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Spectral Control of Cortical Activity

Sérgio Pequito | Arian Ashourvan

Abstract— The proposed problem is motivated by recent
studies that show that loss of consciousness is associated with
the spectral evolution of the (linearized) function that models
cortical activity capture by electroencephalography. In this
paper, we conduct a similar study for epileptic seizure-onset
where features of interest are also captured by the spectral
evolution. Subsequently, one can envision a scenario where
stimulating some specific brain regions (through static output
feedback) one could either induce loss of consciousness, for
instance, anesthesia, or prevent an epileptic seizure.

Therefore, we show that this problem consists of determining
the feedback gain in the context of static output feedback for
linear time-invariant switching systems that ensures the poles
of the closed-loop system to remain within pre-defined closed
regions. We show that this problem is NP-hard, and we explore
two variants of the alternating projection method to determine
its solution, to which we provide convergence guarantees not
previously available in the literature.

Finally, to illustrate the main results of this paper, we
conduct a brief study on epilepsy using real data and establish
a potential guideline on how to tune the parameters for
neurostimulators to prevent a seizure from occurring.

I. INTRODUCTION

Crafting the response of a dynamical system through
feedback is in the core of the design problems in control
systems engineering [1]. These dynamical systems include
the electric power grid, biological systems, social networks
and transportation systems, just to name a few [2].

The present paper is motivated by the recent strategies and
insights in the context of cortical activity of the brain [3],
[4]. More specifically, a spectral decomposition is considered
for the approximation of the linearized dynamics of the
cortical activity of the brain captured by electrocorticogra-
phy (ECoG) electrodes. The approximation of the system’s
dynamics can be casted as a mode in a linear discrete-time
switching system [5]; The spectral properties of the switching
system can capture the nature of consciousness and cognitive
states such as awake versus anesthetized states. Thus, by
properly crafting the closed-loop properties one can sought
to transition between the two. Similarly, they can capture
the evolution of the systems during the epileptic seizure-
onset [6], and, through actuation, one might be able to
restrain the evolution associated with the seizure-onset.
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Thus, one can pose the problem of determining the static
output feedback that jointly ensures spectral properties across
the different modes of this system. Static output feedback
entails injecting into the system a proportional (and con-
stant over time) quantity to the collected measurements of
the systems’ evolution. Such strategy has the advantage of
not requiring the response to a given output signal to be
computed at each time instance, which might be prohibitive
for large scale systems. Besides, it enables the response
analysis of the closed-loop systems through its spectral
decomposition. More specifically, through the analysis of
the pairs of eigenvalues and eigenvectors associated with
these systems. In particular, the proportional gain may enable
the specification of the pairs in the spectral decomposition,
hence, tuning the response of the system with respect to both
system deviation from a predefined goal, modeling errors and
exogenous disturbance.

Related Work: In the context deep brain stimulation and
neurostimulators context, most of the strategies have consid-
ered open-loop scenarios and if-then rules [7], [8]. More re-
cently, closed-loop strategies resorting to PID-like strategies
have been also considered [9], [10]. Therefore, to the best of
authors’ knowledge, this is the first work presenting a control
design problem as a spectral control problem, that ultimately
requires to solve a problem in terms of static output feedback.

The problem of pole placement aims to determine a control
law that ensures the poles of the closed-loop system to be as
in a pre specified spectrum. This problem goes back to the
work [11], and important landmarks where achieved in [12],
where arbitrary pole placement of closed-loop by static state
feedback is possible if and only if the system is controllable
and observable. Nonetheless, if the pole placement is sough
considering static output feedback (SOF), then the problem
is NP-hard [13]. Further, in [14] it was shown that arbitrary
pole placement is not achievable when SOF is considered.
Notwithstanding, under certain conditions on the dimension
of the state space, number of inputs and outputs, some design
methods are available for relative small dimensions [15]. In
addition, it has been shown that if the dimension of the
state space equals the product of the number of inputs p
and outputs m, then there exist —oar=m=DmMp!_ ¢ omplex

) o ) (P p+1)!...(m+p-1)!)
gain matrices that achieve any given configuration of poles
of the closed-loop systems by SOF [16].

Alternatively, if the gains are only allowed to have entries
within entry-wise bounds, then the SOF is still NP-hard [17].
Notwithstanding, several problems in this front still remain
open [18]. Despite the complexity of these and other related
problem, several efforts have been made to determine its
solutions due to the significance of the problem in the
context of control engineering applications [19]. In particular
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in the context of stabilizing the closed-loop systems with
dynamic compensators with a specified order, where sev-
eral sufficient and necessary conditions using linear matrix
inequalities (LMIs) are available in the literature, see for
instance, [20], [21] and [22] for numerical performance
evaluation. Furthermore, these results often aim to ensure
the overall performance of the system in terms of a given
metric, while ensuring stabilizability of either continuous-
or discrete-time systems. Nonetheless, most of the numerical
methods available to determine SOF gains perform poorly in
practice, which motivated [23] to explores different strategies
to obtain the initial conditions for iterative algorithms that
determine a SOF with overall performance guarantees.

Alternatively, one might desire to ensure the poles to
be within specific regions in the complex plane, hence,
crafting the response behavior of the closed-loop system as
presented in [24], [25], [26]. In this paper, we present a
similar approach in the context of switching linear systems,
where the poles of the closed-loop system in each mode
are restricted to pre-specified regions in the complex plane.
To the best of the authors’ knowledge this is the first time
that this problem is considered despite of the fact that
the stabilization of switching systems in both continuous-
and discrete-time has been previously addressed, see, for
instance, [27], [5] and references therein. Furthermore, we
present convergence guarantees that have not been previously
provided in the context of static output feedback design to
attain a specific pole placement. o

The main contributions of this paper are two-fold: (i) we
leverage the cortical evolution during an epilepsy seizure-
onset, and we cast the problem of mitigating a seizure as a
generalized switching pole placement; and (ii) we show that
the generalized switching pole placement is NP-hard, and
provide two variations of the alternating projection method
to determine a solution to the generalized switching pole
placement, to which we present local convergence guaran-
tees.

The rest of the paper is organized as follows. In Section II,
we provide the formal problem statement. Section III reviews
some concepts and terminology used in the remaining of
the paper. Section IV presents the main technical results,
followed by a case study in Section V showing the implica-
tions of the method in regulating the cortical activity during
an epileptic seizure-onset. Conclusions and discussions on
further research are presented in Section VI.

II. PROBLEM STATEMENT

The electroencephalogram (EEG) and electrocorticogra-
phy (ECoG) are captured by a multivariate dynamical sys-
tems, whose local dynamical properties can be assessed
using autoregressive models fitted independently to short
time segments as described in [3]. This can be accomplished
by considering first-order autoregressive model

Tpy1 = Agrp te, k=0,1,..., (1)

where xz; € R" is the state of the ECoG sensors at time
k, and € is an approximation error term at the same time
capturing the dynamics/measurement uncertainty. This model

can be fit independently to the ECoG potentials using a
least-square approach. The advantage of this approach is
that it does not make any assumptions about the underlying
neural mechanisms. Further, by dividing the dataset into short
time segments one can estimate the evolution matrices Ay
over time. Thus, not requiring the signal to remain globally
stationary, and providing a good approximation of the local
behavior that can be seen as stationary.

Local properties, such as stability of the system can be
understood in terms of the eigenvalues of the evolution
matrix Ajg. These eigenvalues describe the frequency of
oscillation along the corresponding eigenvector. In addition,
these assess the system stability from the absolute value of
the eigenvalues. Briefly, if an eigenvalue’s absolute value is
less than one it is asymptotic stable, and a small perturbation
along the eigenvector associated with the eigenvalue will
decay and return to its original trajectory. Conversely, if the
absolute value of the eigenvalue is greater than one, then
it is unstable, and any perturbation in the direction of the
associated eigenvector will grow exponentially. Finally, those
eigenvalues that are equal to one, i.e., that are the interface
between asymptotic stability and instability, are referred to
as critically stable. In practice, due to numerical precision,
we classify the eigenvalues as critically stable if these are
sufficiently close to the unit circumference.

In fact, it is interesting to notice that, for uneventful
time windows, the eigenvalues of Ay for the corresponding
period of time are concentrated in two different regions
as depicted in Figure 1 (a), where a larger portion of the
eigenvalues are asymptotic stable and the remaining ones
are critically stable. Nonetheless, this configuration changes
during either loss of consciousness (or anesthesia) and during
an epileptic seizure-onset. More specifically, in the first
scenario some of the critically stable eigenvalues migrate
to the region containing asymptotic stability eigenvalues [4],
as illustrated in Figure 1 (b). Alternatively, as we explore
in Section V, during an epileptic seizure-onset some of the
eigenvalues loop towards the region containing asymptotic
stability eigenvalues and fully return to the critical region by
the end of the seizure, as illustrated in Figure 1 (c) — see [6]
for further details.

(a) (b) (©

Fig. 1. In this figure, we illustrate the distribution and evolution of the
eigenvalues of the linearized cortical dynamics. In green we have depicted
the region where the asymptoticly stable eigenvalues reside, whereas in red
we identify the regions that contain the approximate critical eigenvalues. In
(a) we depict the distribution of eigenvalues for the evolution matrix during
uneventful periods of time. In (b), we show the evolution of a portion of
eigenvalues during the period shortly after the administration of the drug
for anesthesia, where the final configuration is reached during unconscious
states. Finally, in (c) we depict the evolution of the eigenvalues that loop in
and out of the stable regions during an epileptic seizure-onset by the blue
arrow.
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Now, we can consider actuation mechanisms, either in-
vasive such as neurostimulators (or deep brain stimula-
tion) [28], or non-invasive such as transcranial magnetic
stimulation [29]. Under similar assumption, these can be
captured by the following equation

Trr1 = Axxp + Bug + ¢, k=0,1,..., 2)

where u; € RP is the input injected at time k. In addition,
the sensors states, i.e., the state of the system, can be also
identified with the measured output of the system’s cortical
activity, and described as follows:

yr = Cy, (3)

where y, € R™ correspond to the data collected at time k
by the different EEG/ECoG sensors. If we assume a static
output feedback controller of the form

up = Ky, 4

then the closed-loop dynamics is given by
Tht1 = (Ak + BKC)zy, + €. &)

It is worth to notice that the effect of the stimulation itself
on the brain tissue is non-linear, so (2) can be obtained via
feedback linearization. Subsequently, assuming the validity
of the local models and static output feedback, one could
be interested, for instance, in the following: (i) electrically
induced anesthesia, i.e., shifting the eigenvalues from a
configuration in Figure 1 (a) to Figure 1 (b), or, alternatively,
we can foreseen a scenario where the neurostimulation steer
an unconscious subject to the awake state, corresponding to
shifting the eigenvalues from a configuration in Figure 1 (b)
to Figure 1 (a); and (ii) restrain the evolution of the eigenval-
ues to the regions depicted in Figure 1 (a), i.e., forbidding the
evolution depicted in Figure 1 (c), and potentially preventing
a seizure from occurring.

These problems can be studied as a particular case of the
generalized switching pole placement problem studied in the
present paper formulated as follows:

Py Given a time-varying system (2)-(3), a static output
feedback described by (4), and a collection of closed subsets
€1,...,%, C C where we want the eigenvalues of the
closed-loop system to be contained, determine K such that

MNe(Ay +BKC)e€F, i=1,....n k=0,...

where A\f(A, + BKC) is the i-th eigenvalue of the
closed-loop system described in (5). o

ITII. PRELIMINARIES AND TERMINOLOGY

In this section, we review some basic notation and termi-
nology used in the rest of the paper.

In the sequel, for a given matrix M € C"**, the vectoriza-
tion operator vec(M) € C"® consists of the columns of M
stacked below each other. We denote by 0, s the zero matrix
in C"**, and, given matrices Y € C™*" and Z € CP*4,
the Kronecker product between Y and Z is denoted by the
mp X ng matrix Y ® Z. Finally, we denote by Re(Z) € R"**
and Im(Z) € R"*® the real and imaginary parts of a matrix
Z e Crxs,

Now, let  be an element in a Hilbert space .7 and let ¢
be a closed (not necessarily convex) set in . Any ¢y € €

such that || — ¢g|| < ||z — ¢|| for all ¢ € € is referred to
as a projection of x onto €. In what follows, we deal with
finite dimensional Hilbert spaces, where there is always at
least one such point. It is known that if ¢ is a closed convex
set then each point in J# has only one projection onto €.
Subsequently, we can introduce the projection operator onto
%, that is a function Py : H# — H such that for each
x € J it returns Py (x), i.e., the projection of = onto %
In this paper, we focus on a particular case of the following
problem: given closed sets %,...,%n in a finite dimen-
sional Hilbert space .7, determine a point in the intersection
ﬂi.vzl%i (assuming this to be non-empty). This problem
is known to be solvable using the alternating projections
method if all the sets are closed and convex [30]. Notice
that this implicitly assumes that determining the projections
in the different sets is possible. Furthermore, if the sets are
non-convex, then no global convergence guarantees exist,
and, in fact, it is known that for different initial conditions
the alternating projections method may not converge [31].

IV. MAIN RESULTS

In this section, we present the main results of the present
paper. First, we show that P; is NP-hard (Theorem 1).
Consequently, it is unlikely that an efficient algorithm to
determine a solution will be available. Secondly, in P7, we
reformulate P; as the problem of determining K that lies in
the intersection of several sets. Subsequently, we propose to
solve the problem using the alternating projection algorithm.
More specifically, in Algorithm 1, we propose the weighted
alternating projection algorithm, whereas in Algorithm 2 we
present the weighted average projection algorithm. Finally,
we discuss the local convergence guarantees of both algo-
rithms (Theorem 2).

We start be showing that solving P; is computationally
hard.

Theorem 1: The generalized switching pole placement

problem described in P; is NP-hard. o
Proof: The proof follows by noticing that for the
particular instance where A, = A for k = 1,...,T, ie.,

when the system is linear time-invariant, and the particular
case where €; = {¢;} with ¢; € C for ¢ = 1,...,n the
problem is NP-hard [13]. Hence, it follows that the problem
1 is NP-hard. [ |

As a consequence of Theorem 1, it is unlikely to exist
an algorithm that polynomially solves P;. Notwithstanding,
in P, we propose a reformulation of P; as the problem of
determining the gain K that lies in the intersection of several
sets.

Towards this goal, let .Z; be the set of all possible
closed-loop matrices for the different evolution matrices Ay,
described by

Z={LeR"™": L= A+ BKC for some K},
where K =1,...,T, and T a finite-time horizon.

In addition, let .#} be the set of complex matrices with
eigenvalues in the specified regions €7, ..., € given by

My ={Z cCV": \(Z2)eCF, i=1,...,n}
fork=1,...,T.
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As a consequence, P; can be solved by addressing the
following problem:

73{FindXe,flﬂ...ﬂ.fTﬂ//llﬂ...ﬂ///T. o

Therefore, K that solves P; (or, equivalently, ;) can
be obtained as the minimizer of ||[(CT ® B)vec(K) —
vec(Re(X) — Ay)|l2- This follows from noticing that, in
particular, K lies in the intersection of the sets % that are
convex sets, whose projection can be easily computed as
follows.

Lemma 1 ([24]): The projection of X € C"*" onto %
is given by P, (X) = A + BKC where K € RP*™ js a
minimizer of ||(CT ® B)vec(K) — vec(Re(X) — Ay)l2. ©

Nevertheless, .#}, is non-convex, and no easily computable
projection scheme is available. Therefore, we propose to use
the following approximation & 4, (x) instead.

Definition 1 ([24]): Let X = VTV* be the Schur’s
decomposition, where V' € C™*™ is an unitary matrix and
T € C™™ an upper triangular matrix. The approximate
projection mapping & 4, (X) of X onto ., is given by
P4 (X)=VTV*, where

Tij _ y%j*(i) (Tm) .
T;; otherwise ,

if i = j,

and o* € X, with X denoting the set of possible permuta-
tions, minimizes the following optimization function

n
o =argmin  [Tu — Per (Tu)[*.
=1 o

The mapping in Definition 1 is motivated by the fact
that if X is a symmetric matrix, then & 4, (X) is the best
approximation of X in the Frobenius norm [24]. Further, the
permutation ¢* in Definition 1 can be determined by reduc-
ing the problem to a minimum weight maximum matching.
This consists in determining permutation matrices M; and
M> such that they minimize the trace(M;0Ms), where ©
is the matrix whose entry (i,j) contains the value |T}; —
c@cgf (Ti;)|?, and z@%;c (T;) is the projection of the complex
number 7}; onto the closed convex set %Jk Therefore, o*
can be described by the pairs (i, j = 0*(¢)) corresponding
to the diagonal entries of M;©M,. Finally, we notice that
this problem has computational complexity O (n?) using, for
instance, the Hungarian algorithm [32].

Next, in order to address P;, we propose two variations
of the alternating projections method — see Algorithm 1 and
Algorithm 2. The alternating projection method consists of
sequentially computing the projection of a matrix in one of
the sets, followed by finding the projection of the former
in the another set and so forth. Nonetheless, because the
projection on the sets .#} is only approximated by & 4, ,
in Algorithm 1, we propose to weight the ‘quality’ of the
projections in the alternating projection method. This is
captured by a convex combination of the projection onto
a convex set and the one onto a non-convex set. More
specifically, we tend to bias the approximation towards the
projection onto the convex sets, whose projection can be
exactly determined in a computationally efficient manner.
Notice that, in theory, this does not enforce a solution to be
found, but in practice it leads to a less oscillatory behavior

in the convergence to a solution. Further, if a solution
has a strong bias towards the projection onto the convex
sets, then it may occur that the convergence performance is
degraded. Similarly, in Algorithm 2, we propose to consider a
variation of the alternating projection method where one first
projects onto the convex and non-convex sets, then one takes
the average of these projections, and computes a weighted
estimate as a starting point for the next iteration.

ALGORITHM 1: Weighted Alternating Projection
Method
Input: A, € R™*", B e R"*?, C € R™*",
EF,..., 6" cCfork=1,...T, and a weight w € (0,1).

Output: The gain matrix K* € RP*™ that solves P;.

Let Y ~ .#(0,1,), i.e., drawn from a normal distribution
with zero mean and covariance matrix given by the n X n
identity matrix I,,. In addition, let e > O be the precision
error required for the algorithm to stop.

T
I: while > ||Y — P (V)| + Y — Z.u, (V)| > € do
=1
for j=1,...,T

2

3: Y =wPe, (Y)+ (1 —w)Pu,(Y);
4: end for ‘ ‘

5: end while
K* =arg min |[(CT ® B)vec(K) — vec(Re(Y) — A1)|2
KeRrpXm

ALGORITHM 2: Weighted Average Alternating Pro-
jection Method

Input: A, € R™™, B € R"*?, C' € R™*™,
CF,...,6F cCfork=1,...T, and a weight w € (0, 1).

Output: The gain matrix K* € R?*™ that solves P;.

Let Y ~ .#(0,1,), i.e., drawn from a normal distribution
with zero mean and covariance matrix given by the n X n
identity matrix [,,. In addition, let € > O be the precision
error required for the algorithm to stop.

T
1: while 3 [V — 24, (V)] + Y ~ 2.4,(Y)] > ¢ do
P

7

2: PLax = 0nxn;

31 PMux = Onxns

4 for j=1,...,T

5 PLax = PLax + gz%ﬂj (Y),
6: PMaux = PMaux + ’@-/ﬂj (Y),
7 en}glLfor o

8: Y = w T‘:mx + (1 _ w) Tuux;

9: end while

K* =arg min |[(CT® B)vec(K) — vec(Re(Y) — A1)|2

KeRpXm

Notice that the overall complexity of the algorithm consists
in sequentially solving convex optimization problem (e.g.,
using CVX), and computing the projection on the sets .}
which requires the computation of an eigenvalue-eigenvector
decomposition and an assignment problem. Henceforth,
leading to computationally tractable optimization problem;
specifically, the number of variables considered in the context
of the problem motivated in this paper is usually small, and
consists in the number of electrodes placed in the surface of
the cortex.
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In (a) we depict the location of the ECoG electrode placed over the right medial structures. The 6 color-coded electrodes were selected for further

analysis. The pink circles indicate the location of the measuring electrodes, whereas the cyan circles indicate that both measuring and actuation capabilities
are available. In (b), we provide the normalized (z-score) times-courses of these 6 electrodes over a 1000s window around a seizure-event. In addition, in
the top figure in (c) we zoom-in the evolution from 400 to 600, whereas in the bottom figure we represents the absolute value of the ‘largest’ eigenvalue
of the approximate dynamics prior to (yellow dots), during (green-blue dots), and after (red dots) the seizure event. The duration of the sliding-window to
estimate the model, the pre-seizure period, and the seizure event are highlighted with transparent, pink, yellow, and brown regions, respectively. Finally,
in (d) the temporal evolution of the eigenvalues is color-coded to highlight early excursion of some eigenvalues from the critical regime to asymptotically
stable regime during the seizure-onset followed by their return back to departure region. In particular, this behavior was previous illustrated in Figure 1 (c),

which was on the motivation basis of the proposed solution.

Now, we discuss some local convergence properties guar-
antees, as well as convergence rates, that can be provided
for the generalized switching pole placement, if we assume
that the exact projections on the convex and non-convex
sets are available. Notice that both sets %, and .}, are
super-regular sets, since these sets can be associated with
semi-algebraic functions — those functions whose graphs are
composed of finitely many sets, each defined by finitely many
polynomial inequalities. Subsequently, from [33], local linear
convergence guarantees are available for both Algorithm 1
and Algorithm 2 as stated next.

Theorem 2: Let Y in Algorithm 1 and Algorithm 2 be
such that ||[Y — X*|| < e, where X* is a solution to Pj
(assuming it exists), for a small € > 0. Then, Algorithm 1 and
Algorithm 2 converge to X*, and these have the following
linear convergence rates

ray <1 — —5 and ry < 1 —
2k2

K2’

respectively, where x is the infimum that satisfies the fol-
lowing inequality
Z [yl < K Zyi )
i i

for y; € Ng,(Z), where %; (i = 1,...,
and
Ng(f) = {11111751(1'z _Zi) t; >0, > x,2 € f@gz(l'z)},
is the normal cone to a closed set .Z at a point T € .Z. ©
Proof: First, we notice that the weighting factor consid-
ered in Algorithm 1 and Algorithm 2 consists of a positive
scaling of the sets and corresponding projection value. In
other words, the properties of convexity and non-convexity

m) are close sets

of the sets remain unchanged by the positive scaling. Fur-
thermore, even if the exact projection is not available, the
alternating projection methods can conserve convergence
properties as soon as the approximation error is sufficiently
‘small’, see [33] for details. Therefore, by considering the
weighted alternating projection method in both Algorithm 1
and Algorithm 2, one can choose w sufficiently close to 1
such that the error resulting from & 4, is small enough to
ensure that local convergency guarantees hold. [ ]

Remark that the alternating projection algorithm has better
convergence performance than the average projection algo-
rithm, yet the required condition to obtain such convergence
results are different. In particular, the convergence of the
average projection algorithm does not require the assumption
of super-regularity, which is required for the convergence of
the alternating projection algorithm.

Regardless, one should keep in mind the fact that the
problem is NP-hard and global guarantees are unlikely to
exist. Further, in practice, both algorithms are quite sensitive
to the initialization, and several trials or strategies need to
be employed to obtain feasible solutions, see [23].

V. REGULATION OF CORTICAL ACTIVITY

In this section, we explore in detail the application of the
aforementioned methods in the context of epileptic seizures,
i.e., the characterization and control of the seizure-onset
properties. We studied the ECoG recorded data (500 Hz)
during focal complex partial seizures [34] from a single
neocortical epilepsy patient undergoing routine pre-surgical
evaluation of her epilepsy [35]. During the recording ses-
sion, the patient had four seizures lasting tens of seconds.
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In (a) we represent the zoomed in version of the pre-seizure period (yellow region) displayed in Figure 2 (c). Plot (b), in the first graph (on the

left hand-side), we display the location of eigenvalues of Ag, k = 1,...,200 (marked by '+’) and the corresponding closed-loop system of Ay + BKC
(marked by ’0’) for several time points over the stretch of 2 seconds. The increasing temporal ordering of the eigenvalues are color-coded by blue-to-red
gradient. Observe that the vast majority of the closed-loop eigenvalues are placed close to the unit circle, i.e., the critical zones. These results are more
discernible in right hand-side, where several snapshots of the eigenvalues of A and the close-loop system are provided separately (t1 — ¢3).

Figure 2 (b) displays the normalized (z-scored) time-courses
of the recorded signal from 6 right medial anterior frontal
electrodes (marked with colored circles in Figure 2 (a)) over
the peri-seizure period. Prior to some of these events the
patient had a feeling of wooziness. During these events, the
patient was noted to display semi-purposeful and automatic
behavior predominantly in the right upper extremity.

We fit the model (1) to short overlapping temporal win-
dows (window length of 2s, with 10ms shifts) of the 6 ECoG
channels’ depicted in Figure 2 (a). From Figure 2 (d), there is
strong evidence that the seizure-onset can be characterized by
gradual departure from critical to more asymptotically stable
regimes followed by periods of higher frequency during the
asymptotically stable period. As seen in Figure 2 (c), the
seizure ends when the eigenvalues slowly settle in a critically
stable regime.

To test the robustness of our observation to the choice of
parameters, we repeated the analysis for several other elec-
trode sets (with different number and locations of electrodes)
and window sizes. Overall, the aforementioned pattern of
change in the stability of the eigenvalues during the seizure-
onset period remained qualitatively the same regardless of the
parameter choices. A detailed study on the characterization
of the seizure-onset is provided in [6], which can be attained
by exploiting the eigenvalue-eigenvector structure of the
system’s dynamics.

Interestingly in this example, the eigenvalues display a
similar transition cycle to that of the seizure-onset period
eigenvalues, though only lasting for few seconds, starting
around 20 seconds prior to the seizure onset. We will focus
on this period prior to the seizure-onset since is causally
related with the seizure itself. Therefore, by crafting its evo-
lution one is likely to mitigate the seizure itself. In particular,
this is achieved by addressing the generalized switching
pole placement introduced in this paper. Notwithstanding,
we notice that the validation of the results needs to be taken
in consideration with caution, since the closed-loop is being

performed only on the linearization of the cortical dynamics,
and the nonlinear effect can be captured by considering
feedback linearization; thus, reducing to the setup presented
in this paper. Simply speaking, some unexpected behavior
might be unveiled when applying these strategies in a clinical
setting, and some additional nonlinear modeling needs to be
taken in consideration.

Next, using the weighted alternating projection method
(Algorithm 1), with weighting parameter of w = 0.1, and
the Ay, k € {1,...,200}, for a 1s window within a period
prior to the seizure-onset period highlighted in yellow in
Figure 2 (c) and Figure 3 (a). Similar results could be
attained using the weighted average alternating projection
method (Algorithm 2), which we do not report due to space
constraints. Furthermore, we set the desirable location to be
within an ellipse centered around the eigenvalues of A; with
the x-radius equal to 0.001 and y-radius equal to 0.0015.
Notice that for such constraints a solution, i.e., a gain, that
solves %] may not exit, so the intended goal is to keep
the eigenvalues closer to the critically stable regions, i.e.,
closer to the distribution of the eigenvalues of a dynamics
matrix during a healthy state. Therefore, regardless of the
size of the final desired regions, the locations attained in
this experiment are clinically relevant for the analysis of the
seizure intervention. In addition, we assume that the input
and output matrices are described by two canonical vectors
in RS with the nonzero entries associated with the electrodes
depicted in blue and cyan in Figure 2 (a), respectively. As
result, the gain matrix determined is as follows:

__ [0.0306 —0.0674
K= [0.0595 70.0382] '

Figure 3 (b) shows the plot of all eigenvalues of the
evolution matrix Aj (marked by '+’) and its closed-loop
system (marked by '0’). As mentioned earlier, although the
algorithm does not necessarily place the eigenvalues within
the specified convex regions, we were able to achieve the
goal of placing the eigenvalues back closer to the critical
zone (see Figure 3 (b)), through the tuning of parameters
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such as the size of the convex regions.

In summary, these results suggest that by actuating the
system with static output feedback one can obtain a gain
to successfully steering the eigenvalues of the system back
to the healthy regime at any given time point prior the
seizure-onset period. Thus, potentially mitigating the exis-
tence of an epileptic seizure in a later stage.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we introduced a spectral characterization for
the study for epileptic seizure-onset. Subsequently, we sought
to develop a closed-loop actuation strategy that is cast as
a static output feedback for linear time-invariant switching
systems. More specifically, the goal consists in ensuring the
poles of the closed-loop system to remain within pre-defined
closed regions associated with a healthy regime. We showed
that this problem is NP-hard, and we provided two variants of
the alternating projection method to determine its solution,
to which we provided local convergence guarantees. Also,
we conducted a brief study on epilepsy using real data as a
proof-of-concept, and establish a potential guideline on how
to tune the parameters for neurostimulators to mitigate the
effect of epileptic seizures.

These is one attempt to formalize the parameterization of
the neurostimulators, and further validation in closed-loop
settings is required. Therefore, we are currently pursuing
such validation in larger datasets, such that a validation of
the approach can be justified by the clinician in the context of
epilepsy treatment. Furthermore, we are pursuing validation
in different settings as mentioned before, i.e., anesthesia. On
a different note, we are also pursuing the development of
iterative algorithms with better performances guarantees and
capable of dealing with additional constraints on the gain
need to be studied, such that more realistic setups can be
accounted for.
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