,

which is of the form (3), (4), since since r,,,7,, are
known functions of time.

A convenient requirement for the control modes is that
the closed-loop dynamics (3) in each mode be input to
state stable (ISS) or input to output stable (IOS) [10],
[13]. We use the following terminology. A function ~ :
[0,00) — [0,00) is of class G if it is continuous, non-
decreasing and satisfies y(0) = 0. It is of class /C if it
is of class G and strictly increasing. GL (resp. KL) is
the class of functions [0, 00)? — [0, co) that are of class
G (resp. K) on their first argument and decrease to zero
on their second argument.

For a given mode m with dynamics (3), let us assume
available a set of J,,, inequalities of the form

19" (e ()] < max{ B, (1€ (0)], 1), Vin (lwmlle)}, (5)

for all t > 0, €,,(0) € Cppy, Wy, € D = {w|||w]leo <
a}, and i = 1,...,J,,, where 3! are GL functions
and fy}'n are of class G. In other words, the closed-loop
system in mode m is locally input to output stable [10]
with respect to the input disturbance w,,, and the outputs
g'(em), i = 1,...,Jp,, with the minor variation that
we use functions of class G and GL instead of K and
KL in the definition. These inequalities can be used to
give a representation of the set-valued maps &,,, Z,, of
Definition 1, as explained in the rest of this section.

The ISS and IOS notions [10], [13] are typically
used to study asymptotic stability properties of nonlinear
systems. The function [, characterizes the transient
regime of the mode, and the quantity ~,,(||wm|lso)
the steady-state tracking error. Here however, we use
the functions f3,,,vm, to abstract the dynamics of the
robot over finite time intervals. Of particular interest
for computations are functions 3,, of the exponentially
decreasing form

B (&, 1) = km(E)e ",

where k,, is a function of class G, for example k,, (&) =
ko m |€]. Assuming that the functions k,,, and -y, admit
finite dimensional parametrizations, they can be stored in
memory together with the decay rate \,,. This provides
a finite-dimensional abstraction of the closed-loop dy-
namics of mode m, including the effect of perturbations.
The main advantage of using characterizations of the
form (5) for computations is that Lyapunov analysis
techniques are available to derive such bounds [9].

5192

Example 2.2: Suppose that we only have the follow-
ing two such inequalities for each motion specification.
The first bounds the state tracking error

lem(t)] < max{ B, (1&m (0)],), v (lwmlle)}. (6)

The second bounds the output tracking error

lzm (t)] < maX{ﬁgm(\im(O)L t), V?n(”wmnt)}a (7

assuming it is less conservative than using |He,,| <
|H||lem| in (6). In this case, rp,(t) + En(t) and
Hrp,(t) + Z,,(t) are Euclidean balls around the ref-
erences 7, (t) and Hr,,(t) respectively.

Consider now the transition between two motion
specifications o,,, and o,,,, where o,,, is followed
for a duration d;. From the first inequality (6), we get
a bound of the form |z(t; + di) — 7, (d1)] < p1,
where t; is the time at which mode m; is engaged.
If By, (7m,(d1)) C Tmy(0) + Cpy, We can sequentially
compose the modes. Let to = ¢1 + d;. Since t — x(t)
is continuous, we have

|em, (0)] = |z(t1 + d1) — 7my, (0)]
<p1+ |Tm1 (O) — Tms, (0)‘ = p2.

Hence we can define £3(0) as B, (7, (0)). Moreover,
we have |, (0)] < /02 + Gy ()12, Where Gy (0)
depends on the initialization of the controller for mode
msy. This last bound is used to replace the unknown
quantity |&,,(0)| in the inequalities (6), (7) for oy,
and to obtain representations of the error tracking maps
Ens (1), Zom (1)

III. SEARCHING FOR A SEQUENTIAL COMPOSITION

In this section, we describe a randomized algorithm
to solve Problem 1, based on the RRT planner of [11],
and exploiting the notion of sequential composition of
specifications presented in Section II-B. The pseudo-
code for the algorithm is given as Algorithms 1-3. The
RRT algorithm builds a graph that is eventually used
to steer the system to the goal region by sequentially
composing modes. A node n in the graph records

1) the specification o, of the mode m,, used to reach
the node.

2) the duration d,, since the mode m,, was last en-
gaged.

3) The index pred(n) of the predecessor node in the
tree.

Intuitively, a node n is associated to the point 7, (d,,) €
X. We initialize the tree with a node with index O,
recording %o, an estimate of the initial state, and 30 SO
that S C &g + &, with S as in Problem 1.

Given a partially constructed tree, we create a new
node by first generating a new sample point s in the free
output space Ysreo. Then, we find a node in the RRT,
say node n, close to this sample point according to some
heuristic notion of distance i : N x Y — R,, where
N is the set of nodes in the RRT. Generally p involves
the distance from Hr,,, (d,) to s and a measure of the
size of the output or state tracking error at the node. For
example, we could take p(n,s) = |Hry, (d,) — s| +
a diam(Z,,, (d,)), for some constant o > 0.

Once the sample s is produced and a node n in
the tree is selected “close” to s, we create one or
more new nodes from node n. The function gener-
ating new nodes is described in Algorithm 3. First,
we consider a number of possible specifications that
can be sequentially composed with o, after d,,, with
reference trajectories starting from or close to 7., (dy,),
and preferably steering the output toward s. We also
select deterministically or at random a duration 7' for
which we consider following each of these modes.

Among the set of specifications considered to extend
the tree, we include the possibility of continuing to
follow mode m,, for an additional time 7°, and also se-
lect some other compatible specifications to potentially
switch to. For example, we could switch to tracking a
straight line towards s, if such a mode exists. Collision
avoidance is checked at this stage, to verify that the
tube around a reference trajectory does not intersect
any obstacle. In case of mode switching, we use the
transition map 7 to evaluate the change in the tracking
error sets. We select among the specifications the one
that steers the vehicle closest to s, based on the ‘“dis-
tance” function y, and we add a corresponding node
to the tree with predecessor n. It is also possible to
add several nodes at this step if several motions give
satisfactory performance, with the usual tradeoff due to
longer nearest-neighbor search as the tree gets bigger.

Allowing to continue a given specification is impor-
tant in practice to obtain tighter bounds, because tracking
error sets can grow as we switch from one specification
to another. For example a robot performing a maneuver
can see its localization performance decrease for typical
sensor packages.

IV. EXAMPLE
A. Problem Formulation

The purpose of this section is to illustrate the concepts
outlined above for a specific example, involving robust
motion planning for a Dubins vehicle. The dynamics of
the vehicle with configuration (z,y,) € R? x S!, fixed
constant velocity v and minimum turning radius 1/2 are

5193

Algorithm 1 Robust Forward RRT Planner. 2 is the
initial state estimate, GG is the desired goal set.

Require: z, &0, Z20:G
0 (r 9, C— L, E+ &, 2« Z,,D+ 1)
T .addNode(o,d < 0,pred < 1)
while true do
s < randomOutput(Ysree)
n < T.extend(s)
if 7, (dy) 4+ Em, (dn,) C G then
return 7, n
end if
end while

Algorithm 2 7 .extend(s). 7 .nearestNeighbor(y)
returns the node in 7 closest to y according to .

Tipear < T -nearestNeighbor(s, i)
Npew < generateChildNode(npeqr, S)
T .addNode(npew)

return 7,eq,

Algorithm 3 generateChildNode(n, s). Creates a new
node with predecessor n and specification steering the
system from n towards s. m,, is the mode used to reach
n. closestNode returns a node closest to s from a list
of candidate nodes, according to .

modeList < generateCandidateMotions(n, s)
T = randomTime()
for m in modeList do
if m = m,, then
{- we continue the same mode -}
d«d,+T
0 Om,
Check for collision of the tube Hr,,, (1) +
Zm, (t),t € [dn,d,, + T, with obstacles
else
{- we switch mode -}
Check 7y, (dn) + Em, (dy) C 1,(0) + Cy
50, Z() < Tg{‘mm
0 o 8.t Eq(0) D &y, Z,(0) D 2,
d<T
Check for collision of the tube 7, (t) + Z,(t),t €
[0, T, with obstacles
end if
if all checks passed then

add to candidateNodeList the node
(0,d,pred < n)
end if
end for

return closestNode(candidateNodeList, s, i)

described by the equations

T =vcost +w,, y=vsinf+ w,y,
. 1
0 = 2vsat <2(u+w9)> ,

where sat(r) = max{—1,min{1,2}}. The signal
w(t) = [wy(t),wy(t), we(t)]" represents a bounded
perturbation, and we assume say |wgl,|w,| < 0.02,
|wg| < 0.05. The only available input u controls the
angular rate 0. In particular, the vehicle can only move
forward at fixed velocity v, and we can set v = 1 in
the following without loss of generality. We consider a
family of controllers tracking motions along half-lines
with arbitrary starting point and direction.

B. Line-tracking Controller Specifications

Consider a directed half-line with orientation 6, start-
ing from [r,(0),7,(0)]T. By a change to a new set of
coordinates denoted (, d, ¢), the half-line becomes the
x-axis, oriented toward increasing y-coordinates, § is
the vehicle distance to the line, and ¢ its orientation
with respect to the line. The parametrization of the
error tracking tubes £(t) and Z(¢) as in Definition
1 for a controller tracking this half-line can be done
in this coordinate system. The output coordinates are
X, 9. Assuming for simplicity that the coordinate y can
be measured exactly, the reference trajectory tracked is
r(0) = 0, r(t) = [x(¥),0]T, t > 0. That is, we do
not give an open-loop specification of the y coordinate,
instead the vehicle tracks its own projection on the
half-line. This simplification is possible here since the
speed at which the vehicle progresses along the line is
irrelevant for our basic motion planning problem.

To regulate 4 and ¢ to zero, consider the simple
proportional controller

u=—(1.36+0.9 sin¢), (8)

with the following assumption on the initial state

c={.a0l" |10 < 09,16l < /3 }.

In particular, the vehicle is initially oriented in the
desired direction. Assume an initial tracking error

£(0) = {16,017 Ix] < e, 18] < 5,161 < €},

with 5 < 0.9,€4, < 7/3. Then for ¢ > 0, a Lyapunov
analysis detailed in [14] shows that we can take

&(t) = {Dx.8,6)"|x = 0
|0] < max{kts(e(s,e,j})e*)‘tﬁm},

6] < max{k(es, es)e ™, 6a0} |-

5194

Fig. 1. Illustration of the tubular approximation for a straight line
motion tracked by the vehicle, with ¢(0) = w/3,5(0) = 0.3, x(0) =
1 and perturbation wy = —0.02,ws = 0.02cos(t),wy = —0.05.
The line tracked is the y-axis, dashed.

for some functions ks,kg, and A = 0.0775,00c =
0.27, oo = 0.3469. Fig. 1 illustrates the tube r(t) +
E(t),t>0.

Finally, we consider the composition of two succes-
sive specifications. After following mode m for the
duration d, the robot state is [x(d),d(d),y(d)]" €
[x(d),0,0]T + &(d) in the local coordinate system.
We consider switching to a mode tracking a line with
orientation ¢; with respect to the current direction,
and origin [x(d),0] in the coordinate system of the
specification o,,. Let 6 be the specification of this
second mode. Then one can see that the composition is
valid if [6(d)| < 0.9 and |¢(d)|+ |¢;| < /3. Moreover,
we can set

X(O)] < 18(d)], 15(0)] < |8(a)],
16(0)] < [é(d)| + |6l }

£0) = {[x.6.9

and use these values as €%, €5 €5 Fig. IV-B shows an
example of composition of specifications reaching a
desired goal set, obtained using the RRT algorithm of
Section IIT and the specifications of this section.

Fig. 2. Example of robust path with error tracking tubes. The vehicle
starts from the lower left corner and must reach the encircled green
zone with certainty. We also show the RRT tree built to obtain the
solution.

V. CONCLUSION

This paper introduces a notion of robust controller
specification, and details how to sequentially compose
such specifications to establish the feasibility of a higher-
level planning task, taking into account various sources
of disturbance. In contrast to previously proposed mo-
tion description languages, the atoms do not specify
how the controllers operate, but focus instead on their
trajectory tracking performance, which can be certified
by using techniques from control theory. In particular,
this approach allows to refine the controllers and the
planner independently. In future work it will be used to
design systems that satisfy plans expressed in temporal
logics, and we will study what notions of completeness
can be maintained with such a decomposition.

REFERENCES

[1] L. de Alfaro and T. Henzinger, “Interface theories for
component-based design,” in EMSOFT 2001, ser. LNCS 2211,
2001, pp. 148-165.

[2] R. W. Brockett, “Formal languages for motion description and
map making,” in Robotics, R. W. Brockett, Ed., vol. 41. Provi-
dence, RI: American Mathematical Society, 1990, pp. 181-193.

[3] V. Manikonda, P. S. Krishnaprasad, and J. Hendler, “Languages,
behaviors, hybrid architectures and motion control,” in Math-
ematical Control Theory, J. Bailleul and J. C. Willems, Eds.
New-York: Springer, 1998, pp. 199-226.

[4] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based
motion planning for nonlinear systems with symmetries,” IEEE
Transaction on Robotics, vol. 21, no. 6, pp. 1077-1091, Decem-
ber 2005.

[5] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential
composition of dynamically dexterous robot behaviors,” The
International Journal of Robotics Research, vol. 18, no. 6, pp.
534-555, 1999.

[6] L. Yang and S. M. LaValle, “The sampling-based neighborhood
graph: A framework for planning and executing feedback motion
strategies,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 3, pp. 419-432, June 2004.

[7] R. Tedrake, “LQR-trees: Feedback motion planning on sparse
randomized trees,” Proceedings of Robotics: Science and Systems
(RSS), 2009.

[8] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic
synthesis of fine-motion strategies for robots,” International
Journal of Robotics Research, vol. 3, no. 1, pp. 3-24, 1984.

[9]1 H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[10] E.D. Sontag and Y. Wang, “Notions of input to output stability,”
Systems and Control Letters, vol. 38, pp. 235-248, 1999.

[11] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic
planning,” International Journal of Robotics Research, vol. 20,
no. 5, pp. 378—400, 2001.

[12] B. D. O. Anderson and J. Moore, Optimal Control: Linear
Quadratic Methods. Dover, 2007, republication of the 1990
edition.

[13] E. D. Sontag, “Smooth stabilization implies coprime factoriza-
tion,” IEEE Transactions on Automatic Control, vol. 34, no. 4,
pp- 435443, April 1989.

[14] J. Le Ny and G. J. Pappas, “Sequential composition of ro-
bust controller specifications,” University of Pennsylvania, Tech.
Rep., 2012.

5195

