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Periodic Event-Triggered Average Consensus over Directed Graphs
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Abstract—This paper considers a multi-agent consensus
problem over strongly connected and balanced directed graphs.
Unlike many works that consider continuous or periodic
communication and control strategies, we are interested in
developing an event-triggered algorithm to reduce the overall
load of the network in terms of limited communication and
control updates. Furthermore, we focus on a sampled-data
implementation that allows agents in a communication network
to determine whether locally sampled information should be
discarded or broadcasted to neighbors. This formulation allows
us to automatically rule out Zeno behavior that is often a
challenge in distributed event-triggered systems. We show that
all agents eventually rendezvous at the centroid of their initial
formation given an appropriate selection of the local sampling
period and event-triggering parameters. We demonstrate the
effectiveness of the proposed communication and control law
through simulations.

I. INTRODUCTION

A multi-agent system usually consists of a group of
intelligent agents, such as robots, vehicles, or sensors, that
work cooperatively to tackle problems which are hard or
impossible for an individual system to solve [1], [2], [3], [4].
Each agent is an autonomous entity powered by batteries.
Agents often interact with one another via wireless com-
munication; however, they typically have limited resources
available for computation, communication, actuation, etc.
By reducing the amount of communication required by the
network, we are able to reduce communication energy costs
as well as decrease the chance of congestion issues such
as delays or packet losses. This is our main motivation for
conducting the present study in this paper.

Event-triggered sampling techniques [5] have proven to
be efficient in reducing communication for distributed opti-
mization in sensor networks [6] and they have been applied
to multi-agent systems for reducing the frequency of control
updates in [7], [8]. However, this generally requires agents
to continuously communicate with neighboring agents in
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order to detect potential events. The authors in [7], [8]
also considered self-triggered techniques to avoid continu-
ous communication between neighboring agents. Under the
event-triggered framework, continuous and periodic com-
munication were relaxed in [9] and [6], respectively, by
designing local event triggers that determine when messages
should be broadcasted to neighbors. A challenging issue for
event-triggered control of multi-agent systems is to seek a
strictly positive lower bound of the lengths of inter-event
times. It was shown that the lengths of inter-event times for
at least one agent is strictly greater than a positive constant in
[7]. Instead, the authors in [9] were able to show that inter-
event times for all agents are strictly positive; however, the
possibility of an infinite number of events being triggered in a
finite time period was not ruled out. A strictly positive lower
bound of the lengths of inter-event intervals was derived in
[10], where a time-dependent triggering threshold is used
based on the knowledge of the algebraic connectivity of
the underlying graph. Close to our treatment here, [11] and
[12] use a sampled-data approach in order to guarantee the
absence of Zeno executions [13], but this was only done for
undirected graphs.

There are a few results on event-triggered control for
multi-agent systems over directed networks [14], [15], [16].
Event-triggered control laws are adopted in [14], [15] to
reduce the control updating frequency relying on continu-
ous communication. The absence of accumulation points is
shown in [16], in which each agent monitors the difference
between its local state and the state average of all agents in
the network. Analogous to the undirected network case, to
find a strictly positive lower bound of the lengths of inter-
event times remains challenging for directed networks.

In this paper, we study the sampled-data average consensus
problem for multi-agent systems under the event-triggered
framework to mitigate the communication frequency be-
tween neighboring agents. Different from classic results on
sampled-data consensus [17], a communication logic unit is
configured on each agent, which is known as an event de-
tector, to mediate the data transmission between neighboring
agents. More specifically, some locally sampled data are first
forwarded to the local event detector. If the communication
logic condition is not violated, the sampled data will not be
communicated. Otherwise, an agent broadcasts this data to
its neighbors. The agent and its neighbors will then update
their control signals using this new information. The control
signal is piecewise constant, which is realized by a zero-
order hold between updates. We develop this framework
for both directed and undirected graphs in contrast to many
previous works. It is shown that average consensus is reached
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if each agent chooses an appropriate detection parameter and
a sampling period.

The contributions of this paper are threefold. Firstly, we
propose an event-triggered sampled-data communication and
control algorithm for average consensus on balanced and
connected graphs, which guarantees a strictly positive lower
bound of the inter-event intervals for all agents. Secondly, we
analyze the correctness of the proposed algorithm and show
that the states of all agents on a balanced and connected
graph will asymptotically converge to the initial state average
of all agents with an appropriate choice of the sampling
period and detection parameters. Finally, we are able to
characterize the maximum allowable sampling period for our
algorithm and show that it relaxes the requirement found
in [11] for undirected graphs. Furthermore, our maximum al-
lowable sampling period is in agreement with the maximum
allowable sampling period of the standard periodic sample-
and-hold algorithm in [17]. In other words, it is guaranteed
that our algorithm will not require more broadcasts than a
periodic communication and control algorithm.

Notation: We denote by RP the set of p x 1 real vectors.
We define 15 and Opn to be N x 1 column vectors of all
ones and zeros, respectively. The norm ||| is the 2-norm of
vector x.

II. PROBLEM FORMULATION
A. Algebraic Graph Theory

Here we collect basic definitions about graphs and their
algebraic properties. Further details can be found in [18],
[19].

A directed graph is a pair G = (V, &) which consists of
a vertex set V and an edge set £. The vertex set with NV
elements is represented by V = {v1,va,...,vn}. The edge
set £ C V x V consists of ordered pairs (v;,v;), where
(vs,v;) means that agent v; can receive information from
agent v;. For undirected graphs, edges are unordered pairs
of distinct vertices, that is, the edge (v;,v;) € £ if and only if
(vj,v;) € €. If there exists an edge (v;,v;) € &, then we say
that agent v; is a neighbor of agent v;. The set of neighbors
of agent v; is denoted by N;. A directed path from v; to v; in
a directed graph is a sequence of edges starting with v; and
ending with v;. An undirected path in an undirected graph
is defined analogously. A directed graph is called strongly
connected if for every pair of agents there is a directed path
between them. An undirected graph is called connected if
any two distinct agents are linked by an undirected path.

The adjacency matrix A = [a;;] € RV*N of a directed
graph is defined such that a;; = 1if (v;,v;) € £, and a;; = 0
otherwise. The adjacency matrix of an undirected graph is
defined analogously except that a;; = aj; for all 7 # j. A
directed graph is called balanced if for all i, Zjvzl a;; =

Zjvzl aj;. Every undirected graph is balanced. Define the
Laplacian matrix £ = [l;;] € RV*V ag

N
lyy = E Aij,

j=1,j7i

lij = 7(117'77; 7& ]

For an undirected graph, £ is symmetrical. However, for a
directed graph, £ is not necessarily symmetrical.

For both the undirected and directed cases, the vector of all
ones is the eigenvector associated with the zero eigenvalue
of £ because L has zero row sums. The Laplacian matrix
L of a balanced graph has zero column sums too. For an
undirected graph, £ is positive semidefinite, whereas, for a
directed graph, all nonzero eigenvalues have positive real
parts. For an undirected graph, O is a simple eigenvalue of
L if and only if the undirected graph is connected. For a
directed graph, O is a simple eigenvalue of L if the directed
graph is strongly connected.

B. System Model

The dynamics of each agent obeys a single integrator
model

i () =u;(t), i=1,...,N (1)

where z; € R denotes the scalar state, and u; € R the
control input of agent v;. The work in this paper can easily
be extended to the vector state case but we do not consider
it here for simplicity.

A time sequence {kh,k € Z*}, known as sampling in-
stants, is pre-determined, where h > 0 is a common sam-
pling period. Note that all agents in a synchronous way take
sampling commands from their embedded clocks periodi-
cally. An event detector for each agent decides whether the
sampled data x; (kh) should be broadcasted to its neighbors
or not. The time instants at which agent v; broadcasts its
sampled data to its neighbors are denoted as {ti,k € ZT},
also known as event instants. Note that the event instants are
asynchronous in general, and are a subset of the sampling
instants.

Remark 1 (Common sampling period): We will provide
justifications of the adoption of a common sampling period
for all agents from both theoretical and practical perspec-
tives. In the literature, an underlying fact behind discrete-
time consensus algorithms is that the sampling behavior is
synchronous among all agents [1], [2]. An event-triggered
scheme for discrete-time multi-agent consensus is investi-
gated in [20]. The same setup of sampled-data event detec-
tion as our paper is used in [21], which models the sampling
behavior as an input delay to solve the consensus problem.
From an implementation standpoint, continuous monitoring
and detection might be an idealized assumption. It is more
pragmatic to assume the sampled-data detection.

Holding the event data constant over the event intervals
{[ti. .t} 1 1),k € Z} yields a piecewise constant signal

i (t) =z (t},)

For ease of notation, define the relative event state for agent
v; with respect to its neighbors as

B0 =Y @0-50).
The control strategy for agent v; is then given by

ui (t) = =2 (t). 2

for tj, <t <tj_,.
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It is well known that if the controller is implemented in
continuous time, then all states converge to their initial
average [1]. The control protocol uses only the broadcasted
value of the local state. The motivation for this particular
choice is twofold: first, make the consensus state time-
invariant; second, relax the continuous communication and
control requirements. Therefore, the above piecewise con-
stant controller is used instead.

The algorithm in (2) is distributed in the sense that each
agent only needs information from its neighbors in order
to compute the relative state differences from its neighbors
with respect to its own state. Note that the input signal
for agent v; is updated at its own event instants as well
as the event instants of its neighbors, i.e., all times ¢ €
{ti k€ ZT} Ujen, {t],k € ZT}. For digital implemen-
tation, a strictly positive lower bound of the lengths of
inter-event intervals for each agent is desirable because
very fast sampling can cause excessive equipment wear or
even infeasibility of the hardware being able to perform all
required actions. Here the lengths of inter-event times are
guaranteed by design to be lower bounded by the sampling
period h so that the so called “Zeno behavior” is ruled out.

Define the average state of all agents as 6(t) =
~ Zf\; x;(t). Then the disagreement vector is defined as

511’7911\/,

where 7' = [z1,...,zy] and 6T = [6y,...,0n].

The purpose is to rendezvous for all agents in the network
asymptotically, that is, for any z(0) € RY , we want §(t) —
0 as t — oo. Moreover, we want to ensure the average is
preserved such that z;(¢) — 6(0) for all i € {1,...,N} as
t — oo. Our goal in this paper is to determine a distributed
event triggering mechanism for each agent such that this is
achieved.

IT1I. MAIN RESULTS
The event condition for agent v; is given by
ef (kh) < o777 (kh),

forie{l,...,N}, (3

where o; > 0 is a scalar to be determined later,
s ~ ~ 2
0 (kh) = ZJEM (@i (kh) — ; (kh))~,
and e; (t) is the measurement error for agent v; defined as
ei (t) =i (t) — @i ().

Without loss of generality, let the initial event time t§ = 0
for all i € {1,..., N}. The event instants for agent v; can
then be determined iteratively by

bp1 = hinf {L:lh >t €7 (Ih) > o777 (Ih)} .

Clearly, event instants form a subset of the sampling instants,
that is, {t} : k€ ZT} C {kh:k € Z"} for all v; € V. In
general, event instants are asynchronous for different agents
although sampling instants are synchronous, i.e., it is not
required that {t} : k € ZT} = {t] : k € ZT} for i # j.

In addition to the triggering condition, we need to ensure
that the controller used by each agent guarantees that the
initial average of all agents is preserved throughout the evo-
lution of the system. There are two key factors to guarantee
this fact. One is the data chosen to update the controller.
Note that although the local state x;(kh) is available to
agent v; at every sampling instant, only the last broadcast
state &;(kh) is used to update the controller. The other is
the communication pattern. After each event, the local state
of agent v; will be broadcasted to all of its neighbors, and all
of its neighbors will update their controllers instantaneously;
thus the controller updates are synchronized for all neighbors
of v; with the same information. Under this control law, the
average of the agents’ state 6(¢) is time invariant if the graph
is balanced because
N

. 1 . 1
o(t) = ~ Zi:l i (t) = N Zl L Wi (t)
_ _ = I~ _ _ T
=-N ¢:1zl(t) Nl ~vLZ (t) = 0.
The last equality follows from the fact that the corresponding
Laplacian matrix £ of a balanced graph has zero column
sums.
Consider the Lyapunov function
V(@) =z6"1)ds().
Then taking the time derivative of the Lyapunov function
along the dynamics (2), we have

V (2(t)) = =z (t) LT (kh), for t € [kh,kh+ h),
where 77 = [Z1,...,Zx]. Also denote
eT [617 76N]3 E\T:[%\la"'aEN]'
Note that
x (kh) = e (kh) + Z (kh) “)
and
z(t) =z (kh) — (t — kh) Z (kh) ,

for all ¢ € [kh,kh+ h). Then, we can rewrite the time
derivative of V' as

V (#(t)) = — [# (kh) + e (kh) — (t — kh)Z (kh)]" L (kh)
2T (kh) LT (kh) — €T (kh) LT (kR)
+ (t — kh) 2T (kh) LT LZ (kh) . (5)

In the following, we will specify the results for directed
and undirected graphs, respectively.

A. Directed Graphs

First, let us introduce two lemmas below. The first lemma
gives the relationship between the singular values of a square
matrix A and those of A+TAT.

Lemma 2: For any square matrix A, let aq,...,ay, be
the eigenvalues of £ (AT + A) with the ordering oy < ar <

- < ap, and let 31, ..., By, be the eigenvalues of AT A
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with the ordering 51 < B2 <
relationships hold:

Oéq;S Bi; fOIiZI,Q,...,N.
This lemma can be proved by the celebrated Courant-Fischer
min-max theorem [22]. The details are omitted due to space
limitations.

The following result compares the Laplacian matrix £
and LT L in the sense that the difference between the two
matrices is a semidefinite matrix.

Lemma 3: Let £ be a Laplacian matrix of a strongly con-
nected and balanced graph. Then the following relationship
holds for any z € RY

2l Ly > ==

- < Bn. Then, the following

2 T LT L, 6)
Bn
where s is the smallest positive eigenvalue of %
and By is the largest eigenvalue of LT L.

This lemma can be proved by the utilization of the Rayleigh
quotient [22]. The details are omitted due to space limita-
tions.

Now, we are ready to state and prove the main result of
this subsection.

Theorem 4: Consider the system (1), control law (2) and
event condition (3). Assume that the network topology is
strongly connected and balanced. Then, the states of all
agents eventually rendezvous at the initial state average if
for given 0 < p < 1, the following conditions hold

p
b= 0 N
where s and [y are defined in Lemma 3, and |V;]| is the
cardinality number of the set Nj.
Proof: Applying the inequality in (6) to (5), we have

V (z(t)) < —pzT (kh) LT (kh) — T (kh) LZ (k). (7)

(LT + L),

0<o; <

Using Young’s inequality, we obtain
p N N
Py <= §3 a3y [ 4
2¢:1 =1 jeN; o/ IVl
o/ INI (@ (kh) = &5 (kh))’|

:_,Z[( — o

o7 /INTeR (k)]

M\H

V/INT) 22 (kh)

Enforcing the event condition in (3), we obtain

. 1 Y
Vo <-33 (0 =200 VINI) 32 (), ®)
which is negative when #; (kh) # 0 for any 7 € {1,...,
and ¢ € [kh,kh + h).
In the sequel, we will establish that the Lyapunov function
is converging to zero exponentially along sampling instants.
Integrating both sides of the equation in (8) with respect

to ¢t from kh to kh + h, we have
V (x(kh + h)) = V (z(kh)) < —hexT (kh)LZ(kR), (9)

N},

where € = min (p—2ai Vi i = 1,...,N).
Note that
1 ~ ~
Vi(z) < Echﬁx = %as (EETL’:U +2¢TL,7 + eT,Ce) ,

with £, = £5£.
eTLE < |lel| |£F]| < omaxv2anET LT,

where «ap is the largest eigenvalue of L, opax =

Using the inequalities

max {o;,i=1,..., N}, and
e Le <ayele <2an0?, 27 L2,
we have
— 2
1 + 2 max ~ ~
Vi(z) < ( N Tma) 2Lz
2042
Applying the above inequality to (9), we obtain
20:0heV (z(kh
V (a(kh+ B)) — V (a(kh)) < ——202heV (@ )>2.
(1+ v2aN0max)

Let v = 2ashe/ (1+ \/QaNamax)z. It is easy to see that
0 < v < 1/2 by the use of Lemma 2. By recursion, we have
V (z(kh)) < (1 —~)*V (2(0)), where 1/2 < 1 —~v < 1.
Between the inter-sampling interval [kh, kh + h), V (x(¢))
is strictly decreasing if 7j; (kh) # 0, for any ¢ € {1,...,N}.
Therefore, we can get the conclusion that V (x(¢)) — 0 as
t — 0o, which completes the proof. [ ]

B. Undirected Graphs

Now we will give the main result for undirected graphs,
which specifies the feasible ranges of sampling periods and
parameters of event detectors. The feasible ranges of tuning
parameters for an undirected graph are larger than those for
a directed graph due to the symmetric property of Laplacian
matrices.

In the above derivation, the Lyapunov function V' (x(¢))
is required to decrease all the time. We will show that the
maximum sampling period for event detection can be the
same as the maximal transmission period of the traditional
periodic sample-and-hold method [17] if we only require
V(xz(kh + h)) < V(z(kh)) for all k and do not care what
happens in between.

Hence, the following corollary can be concluded.

Corollary 5: Consider the system (1) with the control
law (2) and the event condition (3). Assume that the network
topology is connected. Then, the states of all agents even-
tually rendezvous at the initial state average of all agents if
for given 0 < p < 1, the following conditions hold

2(1 -
h= u, 0<o; < L,
aN 2y/INi]
where oy is the largest eigenvalue of the Laplacian matrix
L.

Proof: Integrating both sides of the equation in (5) with

respect to ¢, we have
V (x(kh + h)) — V (z(kh)) < — hpz" (kh) LZ (kh)

— he™ (kh) L7 (kh) .
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By following a similar procedure to the proof of Theorem
4, we obtain

V (@(kh+ h) = V (2(kh)) < =V (x(kh)),  (10)
where
_ 2hage
(1 + \/mo—max)2 7

with € = min gp—2a“/|J\/Z—|7z’: 1,...,N), and o the
smallest eigenvalue of L. It is not difficult to show that 0 <
~ < 1, which completes the proof. [ ]

Remark 6: The finite time consensus is possible for the
algorithm in Corollary 5 for some special cases. For sim-
plicity, consider the case of two agents. For the algorithm in
Corollary 5, there is a possibility that two agents may pass
by each other. If a sampling instant happens to coincide with
the moment that two agents meet each other, then the two
agents reach consensus at that location.

Remark 7: Roughly speaking, the convergence rate of
the Lyapunov function is related to the sampling period,
parameters of event detectors, and the smallest and largest
eigenvalues of the Laplacian matrix. For instance, a smaller
omax may lead to a faster convergence rate. The parameter
1 — ~ in the proof of Theorem 4 and Corollary 5 may
be considered as an upper bound of the convergence rate.
Larger omax leads to larger 1 — v, which means a slower
convergence rate. The same assertion for the sampling period
may not be true. In addition, there is a trade-off between the
sampling period and upper bounds of parameters of event
detectors, which is linked by the parameter p. Larger p means
a smaller detection period h, but a larger feasible range of
o, i =1,...,N.

IV. FROM SAMPLED-DATA EVENT DETECTION TO
CONTINUOUS EVENT DETECTION

It can be imagined that when the sampling period h ap-
proaches 0, the sampled-data event detection will be reduced
to the case of continuous event detection. Thus, the event
condition in (3) becomes

e (t) < oim; (1), (11)

The results in Theorem 4 and Corollary 5 can be extended
to the case of continuous event detection simply by letting
h = p = 0. Therefore, we have the following results:
Corollary 8: Consider the system (1) with the control law
(2) and the event condition (11). Assume that the network
topology is strongly connected and balanced, or undirected
and connected. Then, the states of all agents eventually
rendezvous at the initial state average of all agents if

fori=1,2,...,N.

1

<o < —.
o 2VINGL

By following a similar procedure to existing results, we
can show that the lower bound of the lengths of inter-event
intervals is greater than 0, but not greater than a strictly
positive number due to jumps of the threshold. Detailed
analysis can be found in [23].

TABLE I: Number of Events

Agent v1 Vo v3 V4 U5 Vg v7
No. Events || 21 21 23 23 25 24 || 23

Remark 9: For continuous detection, it is possible to
choose the parameters o;,¢ = 1,..., N, distributively. For
sampled-data detection, the sampling period has to be de-
signed in a centralized manner. That is to say, the topology
must be known in advance to design an appropriate sampling
period for the whole network.

V. SIMULATION EXAMPLES

4 ——

2 \ / )

/ ! \ l
3 7T «— 6
Fig. 1: A directed graph with 7 agents

A. Directed Graphs

Time

Fig. 2: State evolution of all agents

Assume that 7 agents aim to rendezvous to their initial
average. They communicate according to the topology shown
in Fig. 1. It is easy to see that the underlying graph is
strongly connected and balanced. For this topology, we have
ag = 0.3043 and Sy = 7.8954. Here the sampling period
for all agents is chosen as h = 0.0077, the parameter
o1 = 0.2828, and all other o;s are chosen as 0.4. The
initial condition is randomly generated for all agents from
the uniform distribution [—1,1]. The state evolution of all
agents is shown in Fig. 2. The states of all agents rendezvous
at their initial average —0.1601. Table I shows the number of
events generated by each agent during a simulation time of
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10 seconds. Note that the dynamical behavior of multi-agent
systems is affected by many factors, such as, parameters
of event detectors, sampling periods, and communication
topologies. The numerical example verifies that the proposed
method with event-triggered communication can still guaran-
tee consensus with less communication and control updates
for directed communication topologies. Also the inter-event
intervals for all agents are guaranteed to be bounded from
below by the positive sampling period h = 0.0077.

B. Undirected Graphs

Consider a multi-agent network, where the underlying
communication topology is the same as Fig. 1 but with
bidirectional communication links. The agents start from a
random initial condition which is generated from the uniform
distribution on the interval [—10,10], and evolve under the
event conditions in (3) and control law in (2). The parameters
o; = 0.2, for all v; € V and the sampling period for all
agents is chosen as i = 0.0774. The simulation result shows
that the states of all agents converge to their initial average.
Fig. 3 shows the event instants of all agents. Even if the same
parameter o; is used for all agents, the event instants are
asynchronous in general. On the other hand, the simulation
result provides a lower bound of the lengths of inter-event
intervals for each agent. The minimum length of inter-event
intervals for some agents is twice of the sampling period.
There also exist agents whose minimum length of inter-event
intervals is 3 times the sampling period.

7F OOOOO O O o o O O o O O O A

5O OO O O OOOOOOOOOOOOO OOOOOOOOOO OO0 OOG

300 OO0 OO0 OOOOOOO OOOOO GO0 OOOO OOOOOO OOOOOO 4

2rO 0 0 OO0 OOOOOOO OOOOO GO OOOOOOOOOO OOOOOO g

1O O OO o o (o exe) o o O

Time

Fig. 3: Event instants of all agents

VI. CONCLUSION

The average consensus problem was studied over directed
and undirected multi-agent networks, in which the commu-
nication between neighboring agents is triggered by events.
We presented a sampled-data framework for event detection.
Under our framework, the event condition for each agent is
checked only at sampling instants instead of continuously,
and we also showed that continuous event detection is a
special case of sampled-data event detection. The Lyapunov

approach enabled us to prove consensus of all agents to their
initial average under the proposed conditions. The simulation
results illustrated the effectiveness of the proposed methods
in communication and control update reduction. Future work
will consider general directed graphs, and asynchronous
event detection. The main challenge of considering general
directed graphs lies in the construction of a valid Lyapunov
function.
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