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Abstract: This paper presents a distributed MPC scheme for the class of input-coupled
linear systems implemented over wireless networks. The approach allows each agent to achieve
reduced communication latency by sending less information to their neighbours. Uncertainties
incurred by this delayed and incomplete information are handled by a constraint tightening
procedure. Simulation examples demonstrate that for distributed systems with chain structure,
our tightening method is invariant to the number of agents in the network. Moreover, we show
that by a proper tuning of latency, an optimized control performance can be achieved.
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1. INTRODUCTION

With the emergence of the Internet-of-Things and the next
generation wireless communication networks, there is an
increased interest in enabling applications where multi-
ple distributed agents perform cooperative control tasks.
Examples include vehicle platooning Dolk et al. (2017);
Firoozi et al. (2018); Hu et al. (2018); Vukadinovic et al.
(2018), coordination of mobile robots Farina et al. (2015)
and UAV formation control Chen et al. (2015). As such
applications are envisioned for larger networks or involving
faster dynamics, the communication latency experienced
by the agents may jeopardize control performance and give
rise to safety issues in closed-loop systems. Understanding
and mitigating latency is arising as an important challenge
in those domains Gatsis et al. (2018); Jiang et al. (2018);
Eisen et al. (2019); Maity et al. (2019).

Distributed model predictive control (DMPC) has been a
powerful technique for multi-agent control systems, since it
explicitly handles state and input constraints as well as the
coupling between subsystems, see the survey paper Scat-
tolini (2009). In terms of computation and communication,
DMPC methods can be classified into two categories: non-
iterative and iterative. Although iterative schemes such as
Conte et al. (2012) can achieve control performance close
to centralized MPC, it may require up to hundred rounds
of communications among agents to reach convergence,
which is not suitable for delay-sensitive applications. On
the contrary, in non-iterative schemes agents communi-
cate predicted trajectories only once per each sampling
period. This on one hand greatly reduces the amount of
communication load, but on the other hand introduces
uncertainties in the transmitted information, since agents
do not necessarily execute exactly as communicated. To
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guarantee constraint satisfaction, robust MPC (RMPC) is
used which treats the uncertain intention of the neighbours
as disturbances, see for example Scattolini (2009). Such
scheme is also vulnerable to latency since the uncertainty
in communicated information grows as the amount of delay
increases. However, non-iterative DMPC methods address-
ing this issue have not been well-developed, with few
exceptions including Hahn et al. (2018), where latency is
predicted and used in local MPC computation to optimize
the control performance, but dynamic coupling between
subsystems is not considered.

In this paper, we develop a non-iterative DMPC scheme for
distributed linear systems with input coupling. We propose
for the first time a mechanism of reducing communication
latency by sending shorter predicted trajectories in the
context of DMPC. This is in contrast to standard MPC
developed for networked control systems, e.g. Quevedo and
Nesic (2011), where agents always communicate the entire
trajectory. Stability and recursive feasibility are guaran-
teed using robust MPC methods with a tailored constraint
tightening procedure, which takes latency as a parameter.
The proposed DMPC scheme allows us to explore the
tradeoff between latency and uncertainty of communicated
information across agents in order to obtain an optimized
control performance without sacrificing safety.

The reminder of the paper is structured as follows. Sec-
tion 2 reviews the non-iterative distributed MPC scheme.
Section 3 explains how latency is tuned for DMPC. In
Section 4 a constraint tightening procedure is presented
and property of the controller is examined. Section 5 shows
the simulation results. Section 6 concludes the paper.

Notation: The set of integers ranging from a to b is denoted
by Ia:b. The concatenation of vectors xi ∈ Rni is defined

by coli∈Ia:b
xi = col(xa, . . . , xb) =

[
x�
a , . . . , x

�
b

]�
. The

Minkowski sum is defined by X⊕Y = {x+y|x ∈ X, y ∈ Y}.
The Pontryagin difference is X� Y = {z|z + Y ⊆ X}.
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of communications among agents to reach convergence,
which is not suitable for delay-sensitive applications. On
the contrary, in non-iterative schemes agents communi-
cate predicted trajectories only once per each sampling
period. This on one hand greatly reduces the amount of
communication load, but on the other hand introduces
uncertainties in the transmitted information, since agents
do not necessarily execute exactly as communicated. To
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guarantee constraint satisfaction, robust MPC (RMPC) is
used which treats the uncertain intention of the neighbours
as disturbances, see for example Scattolini (2009). Such
scheme is also vulnerable to latency since the uncertainty
in communicated information grows as the amount of delay
increases. However, non-iterative DMPC methods address-
ing this issue have not been well-developed, with few
exceptions including Hahn et al. (2018), where latency is
predicted and used in local MPC computation to optimize
the control performance, but dynamic coupling between
subsystems is not considered.

In this paper, we develop a non-iterative DMPC scheme for
distributed linear systems with input coupling. We propose
for the first time a mechanism of reducing communication
latency by sending shorter predicted trajectories in the
context of DMPC. This is in contrast to standard MPC
developed for networked control systems, e.g. Quevedo and
Nesic (2011), where agents always communicate the entire
trajectory. Stability and recursive feasibility are guaran-
teed using robust MPC methods with a tailored constraint
tightening procedure, which takes latency as a parameter.
The proposed DMPC scheme allows us to explore the
tradeoff between latency and uncertainty of communicated
information across agents in order to obtain an optimized
control performance without sacrificing safety.

The reminder of the paper is structured as follows. Sec-
tion 2 reviews the non-iterative distributed MPC scheme.
Section 3 explains how latency is tuned for DMPC. In
Section 4 a constraint tightening procedure is presented
and property of the controller is examined. Section 5 shows
the simulation results. Section 6 concludes the paper.
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by coli∈Ia:b
xi = col(xa, . . . , xb) =

[
x�
a , . . . , x

�
b

]�
. The

Minkowski sum is defined by X⊕Y = {x+y|x ∈ X, y ∈ Y}.
The Pontryagin difference is X� Y = {z|z + Y ⊆ X}.

7th IFAC Workshop on Distributed Estimation and
Control in Networked Systems
Chicago, IL, USA, September 16-17, 2019

Copyright © 2019 IFAC 279

Tuning Communication Latency for
Distributed Model Predictive Control

Haimin Hu ∗ Konstantinos Gatsis ∗ Manfred Morari ∗
George J. Pappas ∗

∗ Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104 USA,
{haiminhu, kgatsis, morari, pappasg}@seas.upenn.edu

Abstract: This paper presents a distributed MPC scheme for the class of input-coupled
linear systems implemented over wireless networks. The approach allows each agent to achieve
reduced communication latency by sending less information to their neighbours. Uncertainties
incurred by this delayed and incomplete information are handled by a constraint tightening
procedure. Simulation examples demonstrate that for distributed systems with chain structure,
our tightening method is invariant to the number of agents in the network. Moreover, we show
that by a proper tuning of latency, an optimized control performance can be achieved.

Keywords: distributed systems, predictive control, robust control, communication, latency
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Eisen et al. (2019); Maity et al. (2019).
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powerful technique for multi-agent control systems, since it
explicitly handles state and input constraints as well as the
coupling between subsystems, see the survey paper Scat-
tolini (2009). In terms of computation and communication,
DMPC methods can be classified into two categories: non-
iterative and iterative. Although iterative schemes such as
Conte et al. (2012) can achieve control performance close
to centralized MPC, it may require up to hundred rounds
of communications among agents to reach convergence,
which is not suitable for delay-sensitive applications. On
the contrary, in non-iterative schemes agents communi-
cate predicted trajectories only once per each sampling
period. This on one hand greatly reduces the amount of
communication load, but on the other hand introduces
uncertainties in the transmitted information, since agents
do not necessarily execute exactly as communicated. To
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in communicated information grows as the amount of delay
increases. However, non-iterative DMPC methods address-
ing this issue have not been well-developed, with few
exceptions including Hahn et al. (2018), where latency is
predicted and used in local MPC computation to optimize
the control performance, but dynamic coupling between
subsystems is not considered.

In this paper, we develop a non-iterative DMPC scheme for
distributed linear systems with input coupling. We propose
for the first time a mechanism of reducing communication
latency by sending shorter predicted trajectories in the
context of DMPC. This is in contrast to standard MPC
developed for networked control systems, e.g. Quevedo and
Nesic (2011), where agents always communicate the entire
trajectory. Stability and recursive feasibility are guaran-
teed using robust MPC methods with a tailored constraint
tightening procedure, which takes latency as a parameter.
The proposed DMPC scheme allows us to explore the
tradeoff between latency and uncertainty of communicated
information across agents in order to obtain an optimized
control performance without sacrificing safety.

The reminder of the paper is structured as follows. Sec-
tion 2 reviews the non-iterative distributed MPC scheme.
Section 3 explains how latency is tuned for DMPC. In
Section 4 a constraint tightening procedure is presented
and property of the controller is examined. Section 5 shows
the simulation results. Section 6 concludes the paper.
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2. PROBLEM FORMULATION

We consider a discrete-time linear dynamical system

xt+1 = Axt +But (1)

with the state vector xt ∈ Rn and the input vector
ut ∈ Rm. We refer to (1) as the global system, with
A ∈ Rn×n and B ∈ Rm×n as the system and input matrix,
respectively. Consider the partition of (1) into M input-
coupled subsystems with the following dynamics

Σi : x
[i]
t+1 = Aix

[i]
t +Biiu

[i]
t +

∑
j∈Ni

Biju
[j]
t (2)

where x
[i]
t ∈ Rni and u

[i]
t ∈ Rmi are the state and input

vector of subsystem Σi, such that xt = coli∈I1:M
x
[i]
t ,∑M

i=1 ni = n and ut = coli∈I1:M
u
[i]
t ,

∑M
i=1 mi = m. The

global system matrix A = diagi∈I1:M
[Ai], and Bij ∈

Rni×mj is the corresponding block in the global input
matrixB. Two sets defining the neighbours are introduced.
The predecessor set Ni = {j ∈ I1:M\{i}|Bij �= 0}
contains the indices of neighbouring subsystems of Σi,
whose control action will affect Σi. Likewise the follower
set is defined as N̄i = {j ∈ I1:M\{i}|Bji �= 0}.
Assumption 2.1. The agent Σi only receives information
from neighbours in its predecessor set Ni, and sends
information to the follower set N̄i. It is further assumed
that the information flow between subsystems is acyclic.

Remark 2.1. The assumption on acyclic network is due
to the unidirectional information flow in Algorithm 2. An
improved version of this algorithm is under our current
investigation to allow for bidirectional communication.

Subsystem (2) is subject to state and input constraints

x
[i]
t ∈ X[i], u

[i]
t ∈ U[i], ∀i ∈ I1:M (3)

where X[i] and U[i] are polytopic sets containing the origin.
This leads to the constraints xt ∈ X = X[1] × · · · × X[M ]

and ut ∈ U = U[1] × · · · × U[M ] on the global system (1).

2.1 Running example

We use heavy duty vehicle platooning as our running
example throughout the paper. Consider the constant-
spacing model from Dold and Stursberg (2009). The lead-
ing vehicle Σ1 in the platoon has a single integrator dy-

namics v
[1]
t+1 = v

[1]
t + δtu

[1]
t , whose velocity is controlled

by a human driver or a standalone controller. Input u is
acceleration. δt is the sampling time. States of the following

vehicles Σi are x
[i] =

[
e
[i]
d e

[i]
v

]�
, the error in distance and

velocity with respect to the predecessor Σj . According to
(2), the model of vehicle Σi is given by

x
[i]
t+1 =

[
1 δt
0 1

]
x
[i]
t +

[
−δt

2/2
−δt

]
u
[i]
t +

[
δ2t /2
δt

]
u
[j]
t (4)

The desired inter-vehicle distance d0 and cruising speed v0
are pre-specified parameters. The control goal is to bring
the states of all subsystems to the origin. It is assumed
that each vehicle can measure their current states.

Now the global system (1) has a chained network topology,
with the dynamics of each subsystem defined as

Σi : x
[i]
t+1 = Aix

[i]
t +Biiu

[i]
t +Biju

[j]
t (5)

Σj Σi

Ũ
[j]
t

local RMPC j

x
[j]
t Ū

[j]
t

local RMPC i

x
[i]
t Ū

[i]
t

Fig. 1. An example of non-iterative DMPC applied to
heavy duty vehicle platooning.

which is a special case of (2). The predecessor set becomes

Ni =

{ ∅ i = 1
{j} := {i− 1} i ≥ 2

(6)

similarly the follower set N̄i is now a singleton as well.
Ways to extend our approach to more general networks
are discussed in Remark 4.1.

2.2 Non-iterative DMPC

To enable distributed control of the global system (1),
we propose to use the non-iterative DMPC scheme, as
illustrated in Figure 1. In this framework, each agent
first solves in parallel a local MPC problem, and then
communicates the solution, i.e. a sequence of predicted
inputs, to the neighbours. In the presence of latency, agents
are uncertain about future intentions of the neighbours
since their currently planned trajectories may differ from
the ones that have been communicated previously.

In order to guarantee constraint satisfaction despite the
worst-case uncertainty, we adopt the RMPC technique
proposed in Chisci et al. (2001). The local RMPC problem
of subsystem Σi to be solved at time t is given by

min
X̄

[i]
t ,V̄

[i]
t

t+N−1∑
k=t

(v̄
[i]
k )�Liv̄

[i]
k (7a)

s.t. x̄
[i]
t = x

[i]
t (7b)

x̄
[i]
k+1 = Φix̄

[i]
k +Biiv̄

[i]
k +Bij ũ

[j]
k (7c)

x̄
[i]
k+1 ∈ X̄[i]

k+1, ū
[i]
k+1 ∈ Ū[i]

k+1 (7d)

g(V̄
[i]
t ) ≤ 0, ∀k ∈ It:t+N−1 (7e)

where x̄
[i]
k and v̄

[i]
k are decision variables, in compact form

X̄
[i]
t = colk∈It:t+N

x̄
[i]
k , similarly for V̄

[i]
t . Li ∈ Smi×mi

+
is a positive definite weighting matrix. In the dynamics

constraint (7c), prediction of x̄
[i]
k relies on future inputs ũ

[j]
k

computed and transmitted by neighbours Σj with j ∈ Ni.
We consider the following parameterization of inputs

ū
[i]
k = v̄

[i]
k +Kix̄

[i]
k (8)

where Ki is a fixed feedback gain. Consequentially, the
local dynamics (2) can be rewritten as (7c) where the
closed-loop system matrix is defined as

Φi = Ai +BiiKi (9)

In case of nominal feedback, i.e. v̄
[i]
k = 0, ∀i ∈ I1:M , the

global system (1) can be expressed as xt+1 = Φxt where
the matrix Φ is structured with Ai+BiiKi on the diagonal
and BijKj as the lower off-diagonal blocks.

Assumption 2.2. The matrix Φ is Schur.
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To ensure robust constraint satisfaction, we define in (7d)
a series of tightened constraint sets

X̄[i]
k = X[i] �W[i]

k , X̄[i]
N = X[i]

F �W[i]
N

Ū[i]
k = U[i] �KiW[i]

k

(10)

for all k ∈ I1:N−1. X[i]
F is the terminal set which can

be chosen as a positive invariant set of (5). The time-

varying disturbance sets W[i]
k bounds the uncertainty in

received inputs ũ
[j]
t+k. The convex constraint (7e) bounds

the differences between the transmitted trajectories at
consecutive times. One of the main contributions of this
paper is on how to select those bounds in a manner that
accounts for uncertainties stemming from communication
latency and transmitted information among agents. These
aspects will be discussed in detail in Section 4.

Optimization problem (7) returns for each subsystem Σi

a sequence of inputs Ū
[i]
t = col(ū

[i]
t|t, . . . , ū

[i]
t+N−1|t) ∈ RN ,

where we denote the solution as (̄·)t1|t2 , with t1 as the

internal time step of MPC, and t2 as the time when (7) is

solved. Only the first input is applied, i.e. u
[i]
t = ū

[i]
t .

3. TUNING LATENCY FOR DMPC

In this paper at each time step each agent sends a
sequence of predicted control inputs to its follower. Our
aim is to capture the effect of this communication load on
the communication latency. More specifically we adopt a
model where the latency d of communication is a function
of the length of predicted control inputs that need to
be communicated, d = d(Ns) – see also Remark 3.1 for
a justification. For simplicity we consider this latency
model to be linear (see also Figure 4 in simulations). This
relationship enables us to adapt the length of transmitted
information as a mechanism to reduce latency.

Σj

Σi

transmitted inputs Ũ
[j]
t tail (unsent)

time

t + 1 t + d + 1 t + Ns t + N − 1 t + N + d

Fig. 2. At time t agent Σj transmits the sequence Ũ
[j]
t .

The neighbour Σi receives the copy at time t+ d+1,
and reconstructs the remaining N −Ns+ d inputs, as
shown in light blue on the bottom.

As shown in Figure 2, now the sequence Ū
[j]
t is divided

into two parts based on the choice of transmitted packet
length Ns. The first part contains the future inputs of Σj

transmitted to its neighbour agent Σi, which is defined as

Ũ
[j]
t = col(ũ

[j]
t+1|t, . . . , ũ

[j]
t+Ns|t) ∈ RNs .

where ũ
[j]
t+k|t = ū

[j]
t+k|t with an abuse of notation. Due

to causality, agents would receive future plans from their
neighbours at least one time step after the information has

been sent. Therefore, we do not send the first input ū
[j]
t|t.

For the second part we introduce the notion of tail indices

IT = INs+1:N−1

and correspondingly the tail part of Ū
[j]
t is

col(ū
[j]
t+Ns+1|t, . . . , ū

[j]
t+N−1|t) ∈ RN−Ns−1

which is not communicated by Σj and of course, unknown
to Σi. In the next section we will develop methods to
bound this uncertainty. Subsystem Σi receives the se-

quence Ũ
[j]
t at time t + d + 1. Recall in constraint (7c)

that an input sequence of Σj with length N is required
for MPC computation of Σi. But the number of inputs
available to Σi is now only Ns − d, because the first d

inputs (grey bar in Figure 2) in Ũ
[j]
t are useless for the

MPC problem of Σi at current time t + d + 1. To resolve
this issue, we use the following input sequence of Σj in the
local RMPC computation of Σi

Û
[j]
t+d+1 = col(ũ

[j]
t+d+1|t, . . . , ũ

[j]
t+Ns|t, ũ

[j]
t+Ns+1, . . . , ũ

[j]
t+N+d)

with the first Ns−d elements extracted out from Ũ
[j]
t , and

the remaining N−Ns+d elements being reconstructed by

setting v̄
[j]
k = 0 and using the dynamics equation with the

feedback gain Kj of the neighbour, i.e.

ũ
[j]
k = Kj x̃

[j]
k , x̃

[j]
k+1 = Φj x̃

[j]
k , ∀k ∈ It+Ns+1:t+N+d (11)

It is easy to verify that Û
[j]
t+d+1 ∈ RN .

Remark 3.1. The length of predicted inputs to be sent
among agents directly affects the length of the packets to
be transmitted, and subsequently the packet length affects
latency. This is justified in multiple scenarios. To achieve
reliable communication under adverse channel conditions
such as deep fades, packets need to be retransmitted mul-
tiple times until successful reception. In this case, longer
packets directly imply longer delays. Additionally, in cases
where multiple agents need to communicate over a shared
multiple access channel, there is a latency associated with
the multiple access procedure and this is again dependent
on the packet length. For example, in a V2X application
where multiple vehicles exchange information with each
other or with the infrastructure based on DSRC protocol,
the employed multiple access scheme is CSMA (Li (2010))
which means that each agent needs to wait for a random
time until it finds the channel clear from other packet
transmissions. As a limitation, we point out that our ap-
proach of controlling latency by reducing the packet length
may have a limited impact in practical scenarios where the
payload is already small, or under ideal channel conditions,
or in communication networks with small number of users.
Managing latency in next generation wireless networks is
an ongoing research topic (Jiang et al. (2018)).

Based on the non-iterative DMPC scheme introduced in
Section 2 and the latency tuning procedure discussed in
this section, we provide an online control loop for each
subsystem Σi in Algorithm 1.

Algorithm 1 Online control of subsystem Σi

Input: Current state x
[i]
t , delayed sequence Ũ

[j]
t−d−1

1: Reconstruct the input sequence Û
[j]
t via (11)

2: Solve the local RMPC problem (7) and obtain Ū
[i]
t

3: Apply the first control input ū
[i]
t

4: Truncate Ū
[i]
t to obtain Ũ

[i]
t and transmit to Σi+1
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To ensure robust constraint satisfaction, we define in (7d)
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k = X[i] �W[i]

k , X̄[i]
N = X[i]

F �W[i]
N

Ū[i]
k = U[i] �KiW[i]

k

(10)

for all k ∈ I1:N−1. X[i]
F is the terminal set which can

be chosen as a positive invariant set of (5). The time-

varying disturbance sets W[i]
k bounds the uncertainty in

received inputs ũ
[j]
t+k. The convex constraint (7e) bounds

the differences between the transmitted trajectories at
consecutive times. One of the main contributions of this
paper is on how to select those bounds in a manner that
accounts for uncertainties stemming from communication
latency and transmitted information among agents. These
aspects will be discussed in detail in Section 4.

Optimization problem (7) returns for each subsystem Σi

a sequence of inputs Ū
[i]
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[i]
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[i]
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where we denote the solution as (̄·)t1|t2 , with t1 as the

internal time step of MPC, and t2 as the time when (7) is

solved. Only the first input is applied, i.e. u
[i]
t = ū

[i]
t .

3. TUNING LATENCY FOR DMPC

In this paper at each time step each agent sends a
sequence of predicted control inputs to its follower. Our
aim is to capture the effect of this communication load on
the communication latency. More specifically we adopt a
model where the latency d of communication is a function
of the length of predicted control inputs that need to
be communicated, d = d(Ns) – see also Remark 3.1 for
a justification. For simplicity we consider this latency
model to be linear (see also Figure 4 in simulations). This
relationship enables us to adapt the length of transmitted
information as a mechanism to reduce latency.
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time
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Fig. 2. At time t agent Σj transmits the sequence Ũ
[j]
t .

The neighbour Σi receives the copy at time t+ d+1,
and reconstructs the remaining N −Ns+ d inputs, as
shown in light blue on the bottom.

As shown in Figure 2, now the sequence Ū
[j]
t is divided

into two parts based on the choice of transmitted packet
length Ns. The first part contains the future inputs of Σj

transmitted to its neighbour agent Σi, which is defined as

Ũ
[j]
t = col(ũ

[j]
t+1|t, . . . , ũ

[j]
t+Ns|t) ∈ RNs .

where ũ
[j]
t+k|t = ū

[j]
t+k|t with an abuse of notation. Due

to causality, agents would receive future plans from their
neighbours at least one time step after the information has

been sent. Therefore, we do not send the first input ū
[j]
t|t.

For the second part we introduce the notion of tail indices

IT = INs+1:N−1

and correspondingly the tail part of Ū
[j]
t is

col(ū
[j]
t+Ns+1|t, . . . , ū

[j]
t+N−1|t) ∈ RN−Ns−1

which is not communicated by Σj and of course, unknown
to Σi. In the next section we will develop methods to
bound this uncertainty. Subsystem Σi receives the se-

quence Ũ
[j]
t at time t + d + 1. Recall in constraint (7c)

that an input sequence of Σj with length N is required
for MPC computation of Σi. But the number of inputs
available to Σi is now only Ns − d, because the first d

inputs (grey bar in Figure 2) in Ũ
[j]
t are useless for the

MPC problem of Σi at current time t + d + 1. To resolve
this issue, we use the following input sequence of Σj in the
local RMPC computation of Σi

Û
[j]
t+d+1 = col(ũ

[j]
t+d+1|t, . . . , ũ

[j]
t+Ns|t, ũ

[j]
t+Ns+1, . . . , ũ

[j]
t+N+d)

with the first Ns−d elements extracted out from Ũ
[j]
t , and

the remaining N−Ns+d elements being reconstructed by

setting v̄
[j]
k = 0 and using the dynamics equation with the

feedback gain Kj of the neighbour, i.e.

ũ
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k = Kj x̃

[j]
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[j]
k+1 = Φj x̃
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k , ∀k ∈ It+Ns+1:t+N+d (11)

It is easy to verify that Û
[j]
t+d+1 ∈ RN .

Remark 3.1. The length of predicted inputs to be sent
among agents directly affects the length of the packets to
be transmitted, and subsequently the packet length affects
latency. This is justified in multiple scenarios. To achieve
reliable communication under adverse channel conditions
such as deep fades, packets need to be retransmitted mul-
tiple times until successful reception. In this case, longer
packets directly imply longer delays. Additionally, in cases
where multiple agents need to communicate over a shared
multiple access channel, there is a latency associated with
the multiple access procedure and this is again dependent
on the packet length. For example, in a V2X application
where multiple vehicles exchange information with each
other or with the infrastructure based on DSRC protocol,
the employed multiple access scheme is CSMA (Li (2010))
which means that each agent needs to wait for a random
time until it finds the channel clear from other packet
transmissions. As a limitation, we point out that our ap-
proach of controlling latency by reducing the packet length
may have a limited impact in practical scenarios where the
payload is already small, or under ideal channel conditions,
or in communication networks with small number of users.
Managing latency in next generation wireless networks is
an ongoing research topic (Jiang et al. (2018)).

Based on the non-iterative DMPC scheme introduced in
Section 2 and the latency tuning procedure discussed in
this section, we provide an online control loop for each
subsystem Σi in Algorithm 1.

Algorithm 1 Online control of subsystem Σi

Input: Current state x
[i]
t , delayed sequence Ũ

[j]
t−d−1

1: Reconstruct the input sequence Û
[j]
t via (11)

2: Solve the local RMPC problem (7) and obtain Ū
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t

3: Apply the first control input ū
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4: Truncate Ū
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t to obtain Ũ
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4. PROPOSED DMPC SCHEME

In this section, we describe how distributed MPC may
incorporate our strategy of tuning latency as proposed in
Section 3. The state and input constraints in the MPC
formulation (7) now depend on the choices of latency
parameters d and Ns. We point out that there are two
sources of uncertainties in the MPC problem:

• Latency: Mismatch between ũ
[j]
t+k|t−d−1, the transmit-

ted inputs delayed by d+1 time steps, and ū
[j]
t+k|t, the

inputs currently predicted by Σj

• Reconstructed inputs: ũ
[j]
t+k, ∀k ∈ INs+1:N+d, the part

of inputs of Σj that is currently unknown to Σi, as
illustrated by the light blue bar in Figure 2

Those two kinds of uncertainties are at odds with each
other: one can either send more information at the cost
of larger delay, or achieve lower latency by sending less
information to the neighbour. In fact, latency parameters
d and Ns are the ‘handle’ balancing one from the other.

Note that both uncertainties would lead to error in pre-

dicting the states x
[i]
t+k for Σi. To see this, first recall the

prediction model (7c) in local RMPC of Σi

x̄
[i]
t+k+1 = Φix

[i]
t+k +Biiv̄

[i]
t+k +Bij ũ

[j]
t+k (12)

and consider the ‘omniscient’ prediction model which
knows the input sequence of Σj without any delay

x
[i]
t+k+1 = Φix

[i]
t+k +Biiv̄

[i]
t+k +Bij ū

[j]
t+k|t+k (13)

We consider the difference between x
[i]
t+k and x̄

[i]
t+k as

artificial disturbances. By subtracting (12) from (13), the

initial disturbance w
[i]
t+1 at time t+ 1 is obtained as

w
[i]
t+1 = x

[i]
t+1 − x̄

[i]
t+1 = Bij

�
u
[j]
t|t − ũ

[j]
t

�
∈ W[i]

1 (14)

The subsequent disturbance for all k ∈ I1:N−1 is

w
[i]
t+k+1 = Φiw

[i]
t+k +Bij

�
u
[j]
t+k|t − ũ

[j]
t+k

�
∈ W[i]

k (15)

with W[i]
0 = ∅ due to the constraint (7b) on initial states.

To this end, we have modeled the uncertainty caused by
communication as time-varying persistent disturbances.
Its support over time, as we will show, can be bounded

within polytopic setsW[i]
k . This allows us to use the RMPC

framework proposed in Chisci et al. (2001).

4.1 Computation of the disturbance sets

Based on latency parameters d and Ns, we now present a
complete version of the MPC problem (7). The constraint

g(V̄
[i]
t ) ≤ 0 in (7e) is defined as

v̄
[i]
t+k|t − v̄

[i]
t+k|t−1 ∈ V[i], ∀k ∈ I0:N−1 \ IT

v̄
[i]
t+k|t − 0 ∈ T[i], ∀k ∈ IT

(16)

where V[i],T[i] ⊆ Rmi are pre-defined polytopic sets. The
intuition behind (16) is that the deviation of current plan

v̄
[i]
t+k|t from the last plan v̄

[i]
t+k|t−1 is bounded within V[i].

Furthermore, if v̄
[i]
t+k is in the tail, i.e. k ∈ IT , the variable

is restricted to be contained in T[i], a neighbourhood

around the origin. The sets V[i] and T[i] are the key for de-

riving the disturbance sets W[i]
k . They on one hand restrict

the movement and shrink the feasible set of agent Σi, but
on the other hand considerably reduce the uncertainty in

transmitted inputs ũ
[i]
t for the neighbour Σi+1, making the

disturbance bound less conservative. For each subsystem

Σi, ∀i ∈ I2:M , the disturbance sets W[i]
k , ∀k ∈ I1:N are

defined by the following recursion

W[i]
k+1 = ΦiW[i]

k ⊕BijÛ[j]
k , ∀k = I1:N−1 (17a)

W[i]
1 = Bij

�
(d+ 1)V[j] ⊕KjX̂[j]

0

�
(17b)

where
Û[j]

k = V̂[j]
k ⊕KjX̂[j]

k (18)

Note that for the leading agent Σ1 we have W[1]
k = ∅ since

N1 = ∅. The recursive definition of W[i]
k in (17) comes

directly from the disturbance expression (14) and (15).

Uncertainty in the transmitted inputs makes up W[i]
k over

time, as suggested by (17a). Recall in (8) that the input

can be separated into two parts, i.e. ū
[j]
k = v̄

[j]
k + Kj x̄

[j]
k ,

which we can give bounds respectively. The first part

bounds the uncertainty in v̄
[j]
k , defined as

V̂[j]
k =

⎧⎪⎨
⎪⎩

(d+ 1)V[j], ∀k ∈ I1:Ns−1

T[j] ⊕mkV[j], ∀k ∈ INs:Ns+d

T[j], ∀k ∈ IT
(19)

where mk = Ns + d − k + 1. Due to (16), the worst-
case deviation between the transmitted inputs and the one
currently predicted by neighbour Σj is bounded within

a multiple of V[j], which grows linearly with latency d.

The second part gives uncertainty bound on x̄
[j]
k , i.e. the

difference between the states of neighbour Σj encoded in
its transmitted input, and the states currently predicted
by it. The difference is bounded by

X̂[j]
k+1 = ΦjX̂[j]

k ⊕BjjV̂[j]
k ⊕Bjj−1Û[j−1]

k (20a)

X̂[j]
0 =

d�
k=1

Φk−1
j

�
Bjj(d+ 1)V[j] ⊕Bjj−1Û[j−1]

d−k

�
(20b)

for all k ∈ I0:N−1. For the second agent Σ2 in the chain we

have Û[j−1]
k = ∅. Here the set Û[j−1]

k captures the coupling
effect from the neighbour’s neighbour, namely agent Σj−1.
A summary of the offline design procedure of the DMPC
controller is given in Algorithm 2.

Remark 4.1. Algorithm 2 assumes the global system (1) is
in chain structure. Nevertheless it can be easily generalized
to the case of multiple neighbours by taking Minkowski
sum of the sets in Step 2 over all predecessors.

Algorithm 2 Offline design of DMPC

Input: Latency parameters d and Ns, system model (1)
and sets V[i], T[i]

1: for subsystem index i ← 2 to M do

2: Compute sets W[i]
k via (17), (18), (19) and (20)

3: Obtain tightened sets X̄[i]
k and Ū[i]

k via (10)

4: Pass the sets Û[j]
k computed in (18) to Σi+1

5: end for
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4.2 Feasibility and stability

This section states the main properties of the proposed
DMPC controller.

Lemma 4.1. Consider the following statements for all
agents in the global system (1). For each agent Σi let

(X̄
[i]
t , V̄

[i]
t ) be the solution to (7) at time t, to which

the inputs are the current state x
[i]
t ∈ Rni and sequence

Û
[j]
t ∈ RN−1 reconstructed from the transmitted inputs

Ũ
[i]
t−d−1 ∈ RNs of neighbour Σj with latency d. Consider

state evolution x
[i]
t+k+1 = Aix

[i]
t+k+Biiu

[i]
t+k+Biju

[j]
t+k with

input u
[i]
t+k = v̄

[i]
t+k|t +Kix

[i]
t+k, then it holds that

x
[i]
t+k − x̄

[i]
t+k|t ∈ W[i]

k , ∀k ∈ I1:N (21a)

u
[i]
t+k − ū

[i]
t+k|t ∈ KiW[i]

k , ∀k ∈ I1:N−1 (21b)

Proof. See Appendix A.

Assumption 4.1. The accumulated deviation on v̄
[i]
t+k|t is

bounded by v̄
[i]
t+k|t− v̄

[i]
t′+k|t′ ∈ (d+1)V[i] for all k ∈ I0:N−1.

t� ≤ t is the last time when x̄
[i+1]
t′+k+1|t′ ⊕W[i+1]

k+1 ⊆ X̄[i+1]
k+1 .

Theorem 4.1. (Recursive feasibility). Let Assumption 4.1
hold. For each agent Σi, ∀i ∈ I1:M under control law (8),

if (7) is feasible for x
[i]
t , then (7) is feasible for x

[i]
t+1.

Proof. Lemma 4.1 and Lemma 7 in Chisci et al. (2001)
imply that the solution to (7) at time t shifted by one time

step is also feasible at t + 1, if Û
[j]
t is considered in the

prediction model (7c). Moreover, Assumption 4.1 prevents
infeasibility in (7d) when the initial state is reset to the

current state (see (7b)) and (7c) is updated by Û
[j]
t+1.

Remark 4.2. (Stability). For each agent Σi, ∀i ∈ I1:M
under MPC control law (8) starting from an initial state

x
[i]
0 for which (7) is feasible, the state x

[i]
t is convergent

to the origin. The idea of proof is sketched as follows.
Following Theorem 8 in Chisci et al. (2001) we can show

that x
[i]
t converges to the disturbance invariant set which

is included in X̄[i]
N . When all agents have entered into X̄[i]

N ,

the nominal control law u
[i]
t = Kix

[i]
t can be used since all

constraints in (7) are satisfied. Then each agent Σi can use
the knowledge of this fixed control law to predict exactly

inputs of its neighbour Σj and thus w
[i]
t = 0, ∀i ∈ I1:M .

It follows from Assumption 2.2 that states of the global
system (1) converge to the origin asymptotically.

5. NUMERICAL EXAMPLE

Consider the running example in Section 2.1 with six
vehicles in a platoon. The operating point of each ve-
hicle is chosen to be d0 = 15m and v0 = 19.44m/s.
We set up the MPC problem with sampling time δt =
50ms and a horizon of N = 17. The state and input
constraints are X[i] = [−10.0, 10.0]m × [−5.0, 5.0]m/s
and U[i] = [−5.0, 3.0]m2/s. Sets in (16) are selected as
V[i] = [−1.0, 1.0] and T[i] = [−0.3, 0.3].

Figure 3 shows for each vehicle Σi the volume (along

the positive axis) of the input tightening sets KiW[i]
N−1

depending on the latency d. As can be expected from
(19), the amount of tightening grows monotonically with
latency. When the tightening exceeds the maximum allow-

able input (red dashed line), Ū[i]
k becomes empty and the

problem will be infeasible. Interestingly, we observe that
for a fixed latency the amount of tightening appears to con-
verge regardless of the number of agents in the chain. This
shows that our tightening approach is non-conservative.
Note that Σ2 is less tightened since it does not undergo
coupling effects from its neighbour’s neighbour.
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Fig. 3. Plot of the tightening set KiW[i]
N−1 versus latency.

Figure 4 shows the region of attraction (RoA) of problem

(7) in e
[i]
d space as the parameter Ns varies. The RoA in

this case stands for the maximal initial e
[i]
d (with e

[i]
v = 0)

such that (7) is feasible for all Σi. Using Algorithm 2 we
design for each value of Ns a DMPC controller. Due to the
difference in constraints (7d) and (7e), those controllers in
general have different RoA’s. Through fine tuning of the
parameter Ns we observe that Ns = 9 yields the controller
with the largest RoA (8.25m) for the example considered,
since it well achieves the balance between latency and
uncertainty; while in the extreme cases: Ns = 0 (sending
nothing) and Ns = 15 (sending everything but with a large
delay), the RoA is smaller (7.19m and 7.27m, respectively).
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Fig. 4. Plot of Ns versus the region of attraction in terms

of the relative distance e
[i]
d .

Finally Table 1 summarizes the convergence time Tc with
different values of the parameter Ns, while all agents start

from the same initial condition x
[i]
0 = [5.0, 0.0]

�
. Again we

observe that Ns = 9 leads to the fastest control time.

Table 1. Convergence time

Length Ns 0 3 6 9 12 15

Tc (s) 8.1 7.2 6.3 5.1 6.2 6.5
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4.2 Feasibility and stability

This section states the main properties of the proposed
DMPC controller.

Lemma 4.1. Consider the following statements for all
agents in the global system (1). For each agent Σi let

(X̄
[i]
t , V̄

[i]
t ) be the solution to (7) at time t, to which

the inputs are the current state x
[i]
t ∈ Rni and sequence

Û
[j]
t ∈ RN−1 reconstructed from the transmitted inputs

Ũ
[i]
t−d−1 ∈ RNs of neighbour Σj with latency d. Consider

state evolution x
[i]
t+k+1 = Aix

[i]
t+k+Biiu

[i]
t+k+Biju

[j]
t+k with

input u
[i]
t+k = v̄

[i]
t+k|t +Kix

[i]
t+k, then it holds that

x
[i]
t+k − x̄

[i]
t+k|t ∈ W[i]

k , ∀k ∈ I1:N (21a)

u
[i]
t+k − ū

[i]
t+k|t ∈ KiW[i]

k , ∀k ∈ I1:N−1 (21b)

Proof. See Appendix A.

Assumption 4.1. The accumulated deviation on v̄
[i]
t+k|t is

bounded by v̄
[i]
t+k|t− v̄

[i]
t′+k|t′ ∈ (d+1)V[i] for all k ∈ I0:N−1.

t� ≤ t is the last time when x̄
[i+1]
t′+k+1|t′ ⊕W[i+1]

k+1 ⊆ X̄[i+1]
k+1 .

Theorem 4.1. (Recursive feasibility). Let Assumption 4.1
hold. For each agent Σi, ∀i ∈ I1:M under control law (8),

if (7) is feasible for x
[i]
t , then (7) is feasible for x

[i]
t+1.

Proof. Lemma 4.1 and Lemma 7 in Chisci et al. (2001)
imply that the solution to (7) at time t shifted by one time

step is also feasible at t + 1, if Û
[j]
t is considered in the

prediction model (7c). Moreover, Assumption 4.1 prevents
infeasibility in (7d) when the initial state is reset to the

current state (see (7b)) and (7c) is updated by Û
[j]
t+1.

Remark 4.2. (Stability). For each agent Σi, ∀i ∈ I1:M
under MPC control law (8) starting from an initial state

x
[i]
0 for which (7) is feasible, the state x

[i]
t is convergent

to the origin. The idea of proof is sketched as follows.
Following Theorem 8 in Chisci et al. (2001) we can show

that x
[i]
t converges to the disturbance invariant set which

is included in X̄[i]
N . When all agents have entered into X̄[i]

N ,

the nominal control law u
[i]
t = Kix

[i]
t can be used since all

constraints in (7) are satisfied. Then each agent Σi can use
the knowledge of this fixed control law to predict exactly

inputs of its neighbour Σj and thus w
[i]
t = 0, ∀i ∈ I1:M .

It follows from Assumption 2.2 that states of the global
system (1) converge to the origin asymptotically.

5. NUMERICAL EXAMPLE

Consider the running example in Section 2.1 with six
vehicles in a platoon. The operating point of each ve-
hicle is chosen to be d0 = 15m and v0 = 19.44m/s.
We set up the MPC problem with sampling time δt =
50ms and a horizon of N = 17. The state and input
constraints are X[i] = [−10.0, 10.0]m × [−5.0, 5.0]m/s
and U[i] = [−5.0, 3.0]m2/s. Sets in (16) are selected as
V[i] = [−1.0, 1.0] and T[i] = [−0.3, 0.3].

Figure 3 shows for each vehicle Σi the volume (along

the positive axis) of the input tightening sets KiW[i]
N−1

depending on the latency d. As can be expected from
(19), the amount of tightening grows monotonically with
latency. When the tightening exceeds the maximum allow-

able input (red dashed line), Ū[i]
k becomes empty and the

problem will be infeasible. Interestingly, we observe that
for a fixed latency the amount of tightening appears to con-
verge regardless of the number of agents in the chain. This
shows that our tightening approach is non-conservative.
Note that Σ2 is less tightened since it does not undergo
coupling effects from its neighbour’s neighbour.

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3
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N−1 versus latency.

Figure 4 shows the region of attraction (RoA) of problem

(7) in e
[i]
d space as the parameter Ns varies. The RoA in

this case stands for the maximal initial e
[i]
d (with e

[i]
v = 0)

such that (7) is feasible for all Σi. Using Algorithm 2 we
design for each value of Ns a DMPC controller. Due to the
difference in constraints (7d) and (7e), those controllers in
general have different RoA’s. Through fine tuning of the
parameter Ns we observe that Ns = 9 yields the controller
with the largest RoA (8.25m) for the example considered,
since it well achieves the balance between latency and
uncertainty; while in the extreme cases: Ns = 0 (sending
nothing) and Ns = 15 (sending everything but with a large
delay), the RoA is smaller (7.19m and 7.27m, respectively).
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of the relative distance e
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Finally Table 1 summarizes the convergence time Tc with
different values of the parameter Ns, while all agents start

from the same initial condition x
[i]
0 = [5.0, 0.0]

�
. Again we

observe that Ns = 9 leads to the fastest control time.

Table 1. Convergence time

Length Ns 0 3 6 9 12 15

Tc (s) 8.1 7.2 6.3 5.1 6.2 6.5

2019 IFAC NecSys
Chicago, IL, USA, September 16-17, 2019

283



284	 Haimin Hu  et al. / IFAC PapersOnLine 52-20 (2019) 279–284

6. CONCLUSIONS

In this paper, a distributed MPC scheme is proposed which
allows communication latency to be a tuning parameter.
Feasibility and stability are guaranteed by leveraging ro-
bust MPC techniques with a proper constraint tightening
procedure. An optimized control performance is achieved
via fine tuning of the latency parameters. Future work
includes generalizing this approach to a broader class of
systems and treating latency d as a random variable.
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Appendix A. PROOF OF LEMMA 4.1

We start by showing x
[i]
t+1 − x̄

[i]
t+1|t ∈ W[i]

1 . Introduce the

shorthand notation Δv
[i]
t+k = v̄

[i]
t+k|t+k−v̄

[i]
t+k−1|t+k−1. First

of all, notice the fact that the deviation between x
[1]
t and

x̃
[1]
t|t−d−1 is solely due to replanning of MPC, i.e.

x
[1]
t − x̃

[1]
t|t−d−1 =

∑d

k=1
Φk−1

1 B11Δv
[1]
t+k (A.1a)

∈
⊕d

k=1
Φk−1

1 B11(d+ 1)V[1] (A.1b)

as suggested by (20b). The last step (A.1b) follows (16).
For agent Σ2, from (14) we have that

x
[2]
t+1 − x̄

[2]
t+1|t = B21

(
u
[1]
t|t − ũ

[1]
t

)
(A.2a)

=B21

[(
v
[1]
t|t − ṽ

[1]
t|t−d−1

)
+K1

(
x
[1]
t − x̃

[1]
t|t−d−1

)]
(A.2b)

∈B21

[
(d+ 1)V[1] ⊕K1X̂[1]

0

]
= W[2]

1 (A.2c)

which is in accordance with (17b). Now, following the same
idea as (A.1), agent Σ3 is able to estimate the uncertainty
in states of its neighbour Σ2

x
[2]
t − x̃

[2]
t|t−d−1 (A.3a)

=
∑d

k=1
Φk−1

2

[
B22Δv

[2]
t+k +B21(u

[1]
t−k − ũ

[1]
t−k)

]
(A.3b)

∈
⊕d

k=1
Φk−1

1

[
B22(d+ 1)V[1] ⊕B21Û[1]

d−k

]
(A.3c)

which coincides with (20b). By induction, (A.2) holds for
all agents Σi, ∀i ≥ 2.

The next step is to show w
[i]
t+k = x

[i]
t+k− x̄

[i]
t+k|t ∈ W[i]

k , ∀k ∈
I2:N as stated in (21a). Recall from (15) that

w
[i]
t+k = Φiw

[i]
t+k−1 +Bij

(
u
[j]
t+k−1|t − ũ

[j]
t+k−1

)
(A.4a)

∈ ΦiW[i]
k−1 ⊕BijÛ[j]

k−1 = W[i]
k (A.4b)

which matches with (17a). The bound on u
[j]
t+k|t − ũ

[j]
t+k in

(A.4a) can be derived in a similar way as (A.2b).

Finally, the proof of (21b) goes as follows

u
[i]
t+k − ū

[i]
t+k|t = Ki

(
x
[i]
t+k − x̄

[i]
t+k|t

)
∈ KiW[i]

k (A.5a)

The proof is now complete.
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