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The advent of micro and nano-scale sensors and actuators
has led to the possibility of controlling larger and more
complex networks. A crucial question is often how to
optimally control such networks. For example, what is the
minimum number of states which must be actuated to
guarantee system controllability? How should inputs be as-
signed when controlling different states at different costs?
In addition, the parametric realization of the system’s
dynamics may not be accurately known, in which case
structural systems theory (Dion et al. (2003)) provides the
tools to practically answer such questions.

In this work, we explain how to optimally select inputs
to ensure structural controllability of a specific type of
networked dynamical system: multi-agent networks. More
precisely, we consider scenarios where signals are provided
to the different agents by multiple communication/control
towers. Each tower can provide individual control signals,
which we refer to as dedicated inputs, to multiple agents
with a cost which depends on the agents’ locations or
characterizations. In particular, the cost can be related to
the distance between the tower and agent, or preferential
assignment in a heterogenous multi-agent network, where
some towers can only provide signals to agents of a
specified type.

The problem addressed hereafter is closely related to the
so-called (unconstrained) leader selection problem (Pe-
quito et al. (2014c)), where agents to whom inputs are
assigned are deemed leaders in the network. Therefore,
the goal is to determine the minimum number of such
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leaders that ensure that controllability of the multi-agent
network is ensured. Nonetheless, we add a new level of
complexity to the problem by assuming that these signals
can originate from different actuators, for instance, com-
munication/control towers. In addition, due to uncertainty
or unknown parameters of the dynamics we consider the
structural counterpart of the problem; hence, we aim to
ensure structural controllability, see Section 1 for formal
definition and statement of the problem.

The leader selection problem is often approached as a
minimization of the energy cost (Tzoumas et al. (2014)),
number of leaders (Pequito et al. (2013c); Pequito et al.
(2014b); Jiang et al. (2009); Commault and Dion (2013);
Pequito et al. (2014c)), assignability cost (Pequito et al.
(2013b,a)), network coherence (Patterson and Bamieh
(2010)), mean square error with respect to the reference
trajectory, or variants of the former (Lin et al. (2014);
Clark and Poovendran (2011); Clark et al. (2014); Patter-
son et al. (2014); Patterson (2014); Shames et al. (2010);
Franchi et al. (2011)). At last, as we previously pointed
out, the leader selection problems can be seen as a particu-
lar case of input selection problems, with similar optimiza-
tion objectives (Pasqualetti et al. (2014); Tzoumas et al.
(2014); Summers et al. (2014); Olshevsky (2014); Pequito
et al. (2014c,b); Ramos et al. (2014)). Subsequently, the
closest paper to the work presented hereafter is (Pequito
et al. (2014a)), where the problem of determining the
minimum collection of dedicated inputs incurring the low-
est cost is analyzed. In particular, that work deals with
the problem explored by us in this paper when only one
communication tower is considered. Therefore, our results
are more general, and can be applied to the two scenarios
above described, to which the results in (Pequito et al.
(2014a)) can only provide insights.
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The main contributions of this paper are as follows: we
extend the sparsest minimum cost leader selection problem
to the case where an entity can provide input signals to
different leaders, i.e., the inputs are multiple dedicated,
while incurring different costs.

The rest of the paper is organized as follows. In Section 1,
we provide the formal problem statement. Section 2 re-
views some concepts and introduces results in structural
systems theory. Subsequently, in Section 3, we present the
main technical results, followed by an illustrative exam-
ple in Section 4. Conclusions and discussions on further
research are presented in Section 5.

1. PROBLEM STATEMENT

Let D = (V, E) denote a communication graph connecting
a set of agents, represented by the vertices in V, and a set
of directed edges E . A directed edge (i, j) ∈ E indicates
that agent i is able to transmit information to agent j.
We denote by N−

i the in-neighbors of agent i, i.e., all the
agents j �= i such that (j, i) ∈ E . Further, an agent can
communicate with itself, but may also work as a simple
integrator. Subsequently, agents are assumed to possess a
scalar state, and agent i updates its state according to the
following linear update:

xi[k + 1] = aiixi[k] +
∑

j∈N−
i

aijxj [k], (1)

where xi[k] is the state of agent i at time k, and {aij : j ∈
N−

i ∪ {i}} is the set of weights that determines the pro-
tocol run by agent i. The multi-agent network dynamics
can be re-written as a discrete-time linear time-invariant
dynamical system:

x[k + 1] = A(D)x[k], (2)

where A(D) is the dynamics induced by the communica-
tion graph D, with [A(D)]i,j = 0 if (j, i) /∈ E . Whereas (2)
represents an autonomous dynamical system, we are in-
terested in the case where some of the agents are driven
by exogenous input signals provided by the communica-
tion/control towers. We call these agents ‘leaders’ and
describe the resulting non-autonomous dynamics by:

xi[k + 1] = aiixi[k] +
∑

j∈N−
i

aijxj [k] + bilui[k], (3)

where bil = 1 if agent i is a leader, and bil = 0 otherwise; in
addition, the index l indicates the actuator that provided
the signal to the leader, for instance, the communica-
tion/control tower. Subsequently, we can rewrite (3) in
matrix form as

ẋ(t) = Ax(t) + [In(J1) . . . In(Jp)]︸ ︷︷ ︸
In(J1,...,Jp)

u(t), (4)

where In(J ) corresponds to the collection of columns
of the n × n identity matrix with index in J , where
J is the set of indices corresponding to the leaders. In
addition, x ∈ Rn denotes the collection of the agents’
states, and u ∈ R|J1|+...+|Jp|, with Ji ⊂ {1, . . . , n}, is
the input. The input is given by u(t) = [u1(t) . . . up(t)],

where ui ∈ R|Ji| corresponds to the signals provided by
the different communication/control towers deployed in a
certain geographical area, and the communication towers

can emit signals to the different agents in the surrounding
area.

In the sequel, we identify the system in (4) with the
tuple (A, In(J1, . . . ,Jp)). In many practical real scenar-
ios with particular emphasis of large-scale systems, it
is often the case that the exact values of the non-zero
parameters of the plant matrices are unknown, or that
these may change over time. To circumvent this prob-
lem, in this paper we adopt the the framework of struc-
tural systems (Dion et al. (2003)). To this end, we let

Ā ∈ {0, 1}n×n
and In(J1, . . . ,Jp) ∈ {0, 1}n×(|J1|+...+|Jp|)

be the binary matrices that represent the structural
patterns (location of zeros and non-zeros) of A and
In(J1, . . . ,Jp), respectively. Then, we then focus on
properties of systems, where the plant matrices have
these sparsity patterns (Ā, In(J1, . . . ,Jp)) which we re-
fer to as a structural system. A pair (Ā, In(J1, . . . ,Jp))
is said to be structurally controllable if there exists
a pair (A′, In(J1, . . . ,Jp)) with the same structure as
(Ā, In(J1, . . . ,Jp)), i.e., with the same locations of ze-
ros and nonzeros, such that (A′, In(J1, . . . ,Jp)) is con-
trollable. By density arguments (Reinschke (1988)), it
can be shown that if a pair (Ā, In(J1, . . . ,Jp)) is struc-
turally controllable, then almost all (with respect to
the Lebesgue measure) pairs with the same structure as
(Ā, In(J1, . . . ,Jp)) are controllable. In essence, structural
controllability is a property of the structure of the pair
(Ā, In(J1, . . . ,Jp)) and not of the specific numerical val-
ues.

Further, the inputs can incur different costs, possibly
related with the signal to noise ratio or signal strength
that is proportional to the square of the distance between
the communication tower and an agent. In summary, the
problem addressed in this paper can be formally stated as
follows:

Sparsest Min. Multiple-Cost Struct. Leader Selection

P1 : Let Ā ∈ {0, 1}n×n
and In(J1, . . . ,Jp)

∈ {0, 1}n×|J1|+...+|Jp| correspond to the dynamics and
input matrices, respectively. In addition, let ci ∈ (R+

0 ∪
{∞})n×n be a vector where the entry cij indicates the cost
of actuating state variable j by actuator i. Then, we aim
to determine (J ∗

1 , . . . ,J ∗
p ), where Ji ⊂ {1 . . . , n}, is the

solution to the following optimization problem:

min
J1,...,Jp

p∑
k=1

∑
j∈Jk

ckj

s.t. (Ā, In(J1, . . . ,Jp)) is struct. controllable,

and

p∑
l=1

|Jl| ≤
p∑

l=1

|J ′
l |, for any

struct. controllable (Ā, In(J ′
1, . . . ,J ′

p)).
(5)

�

2. PRELIMINARIES AND TERMINOLOGY

In this section, we review some basic concepts of structural
systems and graph theory, followed by concepts of compu-
tational complexity. In addition, we introduce terminology
that will be employed throughout the rest of the paper.
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Consider a linear time-invariant (LTI) system described
by the pair (A,B). In order to perform structural analysis
efficiently, it is customary to associate to (4) a directed
graph (digraph) D = (V, E), in which V denotes the
set of vertices and E ⊂ V × V the set of edges, where
(vj , vi) represents an edge from the vertex vj to vertex

vi. To this end, let Ā ∈ {0, 1}n×n
and B̄ ∈ {0, 1}n×p

be binary matrices that represent the sparsity patterns
of A and B, respectively. Denote by X = {x1, . . . , xn}
and U = {u1, . . . , up} the sets of state and input vertices,
respectively. And by EX ,X = {(xi, xj) : Āji �= 0} and
EU ,X = {(uj , xi) : B̄ij �= 0} the edges between the sets
in subscript. In addition, we introduce the state digraph
D(Ā) = (X , EX ,X ), and the system digraph D(Ā, B̄) =
(X ∪ U , EX ,X ∪ EU ,X ). Further, by similarity, we have the
state-slack digraph given by D(Ā, S̄) = (X ∪ S, EX ,X ∪
ES,X ), where S represents the set of slack variables (or
vertices), which may be thought of as potential inputs. In
addition, given digraphs D(Ā, B̄) and D(Ā, S̄), we say that
they are isomorphic to each other, if there exists a bijective
relationship between the vertices and edges of the digraphs
that preserves the incidence relation. Finally, since the
edges are directed, an edge is said to be an outgoing edge
from a vertex v if it starts in v, and, similarly, is said to
be an incoming edge to w if it ends on w.

A directed path between the vertices v1 and vk is a
sequence of edges {(v1, v2), (v2, v3), . . . , (vk−1, vk)}. If all
the vertices in a directed path are different, then the path
is said to be an elementary path.

We also require the following graph-theoretic notions (Cor-
men et al. (2001)): A digraph is strongly connected if
there exists a directed path between any two vertices. A
strongly connected component (SCC) is a maximal sub-
graph DS = (VS , ES) of D, i.e., a graph comprising a set
of vertices V ′ ⊂ V and of edges E ′ ⊂ E , such that for every
u, v ∈ VS there exists a path from u to v and is maximal
with this property (i.e., considering any other vertex will
make the subgraph cease to be strongly connected).

Since the SCCs of a digraph D = (V, E) are uniquely
determined, we can regard each SCC as a virtual node.
By doing so we build a directed acyclic graph (DAG), i.e.,
a directed graph with no cycles, in which a directed edge
exists between two virtual nodes representing two SCCs
if and only if there exists an edge between two vertices
in the corresponding SCCs in the original digraph. We
call this the DAG representation of the graph, which can
be computed efficiently in O(|V| + |E|) (Cormen et al.
(2001)). We can further classify the SCCs with respect to
the existence of incoming and/or outgoing edges as follows.

Definition 1. (Pequito et al. (2014b)). An SCC is said to
be linked if it has at least one incoming or outgoing edge
from another SCC. In particular, an SCC is non top-linked
if it has no incoming edges from another SCC. �

For any digraph D = (V, E) and any two vertex sets
S1,S2 ⊂ V we define the bipartite graph B(S1,S2, ES1,S2

)
whose vertex set is given by S1 ∪ S2 and the edge set
ES1,S2

= E ∩ (S1 × S2). We call the bipartite graph
B(V,V, E) the bipartite graph associated with D(V, E). In
the sequel we will make heavy use of the state bipartite
graph B(Ā) ≡ B(X ,X , EX ,X ), which is the bipartite graph

associated with the state digraph D(Ā) = (X , EX ,X ).
Similarly, we have the state-slack bipartite graph B(Ā, S̄) =
B(X ∪S,X , EX ,X ∪ ES,X ) that we refer to as the bipartite
graph associated with the state-slack digraph D(Ā, S̄).

Given B(S1,S2, ES1,S2
), a matching M corresponds to a

subset of edges in ES1,S2
so that no two edges have a vertex

in common, (i.e., given edges e = (s1, s2) and e′ = (s′1, s
′
2)

with s1, s
′
1 ∈ S1 and s2, s

′
2 ∈ S2, e, e

′ ∈ M only if s1 �= s′1
and s2 �= s′2). We say that a matching M∗ is a maximum
matching of B if no other matching of B contains more
edges that M∗. Note that in general maximum matchings
are not unique.

We call the vertices in S1 and S2 belonging to an edge
in a matching M the matched vertices with respect to
(w.r.t.) M and unmatched vertices otherwise. For ease of
referencing, the term right-unmatched vertices associated
with the matching M of B(S1,S2, ES1,S2

) (not necessarily
maximum) will refer to those vertices in S2 that do not
belong to a matching edge in M .

If we associate weights (or costs) with the edges in a
digraph and bipartite graph, we obtain a weighted digraph
and weighted bipartite graph, respectively. A weighted di-
graph is represented by the digraph-weight pair given by
(D = (V, E);w), where w : E → R+

0 ∪ {∞} is the weight
function. Similarly, a weighted bipartite graph is repre-
sented by the bipartite-weight pair (B(S1,S2, ES1,S2);w).

Subsequently, we introduce theminimum weight maximum
matching problem. This problem consists in determining
the maximum matching of a weighted bipartite graph
(B(S1,S2, ES1,S2

);w) that incurs the minimum weight-sum
of its edges; in other words, determining the maximum
matching M c such that

M c = arg min
M∈M

∑
e∈M

w(e),

where M is the set of all maximum matchings of
B(S1,S2, ES1,S2

). This problem can be efficiently solved
using the Hungarian algorithm (Munkres (1957)) with
computational complexity of O(max{|S1|, |S2|}3).
We will also require the following general results on struc-
tural control design from (Pequito et al. (2014b); Pequito
et al. (2013c)). We define a feasible dedicated input con-
figuration to be a collection of state variables to which
by assigning dedicated inputs we can ensure structural
controllability of the system. Consequently, a minimal fea-
sible dedicated input configuration is the minimal subset of
state variables to which we need to assign dedicated inputs
to ensure structural controllability. Further, the feasible
dedicated input configurations can be characterized as
follows.

Theorem 1. (Pequito et al. (2014b)). Denote the system
digraph D(Ā) = (X , EX ,X ) and the associated state bi-
partite graph B(Ā) ≡ B(X ,X , EX ,X ). Let Su ⊂ X , then
the following statements are equivalent:

(1) The set Su is a feasible dedicated input configuration;
(2) There exists a subset UR(M

∗) ⊂ Su corresponding to
the set of right-unmatched vertices of some maximum
matching M∗ of B(Ā), and a subset Au ⊂ Su

comprising one state variable from each non top-
linked SCC of D(Ā). �
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Consider a linear time-invariant (LTI) system described
by the pair (A,B). In order to perform structural analysis
efficiently, it is customary to associate to (4) a directed
graph (digraph) D = (V, E), in which V denotes the
set of vertices and E ⊂ V × V the set of edges, where
(vj , vi) represents an edge from the vertex vj to vertex

vi. To this end, let Ā ∈ {0, 1}n×n
and B̄ ∈ {0, 1}n×p

be binary matrices that represent the sparsity patterns
of A and B, respectively. Denote by X = {x1, . . . , xn}
and U = {u1, . . . , up} the sets of state and input vertices,
respectively. And by EX ,X = {(xi, xj) : Āji �= 0} and
EU ,X = {(uj , xi) : B̄ij �= 0} the edges between the sets
in subscript. In addition, we introduce the state digraph
D(Ā) = (X , EX ,X ), and the system digraph D(Ā, B̄) =
(X ∪ U , EX ,X ∪ EU ,X ). Further, by similarity, we have the
state-slack digraph given by D(Ā, S̄) = (X ∪ S, EX ,X ∪
ES,X ), where S represents the set of slack variables (or
vertices), which may be thought of as potential inputs. In
addition, given digraphs D(Ā, B̄) and D(Ā, S̄), we say that
they are isomorphic to each other, if there exists a bijective
relationship between the vertices and edges of the digraphs
that preserves the incidence relation. Finally, since the
edges are directed, an edge is said to be an outgoing edge
from a vertex v if it starts in v, and, similarly, is said to
be an incoming edge to w if it ends on w.

A directed path between the vertices v1 and vk is a
sequence of edges {(v1, v2), (v2, v3), . . . , (vk−1, vk)}. If all
the vertices in a directed path are different, then the path
is said to be an elementary path.

We also require the following graph-theoretic notions (Cor-
men et al. (2001)): A digraph is strongly connected if
there exists a directed path between any two vertices. A
strongly connected component (SCC) is a maximal sub-
graph DS = (VS , ES) of D, i.e., a graph comprising a set
of vertices V ′ ⊂ V and of edges E ′ ⊂ E , such that for every
u, v ∈ VS there exists a path from u to v and is maximal
with this property (i.e., considering any other vertex will
make the subgraph cease to be strongly connected).

Since the SCCs of a digraph D = (V, E) are uniquely
determined, we can regard each SCC as a virtual node.
By doing so we build a directed acyclic graph (DAG), i.e.,
a directed graph with no cycles, in which a directed edge
exists between two virtual nodes representing two SCCs
if and only if there exists an edge between two vertices
in the corresponding SCCs in the original digraph. We
call this the DAG representation of the graph, which can
be computed efficiently in O(|V| + |E|) (Cormen et al.
(2001)). We can further classify the SCCs with respect to
the existence of incoming and/or outgoing edges as follows.

Definition 1. (Pequito et al. (2014b)). An SCC is said to
be linked if it has at least one incoming or outgoing edge
from another SCC. In particular, an SCC is non top-linked
if it has no incoming edges from another SCC. �

For any digraph D = (V, E) and any two vertex sets
S1,S2 ⊂ V we define the bipartite graph B(S1,S2, ES1,S2

)
whose vertex set is given by S1 ∪ S2 and the edge set
ES1,S2

= E ∩ (S1 × S2). We call the bipartite graph
B(V,V, E) the bipartite graph associated with D(V, E). In
the sequel we will make heavy use of the state bipartite
graph B(Ā) ≡ B(X ,X , EX ,X ), which is the bipartite graph

associated with the state digraph D(Ā) = (X , EX ,X ).
Similarly, we have the state-slack bipartite graph B(Ā, S̄) =
B(X ∪S,X , EX ,X ∪ ES,X ) that we refer to as the bipartite
graph associated with the state-slack digraph D(Ā, S̄).

Given B(S1,S2, ES1,S2
), a matching M corresponds to a

subset of edges in ES1,S2
so that no two edges have a vertex

in common, (i.e., given edges e = (s1, s2) and e′ = (s′1, s
′
2)

with s1, s
′
1 ∈ S1 and s2, s

′
2 ∈ S2, e, e

′ ∈ M only if s1 �= s′1
and s2 �= s′2). We say that a matching M∗ is a maximum
matching of B if no other matching of B contains more
edges that M∗. Note that in general maximum matchings
are not unique.

We call the vertices in S1 and S2 belonging to an edge
in a matching M the matched vertices with respect to
(w.r.t.) M and unmatched vertices otherwise. For ease of
referencing, the term right-unmatched vertices associated
with the matching M of B(S1,S2, ES1,S2

) (not necessarily
maximum) will refer to those vertices in S2 that do not
belong to a matching edge in M .

If we associate weights (or costs) with the edges in a
digraph and bipartite graph, we obtain a weighted digraph
and weighted bipartite graph, respectively. A weighted di-
graph is represented by the digraph-weight pair given by
(D = (V, E);w), where w : E → R+

0 ∪ {∞} is the weight
function. Similarly, a weighted bipartite graph is repre-
sented by the bipartite-weight pair (B(S1,S2, ES1,S2);w).

Subsequently, we introduce theminimum weight maximum
matching problem. This problem consists in determining
the maximum matching of a weighted bipartite graph
(B(S1,S2, ES1,S2

);w) that incurs the minimum weight-sum
of its edges; in other words, determining the maximum
matching M c such that

M c = arg min
M∈M

∑
e∈M

w(e),

where M is the set of all maximum matchings of
B(S1,S2, ES1,S2

). This problem can be efficiently solved
using the Hungarian algorithm (Munkres (1957)) with
computational complexity of O(max{|S1|, |S2|}3).
We will also require the following general results on struc-
tural control design from (Pequito et al. (2014b); Pequito
et al. (2013c)). We define a feasible dedicated input con-
figuration to be a collection of state variables to which
by assigning dedicated inputs we can ensure structural
controllability of the system. Consequently, a minimal fea-
sible dedicated input configuration is the minimal subset of
state variables to which we need to assign dedicated inputs
to ensure structural controllability. Further, the feasible
dedicated input configurations can be characterized as
follows.

Theorem 1. (Pequito et al. (2014b)). Denote the system
digraph D(Ā) = (X , EX ,X ) and the associated state bi-
partite graph B(Ā) ≡ B(X ,X , EX ,X ). Let Su ⊂ X , then
the following statements are equivalent:

(1) The set Su is a feasible dedicated input configuration;
(2) There exists a subset UR(M

∗) ⊂ Su corresponding to
the set of right-unmatched vertices of some maximum
matching M∗ of B(Ā), and a subset Au ⊂ Su

comprising one state variable from each non top-
linked SCC of D(Ā). �
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Finally, we will require the following general results re-
garding maximum matching properties.

Lemma 1. (Pequito et al. (2014a)). Let B(Ā, S̄) = B(X ∪
S,X , EX ,X ∪ ES,X ) be the state-slack bipartite graph.
If M∗

Ā,S̄
is a maximum matching of B(Ā, S̄) = B(X ∪

S,X , EX ,X ∪ ES,X ), then M∗
Ā,S̄

= MS̄ ∪MĀ, where MĀ =

MĀ,S̄ ∩EX ,X and MS̄ = MĀ,S̄ ∩ES,X are (disjoint) match-

ings of B(Ā) and B(S̄), respectively, and MS̄ contains the
largest collection of edges incoming into a set of right-
unmatched vertices of some maximum matching of B(Ā).
In particular,R(MS̄) ⊂ UR(MĀ), where UR(MĀ) is the set
of right-unmatched vertices associated with the (possibly
not maximum) matching MĀ. �
Lemma 2. (Pequito et al. (2014a)). Let Ā ∈ {0, 1}n×n

and S̄ ∈ {0, 1}n×p with p ≤ n. Consider the weighted
state-slack bipartite graph (B(Ā, S̄);w), where B(Ā, S̄) =
B
(
X ∪ S,X , E ≡ (EX ,X ∪ ES,X )

)
, and w : E → R+

0 ∪ {∞}
such that w(eS̄) < w(eĀ) = cĀ ∈ R+, with eS̄ ∈ ES,X
and eĀ ∈ EX ,X . A minimum weighted maximum matching
M∗

Ā,S̄
of (B(Ā, S̄);w) is given by

M∗
Ā,S̄ = M∗

S̄ ∪MĀ,

where M∗
S̄
and MĀ are as given in Lemma 1, and M∗

S̄
is a

maximum matching of B(S̄) = B(S,X , ES,X ) whose edges
incur the lowest weight-sum among all possible maximum
matchings of B(S̄). �

3. MAIN RESULTS

In this section, we present the main result of this pa-
per. More precisely, we present the reduction of P1 to a
minimum weight maximum matching problem. Intuitively,
given the system’s dynamical structure and its digraph
representation, we consider an extended digraph with as
many slack variables as the minimum number of state
variables required to obtain a feasible dedicated input con-
figuration. These slack variables will indicate which state
variables should be actuated to achieve a such an input
configuration. Towards this goal, outgoing edges from the
slack variables into the state variables (to be considered for
the feasible dedicated input configuration) are judiciously
chosen such that a minimum weight maximum matching
containing these edges exists, hence corresponding to the
feasible dedicated input configuration that incurs the min-
imum cost. The systematic reduction of P1 to a minimum
weight maximum matching problem is presented in Al-
gorithm 1. Next, we present the proof of correctness of
Algorithm 1 and its complexity.

Theorem 2. Algorithm 1 is correct, i.e., it provides a
solution to P1 (as long as the set of feasible I(J1, . . . ,Jp)’s
is non-empty). Moreover, its computational complexity is
O(n3). �

Proof. The proof follows by first showing feasibility of the
solution obtained using Algorithm 1, and, secondly, show-
ing that it is minimal, which will be proved by contradic-
tion. To see that the solution obtained using Algorithm 1 is
feasible, we need to verify that In(J1, . . . ,Jp) is such that
(Ā, I(J1, . . . ,Jp)) is structurally controllable, if |J1|+. . .+
|Jp| = α and the weight-sum of M∗

Ā,B̄
is finite. Towards

this goal, let D(Ā) be the state digraph comprising β
non top-linked SCCs, and a minimal feasible dedicated

Algorithm 1 Solution to P1

Input: The structural n × n system matrix Ā, and the
vector ci of size n comprising the cost of actuating each
state variable by actuator i.
Output: A solution In(J ∗

1 , . . . ,J ∗
p ) to P1.

1. Determine the minimum number α of dedicated inputs
required to ensure structural controllability (Pequito et al.
(2014b)).
2. Let N T

j , with j = 1, · · · , β, denote the non top-linked

SCCs of D(Ā). Let cmax be the maximum real value (i.e.,
not considering ∞) in ci for all i ∈ {1, . . . , p}, and consider
α slack variables, where each slack variable k = 1, . . . , β
has outgoing edges to all the state variables in the k-th
non top-linked SCC N T

k , whereas, for the remaining α−β
slack variables have outgoing edges to all state variables,
i.e.,

S̄ =

[ | | |
s̄1 s̄2 · · · s̄α
| | |

]
.

For k = 1, . . . , β, the ith entry of s̄k is given by [s̄k]i = 1 if
xi ∈ N k and [s̄k]i = 0 otherwise. For k = β + 1, . . . , p we
have [s̄k]i = 1 for i = 1, . . . , n. Now, consider (B(Ā, S̄);w)
where w is given as follows:

w(e) =




cmax + 1, e ∈ EX ,X ,
min

k∈{1,...,p}
cki , e ≡ (sj , xi) ∈ ES,X , j = 1, . . . , α,

∞, otherwise.

3. Determine the minimum weight maximum matching
M∗ associated with the bipartite graph (B(Ā, S̄);w).
4. Let Ii = {l : l ≡ argmink∈{1,...,p} c

k
i , (s, xi) ∈ M∗},

with i = 1, . . . , n, be the index of the actuator incur-
ring the smallest cost actuating state variable xi. In
addition, we assume that l consists of one element of
argmink∈{1,...,p} c

k
i if the set is non-empty, since in gen-

eral there can exist different minimum cki , which implies
that the set argmink∈{1,...,p} c

k
i contains more than one

element.
5. Let Jj = {i : Ii contains j}, i.e., the collection of
dedicated inputs in actuator j that effectively actuate
the state variable xi. If |J1| + . . . + |Jp| = α and the
weight-sum of M∗ is finite, then (Ā, I(J1, . . . ,Jp)) is
structurally controllable, and a solution to P1 is obtained;
otherwise, the problem is infeasible, i.e., there is no feasible
I(J1, . . . ,Jp) (with finite cost) such that (Ā, I(J1, . . . ,Jp))
is structurally controllable.

input configuration be of size α ≥ β, determined using a
O(n3) algorithm (Pequito et al. (2014b)). Now, consider
an augmented digraph D(Ā, S̄), with S̄ ∈ {0, 1}n×α, i.e.,
with α slack variables, that will indicate the variables to
be considered for obtaining a minimal feasible dedicated
input configuration. In addition, S̄ satisfies the following
conditions: each of the β slack variables are such that slack
variable k, with k = 1, . . . , β, has only outgoing edges to
all the state variables in the non top-linked SCC k, and
the remaining α− β slack variables have edges to all state
variables. From Lemma 1 and the knowledge that a fea-
sible dedicated input configuration with α state variables
exists, we can argue that a maximum matching of B(Ā, S̄)
contains edges outgoing from slack variables and ending in
all right-unmatched vertices with respect to a maximum
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matching of B(Ā). Additionally, there exists a maximum
matchingM∗

Ā,S̄
of B(Ā, S̄), where all slack variables belong

to matching edges in M∗
Ā,S̄

. In the former case, due to the

proposed construction, there is at least one edge from a
slack variable to each non top-linked SCC. Hence, by Theo-
rem 1, the collection of the state variables, where the edges
with origin in slack variables belonging to M∗

Ā,S̄
end, is a

feasible dedicated input configuration; such a collection is
also minimal since it has exactly α state variables – the size
of a minimal feasible dedicated input configuration. There-
fore, we aim to determine such a matching, which will be
accomplished by considering a minimum weight maximum
matching problem with the proposed weight function w.
Therefore, taking (B(Ā, S̄);w) to be the weighted version
of B(Ā, S̄), by invoking Lemma 2, there exists a maximum
matching M∗

Ā,S̄
of B(Ā, S̄), where each edge with origin

in slack variables belonging to M∗
Ā,S̄

indicates which state

variables should be actuated, and such a collection is a
feasible dedicated input configuration if it is of size p and
the sum of the weights of the edges in M∗

Ā,S̄
is finite.

Alternatively, an infinite cost would correspond to the case
where no feasible dedicated input configuration exists, i.e.,
no finite cost input matrix I(J1, . . . ,Jp) can make the
system structurally controllable. In summary, we obtain
a minimal feasible dedicated input configuration with the
lowest cost, which corresponds to a (dedicated) solution
to P1.

To show that In(J1, . . . ,Jp) obtained by Algorithm 1
incurs the minimum cost, suppose by contradiction that
this is not the case. So, assume that there exists another
feasible In(J ′

1, . . . ,J ′
p) leading to lower cost. Therefore,

by letting D(Ā, In(J ′
1, . . . ,J ′

p)) = (X ∪ U , EX ,X ∪ EU ,X )

and D(Ā, S̄) to be isomorphic, and considering the weight
function w as in Algorithm 1, it follows by Lemma 2 that
there exists a maximum matching M ′ of (B(Ā, S̄) = (X ∪
S, EX ,X ∪ES,X );w) containing ES,X . Nevertheless, this is a
contradiction since it implies that there exists a maximum
matching M ′ incurring a lower cost than M∗ obtained
using, for instance, the Hungarian algorithm (Munkres
(1957)), and used to construct In(J1, . . . ,Jp).

The computational complexity follows from noticing that
Step 1 has complexity O(n3) (Pequito et al. (2014b)).
Step 2 can be computed using linear complexity algo-
rithms. In Step 3, the Hungarian algorithm is used on
the n × (n + p) matrix obtained at the end of Step 2,
and incurs O(n3) complexity. Finally, Step 4 consists of
a for-loop operation which has linear complexity. Hence,
summing up the different complexities, the result follows.

�

4. ILLUSTRATIVE EXAMPLES

In this section, we provide two examples illustrating differ-
ent scenarios where the main results derived in Section 3
can be used.

4.1 Example 1

Consider the scenario depicted in Figure 1, where three
towers communicate with all four agents. Let the com-
munication cost be described as follows: c1 = [ 1 3 2 3 ],

c2 = [ 2 1 2 3 ] and c3 = [ 3 3 2 1 ]. Recall Algorithm 1,
and notice that the minimal feasible dedicated input con-
figuration consists of two state variables (see Step 1), and
the state digraph depicted in Figure 1 b) consists in a sin-
gle SCC. Thus, S̄ is the 4×2 matrix with all entries equal to
one. In addition, the weights w(e) are defined as in Step 2,
where cmax = 3. There are three possible maximum match-
ings in Step 3: M1 = {(s1, x1), (s2, x2), (x3, x4), (x4, x3)},
M2 = {(s3, x3), (s2, x2), (x3, x1), (x1, x3)} and M3 =
{(s1, x1), (s3, x3), (x1, x2), (x2, x1)}. For illustrative pur-
poses, take M∗ ≡ M1. Therefore, in Step 4, we obtain
I1 = {1}, I2 = {2}, I3 = ∅ and I4 = ∅. Thus, J1 = {1},
J2 = {2} and J3 = ∅. Subsequently, by performing Step 5,
it is easy to see that |J1|+ |J2|+ |J3| = 2 and the weight-
sum of M∗ equals 10, since it corresponds to the sum of
the following weights: w((s1, x1)) = w((s2, x2)) = 2 and
w((x3, x4)) = w((x4, x3)) = 4. Finally, we notice that the
final solution has dedicated inputs from tower 1 to agent 1,
and from tower 2 to agent 2.

Fig. 1. In a) we show a configuration of four agents with
bidirectional communication and control towers that
can send inputs to all agents. The communication
between a tower and an agent incurs a cost that is
proportional to the square of the distance. Therefore,
in b) we depict in black the state digraph associated
with the dynamics induced by the communication
topology of the agents, which consists of a single SCC,
and in blue the actuation capabilities of the different
towers. We note that there should be depicted an
outgoing edge from each blue vertex ui,j to the state
vertex xj , which will make the figure difficult to read.
Therefore we illustrate with the edges corresponding
to actuation from the closest tower.

4.2 Example 2

Consider the scenario depicted in Figure 2, where each of
the three towers communicates with only a subset of the
three agents. Let the communication cost be described as
follows: c1 = [∞ 1 1 ], c2 = [∞ ∞ 1 ] and c3 = [ 1 1 ∞ ].
We note that there only exists one non top-linked SCC,
namely that consisting of vertices x1 and x2. In a maxi-
mum matching of the state bipartite graph, we see that
there is one right-unmatched vertex, which, depending on
the matching, may be either vertex x1 or x3. Since x1 is a
right-unmatched vertex for a maximum matching and the
only non top-linked SCC, only one control input is required
to ensure structural controllability, see Theorem 1. There-
fore, we introduce one slack variable and connect it to
vertices x1 and x2 as prescribed in Step 2 in Algorithm 1.
The minimum costs of actuating these two state vertices,
and thus the weights of the edges from slack vertices, are
both 1. Note, however, that state vertex x1 can only be ac-
tuated by control tower 3, while vertex x2 may be actuated
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matching of B(Ā). Additionally, there exists a maximum
matchingM∗

Ā,S̄
of B(Ā, S̄), where all slack variables belong

to matching edges in M∗
Ā,S̄

. In the former case, due to the

proposed construction, there is at least one edge from a
slack variable to each non top-linked SCC. Hence, by Theo-
rem 1, the collection of the state variables, where the edges
with origin in slack variables belonging to M∗

Ā,S̄
end, is a

feasible dedicated input configuration; such a collection is
also minimal since it has exactly α state variables – the size
of a minimal feasible dedicated input configuration. There-
fore, we aim to determine such a matching, which will be
accomplished by considering a minimum weight maximum
matching problem with the proposed weight function w.
Therefore, taking (B(Ā, S̄);w) to be the weighted version
of B(Ā, S̄), by invoking Lemma 2, there exists a maximum
matching M∗

Ā,S̄
of B(Ā, S̄), where each edge with origin

in slack variables belonging to M∗
Ā,S̄

indicates which state

variables should be actuated, and such a collection is a
feasible dedicated input configuration if it is of size p and
the sum of the weights of the edges in M∗

Ā,S̄
is finite.

Alternatively, an infinite cost would correspond to the case
where no feasible dedicated input configuration exists, i.e.,
no finite cost input matrix I(J1, . . . ,Jp) can make the
system structurally controllable. In summary, we obtain
a minimal feasible dedicated input configuration with the
lowest cost, which corresponds to a (dedicated) solution
to P1.

To show that In(J1, . . . ,Jp) obtained by Algorithm 1
incurs the minimum cost, suppose by contradiction that
this is not the case. So, assume that there exists another
feasible In(J ′

1, . . . ,J ′
p) leading to lower cost. Therefore,

by letting D(Ā, In(J ′
1, . . . ,J ′

p)) = (X ∪ U , EX ,X ∪ EU ,X )

and D(Ā, S̄) to be isomorphic, and considering the weight
function w as in Algorithm 1, it follows by Lemma 2 that
there exists a maximum matching M ′ of (B(Ā, S̄) = (X ∪
S, EX ,X ∪ES,X );w) containing ES,X . Nevertheless, this is a
contradiction since it implies that there exists a maximum
matching M ′ incurring a lower cost than M∗ obtained
using, for instance, the Hungarian algorithm (Munkres
(1957)), and used to construct In(J1, . . . ,Jp).

The computational complexity follows from noticing that
Step 1 has complexity O(n3) (Pequito et al. (2014b)).
Step 2 can be computed using linear complexity algo-
rithms. In Step 3, the Hungarian algorithm is used on
the n × (n + p) matrix obtained at the end of Step 2,
and incurs O(n3) complexity. Finally, Step 4 consists of
a for-loop operation which has linear complexity. Hence,
summing up the different complexities, the result follows.

�

4. ILLUSTRATIVE EXAMPLES

In this section, we provide two examples illustrating differ-
ent scenarios where the main results derived in Section 3
can be used.

4.1 Example 1

Consider the scenario depicted in Figure 1, where three
towers communicate with all four agents. Let the com-
munication cost be described as follows: c1 = [ 1 3 2 3 ],

c2 = [ 2 1 2 3 ] and c3 = [ 3 3 2 1 ]. Recall Algorithm 1,
and notice that the minimal feasible dedicated input con-
figuration consists of two state variables (see Step 1), and
the state digraph depicted in Figure 1 b) consists in a sin-
gle SCC. Thus, S̄ is the 4×2 matrix with all entries equal to
one. In addition, the weights w(e) are defined as in Step 2,
where cmax = 3. There are three possible maximum match-
ings in Step 3: M1 = {(s1, x1), (s2, x2), (x3, x4), (x4, x3)},
M2 = {(s3, x3), (s2, x2), (x3, x1), (x1, x3)} and M3 =
{(s1, x1), (s3, x3), (x1, x2), (x2, x1)}. For illustrative pur-
poses, take M∗ ≡ M1. Therefore, in Step 4, we obtain
I1 = {1}, I2 = {2}, I3 = ∅ and I4 = ∅. Thus, J1 = {1},
J2 = {2} and J3 = ∅. Subsequently, by performing Step 5,
it is easy to see that |J1|+ |J2|+ |J3| = 2 and the weight-
sum of M∗ equals 10, since it corresponds to the sum of
the following weights: w((s1, x1)) = w((s2, x2)) = 2 and
w((x3, x4)) = w((x4, x3)) = 4. Finally, we notice that the
final solution has dedicated inputs from tower 1 to agent 1,
and from tower 2 to agent 2.

Fig. 1. In a) we show a configuration of four agents with
bidirectional communication and control towers that
can send inputs to all agents. The communication
between a tower and an agent incurs a cost that is
proportional to the square of the distance. Therefore,
in b) we depict in black the state digraph associated
with the dynamics induced by the communication
topology of the agents, which consists of a single SCC,
and in blue the actuation capabilities of the different
towers. We note that there should be depicted an
outgoing edge from each blue vertex ui,j to the state
vertex xj , which will make the figure difficult to read.
Therefore we illustrate with the edges corresponding
to actuation from the closest tower.

4.2 Example 2

Consider the scenario depicted in Figure 2, where each of
the three towers communicates with only a subset of the
three agents. Let the communication cost be described as
follows: c1 = [∞ 1 1 ], c2 = [∞ ∞ 1 ] and c3 = [ 1 1 ∞ ].
We note that there only exists one non top-linked SCC,
namely that consisting of vertices x1 and x2. In a maxi-
mum matching of the state bipartite graph, we see that
there is one right-unmatched vertex, which, depending on
the matching, may be either vertex x1 or x3. Since x1 is a
right-unmatched vertex for a maximum matching and the
only non top-linked SCC, only one control input is required
to ensure structural controllability, see Theorem 1. There-
fore, we introduce one slack variable and connect it to
vertices x1 and x2 as prescribed in Step 2 in Algorithm 1.
The minimum costs of actuating these two state vertices,
and thus the weights of the edges from slack vertices, are
both 1. Note, however, that state vertex x1 can only be ac-
tuated by control tower 3, while vertex x2 may be actuated
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by control towers 1 or 3. Since the greatest cost in the ci’s
(not including ∞) is 1, we have cmax = 2. The maximum
matching of the state-slack bipartite graph includes edges
(s1, x1), (x1, x2), and (x2, x3). Thus, the optimal solution
is that tower 3 will actuate state vertex x1.

Fig. 2. In a) we show a configuration of agents {A,B,C}
and communication towers, each of which can only
provide information to a subset (labeled at its base)
of the agents. In b) we depict in black the state
digraph associated with the dynamics induced by
the communication topology of the agents. The state
digraph is composed of two SCCs, {x1, x2} and {x3},
where the former is a non top-linked SCC. In blue
we depict the actuation capability of the different
communication towers, where the blue vertices are all
actuation capabilities, but only those with outgoing
blue edges correspond to the feasible actuation –
imposed by the communication constraints from the
towers to the agents.

5. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we provided a solution to the sparsest mini-
mum multiple-cost structural leader selection problem: the
problem of determining the minimum number of leaders
selected to control a network of agents when input signal
can originate in different sources, for instance, communi-
cation/control towers, and incur different costs. Possible
extensions include, but are not limited to, considering sce-
narios where the communication between agents is time-
varying and the costs are also time-varying due to updates
in agent locations. Additionally, it would be of interest to
explore how the current results can be extended to agents
with arbitrary state space dimension. Finally, it would be
interesting to explore practical applications, for instance,
swarm formation.
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