
Quantification on the Efficiency Gain of Automated Ridesharing Services

Shuo Han, Ufuk Topcu, George J. Pappas

Abstract— Ridesharing services often require constant rebal-
ancing vehicle supply in order to meet passenger demand across
the transportation network. We compare the cost of rebalancing
between two different methods for controlling the vehicle
flows: (1) direct control, which models on-demand dispatchable
vehicles such as autonomous vehicles and (2) indirect control
based on price differences, which models human drivers as
in the current ridesharing scheme. We propose a metric that
quantifies the efficiency gain of automated ridesharing (i.e.,
direct control) based on the maximum difference between the
rebalancing cost of two methods. The benefit of the proposed
metric is that it is independent of the actual demand and
only relies on properties of the transportation network. We
present a set of numerical tools for computing the metric.
For a general graph, the metric can be computed using an
efficient local search method called the difference-of-convex
algorithm (DCA). Numerical experiments on a practical graph
(constructed from a pricing map for the Washington, DC area)
show that the DCA often converges within a few iterations.
For fully connected and symmetric graphs, the metric can be
computed from an equivalent convex program. Moreover, the
convex program adopts a simple closed-form optimal solution.

I. INTRODUCTION

The growing urbanization in recent years has brought

significant stress on modern urban transportation systems.

Aside from building new infrastructures, it is also imperative

to fully exploit the capacity of current transportation systems.

In recent years, on-demand ridesharing services (e.g., Uber

and Lyft) have gained increasing popularity, especially at

places where owning a car is expensive (such as major cities)

or public transportation is underdeveloped.

One key to successful operation of on-demand ridesharing

services is to maintain a reasonable wait time for potential

passengers. To achieve this, it is necessary to relocate avail-

able vehicles to places with high passenger demand. With-

out any guidance, human drivers who provide ridesharing

services are not able to respond to changes in passenger

demand. To facilitate the rebalancing of vehicles, the current

method adopted by ridesharing companies is setting non-

uniform prices for different regions in the city: if a region

has high passenger demand, then passengers originated from

that region need to pay more expensive fares. Since the

price changes are also instantaneously visible to drivers,

S.H. and G.J.P. are with the Department of Electrical and Sys-
tems Engineering, University of Pennsylvania, Philadelphia, PA 19104.
{hanshuo,pappasg}@seas.upenn.edu. U.T. is with the Department of
Aerospace Engineering and Engineering Mechanics, University of Texas at
Austin, Austin, TX 78712. utopcu@utexas.edu. This work was supported
in part by the NSF (CNS-1239224, CNS-1239152), US Department of
Transportation through the UTC program, and TerraSwarm, one of six cen-
ters of STARnet, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

available drivers are motivated to relocate to regions with

high demand.

On the other hand, we have witnessed a growing trend

of bringing autonomous vehicles into urban transportation,

in which ridesharing service providers are one of the major

advocates. In August 2016, Uber launched a test program

in Pittsburgh, PA where customers can call autonomous cars

for their Uber rides [4]. Compared to price-based control,

autonomous vehicles can be dispatched on demand and are

expected to have more flexibility in rebalancing. In previ-

ous work, researchers have proposed control strategies for

balancing autonomous/dispatchable vehicles using a number

of different approaches such as receding-horizon control and

queueing-theoretic methods [7], [9], [12].

Up to now, however, there is still a lack of tools for

quantifying the efficiency gained from autonomous vehicles

from a systemic point of view. Such tools will be useful

for providing guidelines on various aspects in system design

such as optimal fleet size and spatial distribution. In this

paper, we quantify the efficiency by the cost of rebalancing,

which is measured by the total amount of vehicle flow

required to reach the balanced condition (i.e., same supply-

demand mismatch for all regions).

The response of drivers to regional prices are modeled

using a proportional law, under which the flow of drivers

between two regions is proportional to the price difference

between the regions. Under the proportional law, the vehicle

flows are analogous to electric current flows in a resistor

network, and the regional prices are analogous to nodal

voltages. Specifically, the flows are related to solutions of

a Laplacian linear system, which is a linear system of

equations with a graph Laplacian as the coefficient matrix.

Previous work, mostly motivated by problems in power

systems, has investigated important properties of Laplacian

flows and how flows vary with changes in graph topology

(e.g., removal of an edge) [6], [10], [11]. In comparison,

our work focuses on comparing the difference between

unconstrained flows and Laplacian flows on a given fixed

network.

Contribution: In this paper, we propose a metric that

quantifies the efficiency gain of automated ridesharing (i.e.,

direct control) compared with price-based control based on

the maximum difference between the rebalancing cost. The

benefit of the proposed metric is that it is independent

of the actual demand and only relies on properties of the

transportation network. We present a set of numerical tools

for computing the metric. For a general graph, we show

that the metric can be computed using an efficient local

search method called the difference-of-convex algorithm

2017 American Control Conference
Sheraton Seattle Hotel
May 24–26, 2017, Seattle, USA

978-1-5090-5992-8/$31.00 ©2017 AACC 3560

(DCA). Through numerical experiments on a practical graph

(constructed from a pricing map for the Washington, DC

area), we show that the DCA often converges extremely

quickly (within a few iterations). For the special case of fully

connected and symmetric graphs, we derive an equivalent

convex program for computing the metric. We also prove

that the convex program adopts a simple closed-form optimal

solution.

Paper organization: The paper is organized as follows.

Section II presents a graph-theoretic model for price-based

control on a ridesharing network and introduces the metric

(i.e., maximum gap) used for quantifying the efficiency

gain from direct control. Section III discusses properties of

the metric for general networks and a numerical method

named DCA for computing the metric. Section IV focuses

on a special case where the graph is fully connected and

symmetric and shows how the metric can be computed

using convex optimization. Section V presents simulations

for both the case of fully connected and symmetric graphs

and that of general graphs; for general graphs, we use a graph

constructed from a realistic pricing map from Uber for the

Washington, DC area.

II. PROBLEM FORMULATION

A. System model

We consider an area of interest (e.g., a city) consisting

of n geographical regions and model the entire area as an

undirected graph G = (V,E), where V = {1, 2, . . . , n}
represents the geographical regions. Throughout the paper,

we may use the term regions and vertices interchangeably

to refer to the set V . We say that two regions i and j
are connected if and only if (i, j) ∈ E. The edges E are

used to model the flows of vehicles across the regions. In

our model, it is not necessary for two connected regions to

be geographically adjacent. For any two regions i and j,

we have (i, j) ∈ E as long as drivers are willing to move

between these two regions. As a rule of thumb, we assume

that drivers are willing to move to a different region if the

driving time is less than a certain threshold (e.g., 20 minutes).

We denote by δi ∈ R the mismatch between supply and

demand in region i. As a convention, when δi > 0, it implies

that there is more demand (passengers) than supply (drivers)

in region i. We call δ = (δ1, δ2, . . . , δn) ∈ R
n the mismatch

profile for the entire area.

For any two connected regions i and j, we denote by

fij ∈ R the flow of supply from i to j, and we always have

fij = −fji, ∀(i, j) ∈ E. (1)

We consider two different methods for controlling the flow:

direct control and indirect control. In the case of direct

control, the flows can be assigned directly. This is the case

when the supply consists of autonomous vehicles that can

be dispatched on demand. On the other hand, in the case

of indirect control, the flows are controlled by prices. This

is the case when vehicles are operated by independent hu-

man drivers and models how current on-demand ridesharing

services (e.g., Uber and Lyft) are operated. Specifically, for

indirect control, region i can set its own price of service

pi ∈ R for which passengers need to pay when requesting

services within the region. Because of the incentives induced

by price differences among regions, drivers are motivated

to relocate to regions with higher prices. We assume that

the flow fij is proportional to the price difference between

regions i and j as follows:

fij = −αij(pi − pj), (2)

where αij > 0 is called the sensitivity of drivers to the

price difference between regions i and j. When pi > pj ,

the model (2) implies fij < 0, which captures the fact

that drivers tend to move to regions with higher prices. In

practice, the sensitivity αij is related to the effort (e.g.,

driving time) that drivers need to make in order to move

between regions i and j. We denote by A = [αij] ∈ R
n×n
+

the matrix of sensitivity. For notational convenience, we let

αij = 0 for all (i, j) /∈ E.

The flows of supply will alter the supply-demand mis-

match profile δ. In our model, we consider the case in which,

throughout the rebalancing phase, (1) no new demand is

generated and (2) no vehicle leaves the area. For any given

initial mismatch profile δ and flows of supply f , the new

mismatch profile δ′ can be obtained as follows:

δ′i = δi +

n
∑

j=1

fij , ∀i ∈ V. (3)

From (1) and (3), we can derive a conservation law for δ:

n
∑

i=1

δ′i =

n
∑

i=1

δi. (4)

Throughout the paper, we assume that the graph G is

connected, i.e., for any two vertices i, j ∈ V , there exists

a path connecting i and j.

Assumption 1. The graph G is connected.

This assumption is reasonable for most practical transporta-

tion networks of interest: a vehicle should be able to move

to any regions within the area of interest.

B. Cost of control

Our main goal of controlling the flow is to balance the

supply-demand mismatch across the entire area. We say that

a mismatch profile δ ∈ R
n is balanced if and only if δ

satisfies δi = δj for any i, j ∈ V . From the conservation

law (4), we know that for a given initial mismatch profile δ,

the final balanced profile δ′ satisfies

δ′i = δ̄ ,
1

n

n
∑

i=1

δi. (5)

We quantify the cost of control using the total amount

of flow used for achieving the balanced profile (5). The

minimum cost of indirect control cI(δ) is defined as the

3561

optimal value of the following optimization problem:

cI(δ) := min.
p,f

1

2

∑

i,j

|fij | (6)

s.t.
n
∑

j=1

fij = δ̄ − δi, ∀i

fij = −αij(pi − pj), ∀i, j.

The factor 1
2 in the objective function is used to account for

the fact |fij | = |fji|.
Similar to the definition (6) for cI , the minimum cost of

direct control cD(δ) is defined as the optimal value of the

following optimization problem:

cD(δ) := min.
g

1

2

∑

i,j

|gij | (7)

s.t.

n
∑

j=1

gij = δ̄ − δi, ∀i

gij = −gji, ∀i, j.

In (7), the flows g do not need to satisfy the rule (2) and are

treated as decision variables, whereas in (6) the flows f are

slack variables controlled by the prices p.

Note that both cI and cD depend on the graph G, but we

often drop the dependence on G when it is clear from the

context. Both problems (6) and (7) are convex optimization

problems (in fact, linear programs). As a result, there are ef-

ficient numerical algorithms for computing cI(δ) and cD(δ)
for any given δ.

C. Maximum gap in cost

From the definitions of cI and cD, we can immediately see

that cI(δ) ≥ cD(δ) for any δ, because any feasible solution to

the optimization problem (6) is also feasible for problem (7).

For a given graph G, the gap in cost cI(δ)−cD(δ) may vary

with δ, as shown in the following example.

Example 2. Consider the fully connected graph (Fig. 1) with

n = 3 and αij = 1 for all (i, j) ∈ E. When δ = (2, 1, 0),
we can obtain the costs cI(δ) and cD(δ) as follows:

cI(δ) =
4

3
, achieved at f12 = −

1

3
, f23 = −

1

3
, f31 =

2

3

(with p1 =
2

3
, p2 =

1

3
, p3 = 0),

cD(δ) = 1, achieved at g12 = 0, g23 = 0, g31 = 1,

so that the gap cI(δ)− cD(δ) = 1
3 .

When δ = (1, 0, 0), however, we can obtain the costs cI(δ)
and cD(δ) as follows:

cI(δ) =
2

3
, achieved at f12 = −

1

3
, f23 = 0, f31 =

1

3

(with p1 =
1

3
, p2 = 0, p3 = 0),

cD(δ) =
2

3
, achieved at g12 = −

1

3
, g23 = 0, g31 =

1

3
,

so that the gap cI(δ)− cD(δ) = 0.

1

23

Fig. 1. Graph used in Example 2 (αij = 1 for all i, j).

For analyzing the efficiency gain from direct control, it is

natural to seek a metric that is independent of δ and relies

only on the graph G. This is because G only depends on

the configuration of road networks, whereas δ depends on

the particular instantiation of passenger demand and hence

is difficult to obtain a priori. In this paper, we choose the

metric to be the maximum gap in cost, defined as

γ , max
δ∈∆

[cI(δ)− cD(δ)] (8)

for some uncertainty set ∆. The choice of ∆ depends on

the estimation for the supply-demand mismatch in the area

of interest. One suitable choice of ∆ is a box defined by

∆ = {δ : δL � δ � δU} for some δL, δU ∈ R
n, where �

indicates entry-wise inequality. Our problem to study in this

paper is to compute γ for any given graph G and ∆.

Problem 3. For any given graph G and uncertainty set ∆,

compute the maximum gap γ.

In the next few sections, we will first comment on the

challenges of computing γ for a general graph. Then, we

will show that there is an efficient local search algorithm

that computes γ for general graphs when ∆ is convex. In

the end, we discuss the special case of fully connected and

symmetric graphs, which allows γ to be computed from a

convex optimization problem.

III. MAXIMUM GAP: GENERAL CASE

A. Feasibility of rebalancing

Before presenting methods for computing the maximum

gap γ, we would like to show that the optimization prob-

lems (6) and (7) are feasible for any δ. As we have discussed

in Section II-C, the set of feasible solutions for problem (6)

is contained in that of problem (7). As a result, we only need

to show that problem (6) is feasible for any δ.

Define q ∈ R
n such that qi , δi − δ̄. We can write the

constraints of problem (6) as

n
∑

j=1

αij(pi − pj) = qi

or more compactly as

Lp = q,

where L = diag(A1)−A. Here, we have used the notation

diag(v) to denote the n×n diagonal matrix with elements of

v ∈ R
n on the diagonal and 1 to denote the vector of all ones.

Observe that L is the (weighted) Laplacian matrix associated

with G by recalling the definition of graph Laplacian: for

3562

any weighted graph G with weighted adjacency matrix A =
[αij], the graph Laplacian L is an n × n symmetric matrix

with

Lij =

{

∑n
j=1 αij i = j,

−αij i 6= j.

By using properties of the Laplacian matrix, we can not

only show that problem (6) is feasible for any δ, but also

that the problem adopts a unique solution for the flows f .

Proposition 4. For any δ ∈ R
n, the problem (6) of rebalanc-

ing with indirect control is feasible. Additionally, the optimal

flow f in problem (6) is unique.

Proof: In order to show that problem (6) is feasible,

we only need to show that the linear system of equations

Lp = q = δ − δ̄1 always has a solution. It is known that

λ1 = 0 is always an eigenvalue of L. Moreover, when G
is connected (Assumption 1), the eigenvalue λ1 = 0 has

multiplicity of 1, and the corresponding eigenvector is v1 =
1 [5]. In other words, the null space of L is spanned by

v1 = 1. As a result, if y ∈ R
n lies in the range space of

L, then we have 1
T y = 0. It is not difficult to verify that q

satisfies 1
T q = 1

T δ − δ̄1T
1 = 0, which implies that q lies

in the range space of L. In other words, the system Lp = q
always has a solution.

Because the null space of L is spanned by v1 = 1, if both

p and p′ are solutions for Lp = q, we must have p = p′+a1
for some constant a ∈ R. From the relationship (2), we

can see that both p and p′ will lead to the same flow f .

Namely, there is only one feasible solution for the flow f
in problem (6), so that the unique solution f is the optimal

flow for problem (6).

From Proposition 4, instead of defining cI through the

optimization problem (6), we can rewrite cI as

cI(δ) =
1

2

∑

i,j

|αij(pi − pj)| , Lp = δ − δ̄1.

B. A numerical method for computing the maximum gap

Before discussing numerical methods for computing the

maximum gap γ, we would like to show that both functions

cI and cD are convex.

Proposition 5. Both functions cI and cD are convex.

Proof: The function cI is the sum of absolute values

of linear functions and hence is convex. For the function cD,

notice that the Lagrange dual problem of (7) can be obtained

as

max.
ν,µ,λ+,λ−

1

2

n
∑

i=1

νi(δ̄ − δi) (9)

s.t. 1− λ+
ij − λ−

ij = 0, ∀i, j

− νi + µij + µji + λ+
ij − λ−

ij = 0, ∀i, j.

Since problem (7) is a linear program and always feasible

(as a result of Proposition 4), we know that strong duality

holds in this case [3], so that we can redefine cD through the

Algorithm 1 Difference-of-convex algorithm (DCA).

Objective function: u− v (both u and v are convex)

Input: x1 ∈ domu, number of iterations K
Output: xK+1

for k = 1, 2, . . . ,K do

Find yk ∈ ∂v(xk)
Find xk+1 ∈ ∂u∗(yk)

end for

dual problem (9). Then, the convexity of cD follows from

the fact that cD is a pointwise maximum of affine functions

in δ as implied from the dual problem (9).

As a result from Proposition 5, the problem (8) of computing

γ requires maximizing the difference cI − cD of two convex

functions or, equivalently, minimizing the difference cD−cI
of two convex functions. In general, the function cD − cI is

neither convex nor concave, so that we cannot use standard

convex optimization algorithms to find its global optimal

solution. Instead, we need to resort to local search algorithms

in order to compute γ.

When the uncertainty set ∆ is convex, we can find local

optimal solutions for problem (8) using the difference-of-

convex algorithm (DCA) [1], [8]. The DCA, which is outlined

in Algorithm 1, can be used for finding local optimal solu-

tions for minimization problems whose objective function

has the form u− v, where both u and v are convex (but not

necessarily differentiable). In Algorithm 1, we use domu
to denote the domain of u, the symbol ∂v(x) to denote the

subdifferential (set of subgradients) of v at x, and u∗ to

denote the convex conjugate of u:

u∗(y) , sup
{

yTx− u(x) : x ∈ R
n
}

.

The key step for implementing the DCA is finding sub-

gradients of v and u∗. As it turns out, both subgradients

are easy to compute for our case. In our case, we have

u = cD and v = cI , and the sequence of decision variables

is {δk}
K+1
k=1 . The function cI is the sum of absolute values

of linear functions, whose subgradient can be obtained in

closed form: for w(x) = |cTx|, the subdifferential

∂w(x) =











c cTx > 0,

−c cTx < 0,

{λc : λ ∈ [−1, 1]} cTx = 0.

For finding subgradients of u∗ = c∗D, we need to use an

important fact from convex analysis. When u is proper, lower

semicontinuous, and convex, it can be shown that xk+1 ∈
∂u∗(yk) if and only if [2]

xk+1 ∈ argmin
{

u(x)− yTk x : x ∈ R
n
}

.

Using the definition of cD, we see that the step of finding

δk+1 ∈ ∂c∗D(yk) requires computing an optimal solution for

the following optimization problem (with g being treated as

3563

a slack variable):

min.
δ,g

1

2

∑

i,j

|gij | − yTk δ

s.t.
n
∑

j=1

gij = δ̄ − δi, ∀i

gij = −gji, ∀i, j,

which is a linear program with a similar computational

complexity as evaluating cD itself.

We would like to emphasize that the DCA is a local search

method whose result depends on the initial condition (x1

is Algorithm 1). As will be presented in Section V, our

numerical experiments show that the DCA is quite suitable

for our case. Besides the fact that the subgradients can be

easily computed, the DCA often converges extremely quickly

(less than 10 iterations), which allows using a large number

of random initial conditions in order to search for the global

optimum.

IV. MAXIMUM GAP: FULLY-CONNECTED AND

SYMMETRIC GRAPH

In this section, we will show that, under special circum-

stances, the problem of computing γ can be formulated as a

convex optimization problem. From Section III, we can see

that the challenge in computing γ is that the optimization

problem (8) involves maximizing the difference of two

convex functions or, equivalently, the sum of a convex and a

concave function cI+(−cD). Consequently, the best that we

can wish for is that, for some cases, the function cI becomes

affine, which makes the objective function cI − cD concave

and turns problem (8) into a convex optimization problem.

The main result in this section is that when G is fully

connected and symmetric, and the set ∆ = {δ : δi ∈ [−1, 1]}
(i.e., a hypercube), the optimization problem (8) can be

reformulated as a convex program.

Definition 6 (Fully connected and symmetric graph). A

graph G = (V,E) with weight matrix A = [αij] is called

fully connected and symmetric if there exists ᾱ ∈ R such

that αij = ᾱ for all i, j ∈ V .

For the case of indirect control, we can see that ᾱ does not

affect the cost, because the prices p can be scaled accordingly

with ᾱ to achieve the same flow by the relationship (2).

Without loss of generality, we use ᾱ = 1 in all following

results.

When the graph is fully connected and symmetric, we can

show that cI adopts a simple form.

Proposition 7. When the graph G is fully connected and

symmetric, we have

cI(δ) =
1

2n

∑

i,j

|δi − δj |.

Proof: When the graph G is fully connected and

symmetric (with αij = 1). For any i, j ∈ V , we have

−

n
∑

k=1

(pi − pk) = δ̄ − δi,

−

n
∑

k=1

(pj − pk) = δ̄ − δj ,

or equivalently

−



(n− 1)pi −
∑

k 6=i

pk



 = δ̄ − δi, (10)

−



(n− 1)pj −
∑

k 6=j

pk



 = δ̄ − δj , (11)

Subtracting (11) from (10), we obtain

n(pi − pj) = δi − δj ,

so that

cI(δ) =
1

2

∑

i,j

|fij | =
1

2

∑

i,j

|pi − pj | =
1

2n

∑

i,j

|δi − δj |

Although Proposition 7 allows us to rewrite cI in a simple

form, the function is still not affine. However, because cI
now only depends on the difference δi− δj , we can write cI
as an affine function (in fact, a linear function) if we know

the ordering of {δi}
n
i=1, as shown in the following corollary.

Corollary 8. When the graph G is fully connected and

symmetric, we have

cI(δ) =
1

n

∑

(i,j)∈I(δ)

(δi − δj), I(δ) , {(i, j) : δi ≥ δj}.

Recall that the set ∆ under consideration is a hypercube.

Because of the symmetry in both the objective function

cI − cD and the constraint set ∆, we can add an additional

constraint

δ1 ≤ δ2 ≤ · · · ≤ δn

to the optimization problem (8) without affecting its optimal

value. Namely, we have

max
δ∈∆

[cI(δ)− cD(δ)] = max
δ∈∆′

[cI(δ)− cD(δ)],

where ∆′ = {δ : δi ∈ [−1, 1], δi ≥ δj for i > j}. Using

Corollary 8, we can obtain our main result.

Proposition 9. Suppose the graph G is fully connected and

symmetric. When ∆ = {δ : δi ∈ [−1, 1]}, we have

γ = max
δ∈∆′





1

n

∑

i>j

(δi − δj)− cD(δ)



 , (12)

where ∆′ = {δ : δi ∈ [−1, 1], δi ≥ δj for i > j}.

Proof: When G is fully connected symmetric, it can

be verified that both functions cI (from Proposition 7) and

cD are permutation invariant. Namely, for any δ ∈ R
n,

3564

we have cI(δ) = cI(perm(δ)) and cD(δ) = cD(perm(δ)),
where perm(δ) ∈ R

n is any vector generated by permuting

the elements of δ. As a result, if δ∗ is an optimal solution

for problem (8), we can alway construct δ̂∗ = perm(δ∗)
with δ̂∗i ≥ δ̂∗j for i > j, which also satisfies δ̂∗ ∈ ∆ and

achieves the same optimal value as δ∗. This implies that we

can introduce an additional constraint

δi ≥ δj for i > j

to ∆ without affecting the optimal value of problem (8).

Notice that the objective function in (12) is concave, so

that problem (12) is a convex program. The immediately

benefit of reformulating the original problem (8) as a convex

program (12) using Proposition 9 is that we can use efficient

numerical algorithms to find γ, instead of using local search

methods such as the DCA for general graphs.

Remark 10. Notice that −cD is defined through a maximiza-

tion problem. The problem for finding γ in Proposition 9, if

written fully, becomes

max.
δ,g

1

n

∑

i>j

(δi − δj)−
1

2

∑

i,j

|gij |

s.t.
n
∑

j=1

gij = δ̄ − δi, ∀i

gij = −gji, ∀i, j,

δi ∈ [−1, 1], δi ≥ δj for i > j.

We would like to point out an interesting fact about the

new convex program (12). It can be shown that the optimal

solution of (12) can be expressed in closed form.

Proposition 11. Suppose the graph G is fully connected and

symmetric. When ∆ = {δ : δi ∈ [−1, 1]}, the following δ
attains the maximum gap:

δi =











−1 1 ≤ i ≤ n+2
4 ,

0 n+2
4 < i ≤ n+1

2

−δn−i+1
n+1
2 < i ≤ n.

,

Proposition 11 allows us to quickly compute γ without

even having to numerically solve the optimization prob-

lem (12) (although efficient numerical methods are avail-

able). We omit the proof due to page limitation.

V. NUMERICAL RESULTS

A. Fully connected and symmetric graph

For the case of fully connected and symmetric graph (with

∆ chosen as the unit hypercube), we compare the result

for γ obtained by two different methods. One is through

solving the convex optimization problem in Proposition 9;

the other is the Monte Carlo method by evaluating the

objective function cI − cD at random samples within ∆.

Fig. 2 shows the results of these two methods for two

different graph sizes (n = 5 and n = 8), where the

number of samples for the Monte Carlo method is 1,000. The

histogram summarizes the evaluations of the cost difference

at the random samples, whereas the dashed line indicates the

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

120

(a) n = 5

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

(b) n = 8

Fig. 2. Results of the maximum gap γ. Histogram: results from the Monte
Carlo method. Dashed line: results from solving the optimization problem
in Proposition 9. The set ∆ = {δ : δi ∈ [−1, 1]}.

result obtained using Proposition 9. As expected, because

the result from solving the convex optimization problem in

Proposition 9 is guaranteed to yield the maximum gap, the

dashed line serves as an upper bound for all the evaluations

in the histogram. We have also used the closed-form solution

as given by Proposition 11, and the results coincide with the

numerical solutions obtained from Proposition 9.

B. General graph: A case study for Washington, DC

For the case of general graphs, we considered a realistic

case for the Washington, DC metropolitan area. Fig. 3 shows

the graph G used in our numerical experiments. Fig. 3a

is a screenshot of the distribution of surge pricing factors

obtained from the Uber app (visible to Uber drivers). Each

numerical value on the map represents a surge pricing

zone. When surge pricing is present, passengers need to

pay the normal fare multiplied by the surge pricing factor

corresponding to their location. Fig. 3b shows the graph

G constructed from the 13 pricing zones in Fig. 3a. Two

vertices of G were chosen to be connected if the driving

time between the center of the two corresponding pricing

zones is less than 20 minutes, which is what we believe

the maximum time that human drivers are willing to spend

on relocation. The weights of the graph were chosen to be

inversely proportional to the driving time between the zone

centers.

Fig. 4 shows the results of the maximum gap γ for the

graph in Fig. 3b with ∆ = {δ : δi ∈ [−1, 1]}. Because

3565

(a)

1
2

3

4 5

6

7
8

9

10
11

12

13

(b)

Fig. 3. (a) Surge pricing map from Uber. (b) Graph G used in simulation.
Each vertex represents a surge pricing zone in (a). Two vertices are
connected if the driving time between the center of the two corresponding
pricing zones is less than 20 minutes.

the graph is not fully connected and symmetric, we can

no longer be guaranteed to find a global optimum for

problem (8). Instead, we compare the results obtained by

the DCA (Section III-B) with the Monte Carlo method. We

used a total of 1,000 random samples. Each sample was used

as the initial condition for the DCA, whereas the sample was

directly evaluated for the Monte Carlo method. The results

are summarized as histograms in Fig. 4. The maximum cost

obtained by the Monte Carlo method is 1.78, whereas the one

obtained by the DCA is 3.29. For the result obtained by the

DCA, the maximum cost is achieved with cI(δ) = 11.29 and

cD(δ) = 8.00, which implies that the use of direct control

incurs a saving of about 29%.

It can be seen from the histograms that the DCA signifi-

cant improves the results by the Monte Carlo method. For all

random initial conditions, the DCA converged in less than

10 iterations. Although we cannot guarantee that γ = 3.29
obtained by the DCA is the global maximum, we suspect that

it is close to maximum, as we tried increasing the number

of random initial conditions from 1,000 to 20,000 but the

maximum did not change.

VI. CONCLUSIONS

We studied the cost of rebalancing vehicle supply (for

ridesharing services) on a transportation network modeled as

an undirected graph. We compared two different methods for

controlling the vehicle flows: (1) direct control, which mod-

els on-demand dispatchable vehicles such as autonomous

vehicles and (2) indirect control based on price differences,

which models human drivers as in the current ridesharing

scheme. We proposed a metric that quantifies the efficiency

gain of direct control (i.e., automated ridesharing) based on

the maximum difference between the rebalancing cost of

two methods. The benefit of the proposed metric is that

it is independent of the actual demand and only relies on

properties of the transportation network.

Fig. 4. Results of the maximum gap γ for the graph in Fig. 3b. The set
∆ = {δ : δi ∈ [−1, 1]}.

Generally, computing the metric requires solving an opti-

mization problem. Our main result is a set of numerical tools

for computing the metric. For a general graph, the metric

can be computed using an efficient local search method

called the difference-of-convex algorithm (DCA). Numerical

experiments on a practical graph (constructed from a pricing

map for the Washington, DC area) showed that the DCA

often converges extremely quickly. For fully connected and

symmetric graphs, the metric can be computed from an

equivalent convex program. Moreover, the convex program

adopts a simple closed-form optimal solution.

REFERENCES

[1] L. T. H. An, M. T. Belghiti, and P. D. Tao. A new efficient algorithm
based on DC programming and DCA for clustering. Journal of Global

Optimization, 37(4):593–608, 2007.
[2] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and

Optimization. Athena Scientific, 2003.
[3] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge

University Press, 2004.
[4] M. Chafkin. Uber’s first self-driving fleet arrives in Pittsburgh this

month. Bloomberg, August 2016. http://bloom.bg/2bzThsU

(retrieved: August 19, 2016).
[5] F. R. Chung. Spectral graph theory, volume 92. American Mathemat-

ical Soc., 1997.
[6] C. Lai and S. H. Low. The redistribution of power flow in cascading

failures. In Allerton Conference on Communication, Control, and

Computing, pages 1037–1044, 2013.
[7] F. Miao, S. Han, S. Lin, Q. Wang, J. Stankovic, A. Hendawi, D. Zhang,

T. He, and G. J. Pappas. Data-driven robust taxi dispatch under demand
uncertainties. IEEE Transactions on Control Systems Technology.
(under review).

[8] N. M. Nam, D. Giles, and R. B. Rector. Minimizing differences of
convex functions and applications to facility location and clustering.
arXiv preprint arXiv:1511.07595, 2015.

[9] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus. Robotic load
balancing for mobility-on-demand systems. The International Journal

of Robotics Research, 31(7):839–854, 2012.
[10] S. Soltan, D. Mazauric, and G. Zussman. Cascading failures in power

grids: analysis and algorithms. In Proceedings of the 5th international

conference on Future energy systems, pages 195–206, 2014.
[11] A. J. Wood and B. F. Wollenberg. Power generation, operation, and

control. John Wiley & Sons, 2012.
[12] R. Zhang and M. Pavone. Control of robotic mobility-on-demand

systems: a queueing-theoretical perspective. The International Journal

of Robotics Research, 35(1-3):186–203, 2016.

3566

