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Abstract— In this paper, we study dynamic-flow networks,
i.e., networks described by a graph whose weights evolve
according to linear differential equations. Further, these linear
differential equations depend on the incidence relation of the
edges in a node, and possibly nodal dynamics. Because some
of these weights and their dependencies may not be accurately
known, we extend the notion of structural controllability for
dynamic-flow networks, and provide necessary and sufficient
conditions for this to hold. Next, we show that the analysis
of structural controllability in dynamic-flow networks can be
reduced to that of a digraph which we refer to as meta digraph.
In addition, we consider different actuation capabilities, i.e., we
assume that both the nodes and edges in the dynamic-flow
network can be actuated, and we explore the implications
in terms of computational complexity when the minimum
cost-placement of actuators is considered.

The proposed framework can be used to identify actua-
tion capabilities required to mitigate epileptic-brain dynamics.
More precisely, the functional connectivity of mesoscale brain
dynamics can be modeled as a dynamic-flow network by
considering dynamic functional connectivity of the network.
In the context of epilepsy, the modeling is motivated by new
findings that show that the edges within seizure-generating
areas are almost constant over time, whereas the edges outside
these areas exhibit higher variability over time in human epilep-
tic networks. In addition, implementable devices to control
drug-resistant seizures by affecting the epileptic network has
gained considerable attention as a viable treatment option.
Subsequently, from a control-theoretic perspective, one can
consider actuation to attenuate edge variability responsible
for seizure-generation in the epileptic network. In particular,
we address the following two scenarios: (i) current placement
of electrical stimulators, and their probable capabilities; and
(ii) determine the minimum cost placement with minimum
actuation capabilities. The latter problem is motivated by the
fact that some edges may correspond to more accessible (or less
harmful) regions in the brain, whereas others might correspond
to sensitive regions in the brain.

I. INTRODUCTION

Complex networks have traditionally been studied by
resorting to graphs [1]. These have been considered most
of the times as static objects, whose weights associated with
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the edges are assumed constant over time. However, this is a
rather rigid description that often fails to adequately represent
the structure of natural, social and man-made processes,
especially in uncertain environments where the relations
between the constituent parts change over time [2].

Dynamic-flow networks model dynamical systems cap-
tured by networks where the weights on the edges evolve
according to linear differential equations. In addition, these
linear differential equations depend on the incidence relation
of the edges in a node, and possibly nodal dynamics. For ex-
ample, in social networks, a node (representing an individual)
constantly processes information received from its upstream
neighbors and makes decisions that are communicated to its
downstream neighbors. The information received and passed
by a node can be represented by the state variables on its
incoming and outgoing edges. Thus, mapping the signals of
the incoming edges onto those of the outgoing edges. This
is also the case in a network of computers and routers on
the Internet, where the edges represent physical connections
and the state variables on the edges represent the amount
of packet flow along a particular connection in a given
direction. The mechanism of the nodes then corresponds to
a load-balancing or routing mechanism that allows packets
to reach their destination while avoiding congestion.

Dynamic-flow networks can also be used to model func-
tional brain networks, where nodes represent neural popula-
tions and edges are statistical relationships between neural
activation patterns. In particular, these networks are suitable
to capture the brain dynamics when dynamic functional
connectivity is considered [3]. More specifically, a sliding-
window over the blood-oxygen level dependent (BOLD)
signal is considered to obtain over time the functional
connectivity that captures the Pearson’s correlation between
signals. In particular, the local dependency on adjacent edges
is justified by the spatial-temporal dependency of the BOLD
signals [3].

The control of dynamic-flow networks was introduced
in [4], and in this paper we aim to account for the case
where the parameters describing the possible interaction
dependencies in the flow-dynamic networks are either free or
constant parameters over time. Towards this goal we resort
to structural systems theory [5] that enables the introduction
of generic controllability notions [6], i.e., controllability
holds for almost all possible parameterization of the free
parameters. Therefore, we aim to assess when flow-dynamic
networks (seen as a dynamical system) are generically con-
trollable. In addition, we assume that different functions and
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locations of control inputs are possible, which influences the
edges’ weights and nodes’ dynamics. More precisely, these
can be multi-node input, i.e., the input signal is injected in
several nodes to regulate how the dynamics of the outgoing
edges changes, and multi-edge inputs, i.e., an input can
actuate a linear combination of edges, not necessarily the
ones that share vertices. Particular cases of these two are the
out-node inputs, i.e., all the outgoing edges from a single
vertex are driven by a scalar input signal, and the in-edge
inputs, i.e., an input can actuate only a single edge dynamics
directly. In this paper, we analyze and provide necessary
and sufficient conditions for dynamic-flow networks, where
parameters can be either free or constant over time, to
be generically controllable. In addition, we consider the
control placement problems under different assumptions;
more precisely, we consider that different edges and/or nodes
may incur in different costs.

Related Work

Several necessary and sufficient conditions that character-
ize the structural controllability, as well as their verification,
are known for linear time-invariant [5], or switching sys-
tems [7]. Nevertheless, the selection, commonly referred to
as design, of minimum actuation capabilities to ensure that
these conditions hold has only been addressed in the last
years. In the context of linear time-invariant systems, the
problem of determining the minimum number of actuated
variables ensuring structural controllability was addressed
in [8], [9]. Later, it was extended to the case where the mini-
mum cost is sought when the actuated state variables incur in
a cost that does not depend on the actuator considered [10],
and to the minimum cost problem allowing the actuation cost
of a state variable to depend on the actuator considerez [11].
An alternative formulation consists in assuming a predefined
collection of actuators from which one selects those to be
used to ensure structural controllability, but in such scenario
the problem of determining the minimum collection of such
actuators is NP-hard [12]. Notwithstanding, some subclasses
have been determined where the problem is polynomial, even
when different actuation costs are considered [13]. More
recently, actuation selection problems ensuring structural
controllability were also proposed for discrete-time fractional
dynamics [14], and switching systems for some switching
policy [15] and for all switching policies [16].

In [17] is presented a framework that is close to ours,
where switch-board dynamics is studied for the edges’ dy-
namics and assumed to be controlled by in-node inputs, i.e.,
an external input is injected in the node from which the edges
to be actuated depart. In addition, all the edges are actuated
in equal manner, and the dynamics of a node is considered
to be constant in time, which we refer to as static node. The
analysis results in studying the line/dual graph, on which
some actuation deployment strategies are provided. In this
paper, we extend [17] in multiple ways: (i) we assume that
the nodes can have dynamics; (ii) we deal with multi-node
and multi-edge inputs; and (iii) some edges’ weights may be
constant over time. Furthermore, we notice that the analysis

can no longer be done resorting to dual graphs, see Remark 1
for additional details. ◦

The main contributions of this paper are as follows: (i) we
formally introduce the notion of generic controllability for
dynamic-flow networks, where some edges’ weights can be
constant over time; (ii) we introduce necessary and sufficient
conditions that ensure structural controllability; (iii) we ad-
dress the problem of minimum actuator placement incurring
in the minimum cost while ensuring structural controllability;
(iv) we show how dynamic-flow networks can identify brain
regions that should be actuated to ensure that edges’ weights
variations are kept within certain bounds; (v) we show that
current actuation capabilities are enough to ensure structural
controllability; and (vi) using real data, we determine the
location of actuators to regulate the dynamics such that
epileptic seizures may be attenuated and/or overcome.

The rest of the paper is organized as follows. In Sec-
tion II, we provide the formal problem statement. Section III
reviews some concepts from computational complexity and
graph theoretical concepts used in structural systems theory.
Section IV presents the main technical results, followed
by a case study in Section V showing the implications
in the brain dynamics; more specifically, in the context of
epilepsy. Conclusions and discussions on further research are
presented in Section VI.

II. PROBLEM STATEMENT

Let D = (V, E) be a digraph, where V denotes a set of n
vertices, and E the set of m directed edges been the vertices.
In addition, consider that each edge in the digraph has weight
w associated with it, where w : E → R+

0 , and a label µ(e) ∈
{1, ?}, for e ∈ E , where µ(e) = 1 indicates that the weight
is constant over time and µ(e) = ? indicates that it varies
over time. Further, let N = {Ni}i∈I represent the multi-
node actuation signal, where the collection of the nodes’ set
Ni ⊂ {1, . . . , n} is actuated by the actuator i. In particular,
if every Ni contains only one node than we have out-node
inputs. Similarly, let E = {Ej}j∈J be the collection of the
edges’ set Ej ⊂ E actuated by the actuator j, and if every
Ej contains only one edge than we have in-edge inputs.
Consequently, the dynamic-flow network can be described by
(D = (V, E), w, µ,E,N), where it is implicitly assumed that
the dynamics of one edge depends on a linear combination
on the incoming edges’ weights. A dynamic-flow network
is structurally controllable, if there exits control signals
delivered to the dynamic-flow network by (E,N) such that
the edges’ weights can be steered to an arbitrary value, for
almost all free parameters describing edge dynamics.

Therefore, we are interested in addressing the following
problems:

P1 When is the dynamic-flow network (D, w, µ,E =
{Ej}j∈J ,N = {Ni}i∈I) structurally controllable?

P2 Consider a structurally controllable dynamic-flow net-
work (D = (V, EV,V), w, µ,E = {Ej}j∈J ,N =
{Ni}i∈I , {cEj }j∈J , {cNi }i∈I), where cEj and cNi are
the actuation costs associated with Ej and Ni, respec-
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tively. What is the minimum |I| and |J | that ensures
the lowest cost and structural controllability?

III. PRELIMINARIES AND TERMINOLOGY

We start by reviewing some computational complexity
concepts [18], followed by some graph theoretic concepts
related with the study of structural systems theory [5], [9].

A (computational) problem is said to be reducible in
polynomial time to another if there exists a procedure to
transform the former to the latter using a number of opera-
tions which is polynomial in the size of its elements. Such a
reduction is useful in determining the complexity class that
a problem belongs to [18]. For instance, a problem P in NP
(i.e., the class of non-deterministic polynomial algorithms)
is said to be NP-complete if all other NP problems can
be polynomially reduced to P [18]. The NP-complete class
is used to describe the complexity of decision versions of
problems. For instance, the following constitutes a decision
problem that is particularly relevant in the design of structural
systems context [12]: Given the structural dynamics’ matrix
and a collection of possible inputs, is there a collection of
inputs with exactly k elements, such that the system actuated
by these is structurally controllable?

Alternatively, it is often natural to consider the optimiza-
tion versions associated with the decision problems. For
instance, the optimization version of the problem stated
above aims to determine the minimum k such that the
aforementioned property holds. This optimization problem
is referred to as the constrained minimum structural input
selection (CMSIS) problem [12]. Note that, if a solution to
the optimization problem is known, the decision problem
is straightforward to solve. Consequently, the optimization
problem formulations of NP-complete problems, are referred
to as being NP-hard, since they are at least as difficult as
the NP-complete problems; in other words, by solving an
instance of the optimization problem (the NP-hard problem),
one can obtain a solution to an NP-complete problem.
Finally, we notice that CMSIS is a NP-hard problem [12].

Consider a linear time-invariant system described by

ẋ = Ax+Bu, (1)

where x ∈ Rn denotes the state and u ∈ Rp the input. In
addition, A is the n×n matrix describing the autonomous dy-
namics and B the n×p input matrix describing the actuated
state variables from each input. Suppose that the sparsity
pattern, i.e., location of zeros and (possibly) nonzeros, of
A and B is available, but the specific numerical values
of the remaining elements is not known. Subsequently, let
Ā ∈ {0, 1}n×n (respectively B̄ ∈ {0, 1}n×p) is the binary
matrix that represents the structural pattern of A (respectively
B), i.e., it encodes the sparsity pattern of A (respectively B)
by assigning 0 to each zero entry of A (respectively B) and
1 otherwise.

The following standard terminology and notions from
graph theory can be found, for instance, in [9]. Let D(Ā) =
(X , EX ,X ) be the digraph representation of Ā in (1), where
the vertex set X represents the set of state variables (also

referred to as state vertices) and EX ,X = {(xi, xj) : Aji 6=
0} denotes the set of state edges. Similarly, we define the
following digraphs: D(Ā, B̄) = (X ∪U , EX ,X ∪EU,X ) where
U represents the set of input vertices and EU,X = {(ui, xj) :
B̄ji 6= 0} the set of input edges.

A digraph Ds = (Vs, Es) with Vs ⊂ V and
Es ⊂ E is called a subgraph of D. If Vs = V ,
Ds is said to span D. A sequence of directed edges
{(v1, v2), (v2, v3), · · · , (vk−1, vk)}, in which all the vertices
are distinct, is called an elementary path from v1 to vk,
as well as a vertex in a digraph with no incoming and
outgoing edges (with some abuse of terminology). A vertex
with an edge to itself (i.e., a self-loop), or an elementary
path from v1 to vk comprising an additional edge (vk, v1),
is called a cycle. Finally, a subgraph with some property P
is maximal if there is no other subgraph Ds′ = (Vs′ , Es′)
of D, such that Ds is a subgraph of Ds′ , and Ds′ satisfies
property P . Subsequently, a digraph D is said to be strongly
connected if there exists an elementary path between any
pair of vertices. A strongly connected component (SCC) is a
maximal subgraph DS = (VS , ES) of D such that for every
v, w ∈ VS there exists a path from v to w and from w to v.

IV. MAIN RESULTS

In this section, we present the main results of the present
paper. First, we show that the dynamic-flow network can
be written in terms of a state-space representation, which
we refer to as meta digraph. In particular, a systematic
procedure to construct this digraph is presented in Algo-
rithm 1. Then, using the meta digraph, we obtain necessary
and sufficient conditions to ensure structural controllability
of the dynamic-flow network (Theorem 1); hence, providing
an answer to P1. Subsequently, due to the proposed reduction
from the dynamic-flow network to the meta digraph, and
the fact that a meta digraph can be an arbitrary digraph
(Theorem 3), we can obtain a series of results that dictate the
computational complexity of the problem presented in P2 as
well as its variations; more precisely, the general problem
is NP-hard, but a polynomial complexity procedure can be
used to determine solutions to a subclass of P2.

The polynomial reduction from a dynamic-flow network to
the meta digraph is presented in Algorithm 1. This reduction
allow us to provide a characterization of the solutions to P1,
as described in the next theorem.

Theorem 1: The dynamic-flow network (D = (V, EV,V),
w, µ,E = {Ej}j∈J ,N = {Ni}i∈I , {cEj }j∈J , {cNi }i∈I),
where cEj and cNi are the actuation costs associated with Ej

and Ni respectively, is structurally controllable if and only
if the meta digraph described by the pair (Ē, B̄) obtained
from Algorithm 1 is structurally controllable. In addition, the
actuation cost achieved by the deployed actuation capabilities
in either digraph is the same. �

Proof: The proof follows by structural induction; more
precisely, we show that there are few atomic structures
that hold and the result follows by noticing that any graph
consists in a combination of these atoms. First, consider the
case where one node has several incoming and outgoing
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ALGORITHM 1: Determine the meta digraph from the
state digraph.

Input: The dynamic-flow network and actuation costs
(D = (V, EV,V), w, µ,E = {Ej}j∈J ,N =
{Ni}i∈I , {cEj }j∈J , {cNi }i∈I).
Output: Meta digraph
D∗(Ē, B̄) = (E∗ ∪ U∗, EE∗,E∗ ∪ EU∗,E∗) and actuation
cost ck associated with the input uk, for
k = 1, . . . , |I|+ |J |.

E∗ = ∅; U∗(E) = ∅; U∗(N) = ∅; U∗ = ∅;
EE∗,E∗ = ∅; EU∗,E∗ = ∅; EU∗(E),E∗ = ∅; EU∗(N),E∗ = ∅;

1: E∗ = {e ∈ EV,V : µ(e) = ?};
2: U∗(E) = {uj : j ∈ J } where the cost of input uj is
cEj for j ∈ J .

3: U∗(N) = {u|J |+i : i ∈ I} where the cost of input
u|J |+i is cNi for i ∈ I.

4: U∗ = U∗(E) ∪ U∗(N);
5: EE∗,E∗ = {(e, e′) ∈ E∗ × E∗ : e e′}, where e e′

denotes a directed path with the first and last edges
being e and e′ respectively, µ(e) = µ(e′) = ? and any
other edge e′′ in-between (if any) has constant weight
over time, i.e., µ(e′′) = 1;

6: EU∗(E),E∗ = {(uj , e) : e ∈ Ej};
7: EU∗(N),E∗ = {(u|J |+i, e ≡ (k, l)) : e ∈ E , k ∈
Ni, µ(e) = ?} ∪ {(u|J |+i, e

′) : e ≡ (k, l) ∈ E , k ∈
Ni, µ(e) = 1, e 1 e

′}, where e 1 e
′ denotes a

directed path with the first and last edges being e and
e′ respectively, with µ(e′) = ? and any other edge e′′

has constant weight over time, i.e., µ(e′′) = 1;

edges as well as a self-loop that do not have constant
weight over time, see case 1 in Figure 1. Then, each of
the of the outgoing edges have their dynamics given in
terms of a linear combination of the incoming edges, i.e.,
ė+l = wl0e0 +

∑
m=1,...,p′ wlme

−
m for l = 1, . . . , p and

ė0 = w00e0 +
∑

m=1,...,p′ w0me
−
m. If the weight of a self-

loop in a vertex i does not vary over time then it is the same
as having a vertex without edges from a dynamic point of
view, see case 2 in Figure 1. An extension of this scenario is
depicted in case 3 in Figure 1, where two vertices i and j are
connected by an edge whose weight does not vary over time.
In this case, we can understand the total incoming variation
of the edge dynamics matching the outgoing variation, hence,
the total variation due the incoming edges in vertex j reflects
into the outgoing edges’ dynamics of vertex i. More pre-
cisely, we obtain ė+l = wl0e0 +w′l0e

′
0 +

∑
m=1,...,p′ wlme

−
m

for l = 1, . . . , p, ė0 = w00e0 + w′l0e
′
0 +

∑
m=1,...,p′ w0me

−
m

and ė′0 = w′l0e
′
0 +

∑
m=1,...,p′ w0me

−
m. Further, notice that

any graph can be recursively created by a sequence of the
previous cases; in particular, if we connect two nodes i
and j with outgoing and incoming edges with time varying
weights, respectively, through a directed path containing only
static nodes and constant weight edges, then it is the same as
having the different incoming edges in node j contributing

to the dynamics of the outgoing edges in node i, see case
4 in Figure 1. Finally, we notice that by specializing the
construction to the case where the inputs are considered, it
immediately follows that the cost associated to the inputs in
the meta digraph is the same as the actuation cost in the
dynamic-flow network.

Fig. 1. Cases 1-3 denote the different atomic connections, whereas in
Case 4 we can see a composed structure whose interconnections consist
of directed paths with constant weight edges and static nodes, i.e., without
self-loops.

In addition, it readily follows that the computation com-
plexity of the procedure presented in Algorithm 1 is as
follows.

Theorem 2: Let (D = (V, EV,V), w, µ,E =
{Ej}j∈J ,N = {Ni}i∈I , {cEj }j∈J , {cNi }i∈I) be a
dynamic-flow network. Then, Algorithm 1 has polynomial
computational complexity given by O(|V|+ |EV,V |). �

Proof: Step 5 and 7 can be implemented by considering
a variation of depth-first search [19]. More precisely, to
verify if e  1 e′, consider the digraph Dᵀ = (V, EᵀV,V)
where the direction of the edges is reversed with respect
to D, and perform a depth-first search rooted in e′ where
adjacency is considered only if the edge has constant weight.
If e belongs to such tree, then e  1 e

′. Similar procedure
applies to e  e′, where after the search has exhausted the
constant weight edges, it considers all remaining vertices
not in the tree to which a time varying edges connects to.
All remaining steps have constant computational complexity;
thus, the result follows.

Next, we show that the flow-dynamic graphs considered
in this paper can lead to an arbitrary meta digraph, once the
procedure in Algorithm 1 is used.

Theorem 3: The meta digraph D∗ can be an arbitrary
digraph. �

Proof: Suppose that we want to obtain D∗ =
(X , EX ,X ), then we just need to consider D(Ē) =
(W, EW,W) such that W = X ∪ {e1, . . . , e|EX ,X |}, where
µ(ei) = 1 and µ(xj) = ? for all i and j, respectively. In
addition, let EX ,X = {ex1 , . . . , ex|EX ,X |}, and set ei to be an
outgoing edge of xj and incoming edge in xk for exi =
(xk, xj). Then, by executing Algorithm 1 when (D(Ē), µ)
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is considered, we obtain D∗. Figure 2 depicts an illustrative
example of the proposed methodology.

Fig. 2. In this figure, we depict the reduction using Algorithm 1 from
the dynamic-flow network in (a) to the meta digraph in (b). In particular,
the obtained graph is a 4-vertices star graph which is one of the forbidden
subgraphs in a line graph [20], [21].

Remark 1: Theorem 3 is relevant to contrast our work
with that in [17] where the analysis is done through the line
graph L(G), i.e., a graph where the edges of the original
graph G are the vertices of the line graph L(G) and an edge
between two vertices exist in L(G) if two edges in G are
incident in the same vertex. In particular, we notice that the
line graphs cannot be an arbitrary graph; more specifically,
they cannot contain nine forbidden subgraphs [20], [21];
in fact, an instance of such forbidden graphs is the 4-star
network depicted in Figure 2-(b). �

Next, due to Theorem 3, we can obtain the corollaries
stated next.

Corollary 1: Determining the minimum cost in-edge in-
puts can be achieved in O(nω), where n is the number of
state variables in the meta digraph, and ω < 2.373 is the
lowest exponent known associated with the complexity of
multiplying two n× n matrices. �

Proof: It follows from [10], where a polynomial algo-
rithm, with the aferomentioned computational complexity, to
determine the minimum cost of dedicated inputs that ensure
structural controllability is proposed.

Corollary 2: Determining the minimum cost multi-edge
and out-node inputs is NP-hard for general dynamic-flow
networks. �

Proof: The complexity of using multi-edge inputs
follows from [12], whereas the complexity of using out-node
inputs, i.e., multi-edges inputs that conform with the digraph
topology, follows from [22].

Although both the minimum cost multi-edge and out-node
inputs problem are NP-hard in general, they are polynomially
solvable for a large class of problems, as we obtain in the
next result.

Corollary 3: If the states of the meta digraph belong to
a single strongly connected component, then the minimum
cost multi-edge and out-node inputs is polynomially solvable
in O(n3). �

Proof: It follows from [13], where a polynomial
algorithm to determine the minimum cost multi-edge and
out-node inputs was proposed for strongly connected state
digraphs.

In the next section, we provide an application of the
present framework in terms of modeling time-varying func-

tional connectivity from epileptic human brain. Furthermore,
we demonstrate how structural controllability of functional
networks can be tested to ensure efficacy of implantable
device that target specific brain regions for drug-resistant
epilepsy.

V. A CASE STUDY: EPILEPSY-ACTUATION SCHEMES

In this section, we ask how structural controllability
can be assessed for therapies that actuate neural pathways
to treat brain diseases. For instance, assessing structural
controllability of epileptic networks is vital for predicting
whether implantable devices will be effective at controlling
seizures. To demonstrate such an application, we pursue the
case-study of a 20 year-old, male undergoing surgical treat-
ment for drug-resistant epilepsy believed to be neocortical
origin. As a part of routine clinical workup, the patient
underwent implantation of intracranial, subdural electrodes
for continuous monitoring of the electrocorticogram (ECoG)
to localize regions of the epileptic network responsible for
generating seizures. De-identified patient data was retrieved
from the online International Epilepsy Electrophysiology
Portal (IEEG Portal) [23]. To demonstrate our structural
controllability technique, we analyzed data from a patient
with 84 intracranially, implanted electrodes and one 107
second long seizure (as defined by routine clinical marking).
As a control, we also pulled the 107 second interval leading
to seizure-onset (referred to as pre-seizure).

To test the efficacy of actuating different network re-
gions for seizure control, we first estimated the time-varying
functional connectivity of the epileptic network during the
pre-seizure period. To measure functional connectivity, we
divided the pre-seizure ECoG signal into 1-second, non-
overlapping, wide-sense stationary time windows and applied
a normalized cross-correlation similarity function between
every possible pair of signals. This procedure yields T sym-
metric, weighted N × N time-varying adjacency matrices,
where N is the number of nodes (ECoG channels) and T is
the number of time windows. For our example seizure and
pre-seizure data, T = 107 and N = 84.

Next, we asked which of the strongest functional connec-
tions are time-varying or most time-constant during the pre-
seizure period. For each unique edge, we measured the aver-
age edge strength (Fig. 3) and coefficient of variation (Fig. 4),
i.e., the ratio of standard deviation to mean of edge strength,
over all T time windows during the pre-seizure period.
We retained the 25% strongest edges, of which half the
edges with lowest coefficient of variation were considered
time-constant and with highest coefficient of variation con-
sidered time-varying, see Fig. 5. The resulting adjacency
matrix representing time-constant and time-varying edges is
demonstrated in Fig. 6.

Using Algorithm 1, we generate the meta digraph, which
describes the dynamics of a given edge in terms of all
other interacting edges (Fig. 7), and the control input matrix,
which describes the influence of the actuating nodes, in
this case chosen as seizure-onset nodes. The control input
matrix specifies which state variables in the meta digraph,
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Fig. 3. Average edge strength in dynamic-flow network from 107 time
windows preceding seizure onset. Edges strength is the statistical similarity
between all possible node (electrode) pairs in the network. Colors represent
average edge strength. Clinically-defined seizure-onset nodes are 29 and 37.
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Fig. 4. Coefficient of variation of edge strength in dynamic-flow network
from 107 time windows preceding seizure onset. Colors represent the
stability of edge strength over time windows.

i.e., the edges in the dynamic-flow network, are actuated.
For a point of comparison, we construct the meta digraph
under two conditions: (i) real formulation of observed time-
constant and time-varying edges; (ii) extreme case where
all the strongest edges are considered time-varying, i.e., no
time-constant edges exist , as depicted in Fig. 8. We find
that the original dynamic-flow network is 4.3% sparse, while
the extreme case with strongest edges all considered time-
varying is 98.3% sparse. These findings suggest that in the
original dynamic-flow, containing some time-constant edges,
has greater chance of reaching an edge from any other given
edge.

We ask if actuating nodes in the clinically-defined
seizure-onset zone ensures structural controllability of the
epileptic network. We assume a constant cost of 1 for each
in-edge input in the dynamic-flow network, since the regions
of interest have similar properties. Using the algorithm
implementing Corollary 1 (see [10] for details) with the meta
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Fig. 5. Relationship between edge strength and coefficient of variation
for all edges in the dynamic-flow network. Vertical red line demarcates
the threshold used to retain 25% strongest edges. Horizontal blue line is the
threshold by which edges with lower coefficient of variation were considered
time-constant and greater coefficient of variation were considered time-
varying.
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Fig. 6. Adjacency matrix demonstrated edge stability (green) and variability
(red).

digraph, we find that any single in-edge input within the
seizure-onset zone guarantees structural controllability in the
epileptic network for the given patient. These results support
the capability of current actuating technologies under the
assumption that electrode placement captures the full extent
of the epileptic region. If we assign different cost to actuating
different regions in the epileptic network, due to the dense
connectivity (as presented in Fig. 7) any single actuated
region will suffice to ensure structural controllability; thus,
the less costly, or harmless region should be selected.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have extended the notion of generic con-
trollability for dynamic-flow networks, with either constant
and free parameters over time, and provided necessary and
sufficient conditions for this to hold. In addition, we address
the problem of minimum actuator placement incurring in
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Fig. 7. Meta digraph resulting from a dynamic-flow network with a mixture
of time-constant and time-varying edges.
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Fig. 8. Meta digraph resulting from a dynamic-flow network when all
edges are assumed to be time-varying.

the minimum cost while ensuring structural controllability
of the dynamic-flow networks. Finally, we showed how
dynamic-flow networks can used as model to identify the
regions in the brain that should be actuated to ensure that
edges’ weights variations are kept within certain bounds.
This model allowed us to assess that current actuation
capabilities are enough to ensure structural controllability,
and determined the location of actuators to regulate the
dynamics such that epileptic seizures may be attenuated
and/or overcome. We look to pursue model validation in a
larger patient cohort as a future line of work. However, apply-
ing structural controllability methods to determine optimal
actuation schemes at low cost can impact current clinical
workflow in placement and configuration of implantable
devices.
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[2] D. D. Šiljak, “Dynamic graphs,” Nonlinear Analysis: Hybrid Systems,
vol. 2, no. 2, pp. 544 – 567, 2008, proceedings of the International
Conference on Hybrid Systems and Applications, Lafayette, LA, USA,
May 2006: Part II.

[3] R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. A. Bandettini,
V. D. Calhoun, M. Corbetta, S. D. Penna, J. H. Duyn, G. H. Glover,
J. Gonzalez-Castillo, D. A. Handwerker, S. Keilholz, V. Kiviniemi,
D. A. Leopold, F. de Pasquale, O. Sporns, M. Walter, and C. Chang,
“Dynamic functional connectivity: Promise, issues, and interpreta-
tions,” NeuroImage, vol. 80, 10 2013.
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