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Minimal Actuator Placement with Optimal Control Constraints

V. Tzoumas, M. A. Rahimian, G. J. Pappas, A. Jadbabaie*

Abstract—We introduce the problem of minimal actuator
placement in a linear control system so that a bound on the
minimum control effort for a given state transfer is satisfied
while controllability is ensured. We first show that this is an
NP-hard problem following the recent work of Olshevsky [1].
Next, we prove that this problem has a supermodular structure.
Afterwards, we provide an efficient algorithm that approximates
up to a multiplicative factor of O(logn), where n is the size of
the multi-agent network, any optimal actuator set that meets the
specified energy criterion. Moreover, we show that this is the best
approximation factor one can achieve in polynomial-time for the
worst case. Finally, we test this algorithm over large Erdds-Rényi
random networks to further demonstrate its efficiency.

Index Terms—Multi-agent Networked Systems, Transfer to a
Single State, Leader Selection, Minimal Network Controllability.

I. INTRODUCTION

During the past decade, control scientists have developed
various tools for the regulation of large-scale systems, with
the notable examples of [2] for the control of biological sys-
tems, [3] for the regulation of brain and neural networks, [4]
for network protection against spreading processes, and [5]
for load management in smart grid. On the other hand, the
enormous size of these systems and the need for cost-effective
control make the identification of a small fraction of their
nodes to steer them around the state space a central problem
within the control community [1], [6], [7], [8], [9], [10].

This is a combinatorial task of formidable complexity; as
it is shown in [1], identifying a small set of actuator nodes
so that the resultant system is controllable alone is NP-
hard. Nonetheless, a controllable system may be practically
uncontrollable if the required input energy for the desired state
transfers is forbidding, as when the controllability matrix is
close to singularity [11]. Therefore, by choosing input nodes
to ensure controllability alone, one may not achieve a cost-
effective control for the involved state transfers. In this paper,
we aim to address this important requirement, by introducing
a best-approximation polynomial-time algorithm to actuate
a small fraction of a system’s states so that controllability
is ensured and a specified control energy performance is
guaranteed.

In particular, we consider the selection of a minimal number
of actuators such that a bound on the minimum control effort
for a given transfer is satisfied while controllability is ensured.
Finding the appropriate choice of such a subset of nodes is a
challenging task, since the search for a subset satisfying certain
criteria constitutes a combinatorial optimization problem that
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can be computationally intensive. Indeed, it is shown in [1]
that identifying the minimum number of actuators for inducing
controllability alone is NP-hard. Therefore, we extend this
computationally hard problem by imposing an energy con-
straint on the choice of the actuator set, and we solve it with
an efficient approximation algorithm.

Specifically, we first generalize the involved energy ob-
jective to an e-close one, which remains well-defined even
when the controllability matrix is non-invertible. Then, we
make use of this metric and we relax the controllability
constraint of the original problem. Notwithstanding, we show
that for certain values of e all solutions of this auxiliary
program still render the system controllable. This fact, along
with a supermodularity property of the generalized objective
that we establish, leads to a polynomial-time algorithm that
approximates up to a multiplicative factor of O(logn) any
optimal actuator set that meets the specified energy bound,
when the latter lies in a certain range with respect to n.
Moreover, we show that this is the best approximation factor
one can achieve in polynomial-time for the worst case.

Hence, with this algorithm we aim to address the open
problem of actuator placement with energy performance guar-
antees [1], [8], [9], [12], [13]. To the best of our knowledge,
we are the first to study the selection of a minimal number
of actuators so that a bound on the minimum control effort
for a given transfer is satisfied. Our results are also applicable
to the case of average control energy metrics [14] and can be
extended to the cardinality-constrained actuator placement for
minimum control effort, where the optimal actuator set is se-
lected so that these metrics are minimized, while its cardinality
is upper bounded by a given value. These and other relevant
extensions are explored in the companion manuscript [10].

The remainder of this paper is organized as follows. The
formulation and model for the actuator selection problem are
set forth in Section II. In Section III we discuss our main
results, including the intractability of this problem, as well as
the supermodularity of the involved control energy objective.
Then, we provide an efficient approximation algorithm for its
solution. Finally, in Section IV we illustrate our analytical
findings on an integrator chain network and we test their per-
formance over large Erd6s-Rényi random networks. Section V
concludes the paper. Due to space limitations, all proofs are
omitted; they can be found in the full version of this paper,
located at the authors websites.

II. PROBLEM FORMULATION

Notation: Denote the set of natural numbers {1, 2, ...} as
N, the set of real numbers as R, and let [n] = {1,2,...,n} for
all n € N. Also, given a set X, denote |X| as its cardinality.
Matrices are represented by capital letters and vectors by
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lower-case letters. For a matrix A, AT is its transpose, and
A;j is its element located at the 7—th row and j—th column.
For a symmetric matrix A, A = A”; and if A is positive
semi-definite, or positive definite, we write A > 0 and A > 0,
respectively. Moreover, for i € [n], let I () be an n x n matrix
with a single non-zero element: I;; = 1, while I, = 0, for j,
k # i, and denote the identity matrix by I, where its dimension
is inferred from the context. Additionally, for § € R™, diag(d)
denotes an n x n diagonal matrix such that diag(d);; = J;,
for all 4 € [n].

A. Actuator Placement Model

Consider a linear system of n states, x1, 2, ..., Zy,, Whose
evolution is described by
z(t) = Azx(t) + Bu(t),t > to, (D

where tg € R is fixed, z = {x1,22,...,2,}, ©(t) = da/dt,
while u is the corresponding input vector. The matrices A and
B are of appropriate dimension. Without loss of generality,
we also refer to (1) as a network of n agents, 1,2,...,n,
which we associate with the states x1, xs, . . ., ,,, respectively.
Moreover, we denote their collection as V = [n]. Henceforth,
the interaction matrix A is fixed, while a special structure is
assumed for the input matrix B.

Assumption 1. B = diag(), where § € {0,1}™.

Each choice of the binary vector § in Assumption 1 signifies
a particular selection of agents as actuators. Hence, if §; = 1,
state ¢ may receive an input, while if J; = 0, receives none.
We collect the above and others into the next definition.

Definition 1 (Actuator Set, Actuator). Given ¢ € {0,1}" and
B = diag(9), let A CV be such that ¥i € A, §; = 1, while
Vi ¢ A, 0; = 0; then, A is called an actuator set and any
agent i € A is called an actuator.

B. Controllability and the Minimum Energy Transfer Problem

We consider the notion of controllability and relate it to the
problem of selecting a minimum number of actuators for the
satisfaction of a control energy constraint.

Recall that (1) is controllable if for any finite £; > ¢ and
any initial state o = x(f), the system can be steered to any
other state 1 = x(¢1), by some input u(t) defined over [tg, t1].
Moreover, for general matrices A and B, the controllability
condition is equivalent to the matrix

ty
D(to, 1) = / cAlt=to) g T A" (t=t0) g 2)
to
being positive definite for any ¢; > tg [11]. Therefore, we
refer to T'(tg,t1) as the controllability matrix of (1).
The controllability of a linear system is of great interest,
because it is related to the solution of the following minimum
energy transfer problem

ty
minimize / w(t)Tu(t) dt
u(-) to
subject to 3)
z(t) = Ax(t) + Bu(t),to < t < ty,
l‘(to) = l‘o,l’(tl) =T,

where A and B are any matrices of appropriate dimension.
In particular, if (1) is controllable for the given A and B, the
resulting minimum control energy is given by

($1 — eATxo)TF(to, tl)_1($1 — eATxo), (4)

where 7 = t; — to [14]. Therefore, if 21 — e47x( is spanned
by the eigenvectors of I'(to,¢1) corresponding to its smallest
eigenvalues, the minimum control effort (4) may be forbid-
dingly high [11]. Hence, when we choose the actuators of a
network so that controllability is ensured and an input energy
constraint for a specified state transfer is satisfied, we should
take into account their effect on I'(¢g,#;) .

Moreover, controllability is an indispensable property for
any linear system, while in many cases is viewed as a structural
attribute of the involved system [15] that holds true even by
any single input nodes, as in large-scale neural networks [6].
This motivates further the setting of this paper, where the
actuators are chosen so that a bound on the minimum control
effort for a given transfer is satisfied and overall controllability
is respected.

Per Assumption 1 some further properties for the controlla-
bility matrix are due. First, given an actuator set A, associated
with some 9, let 'a = I'(to, t1); then,

ra=Yar, 5)
i=1

where for any i € [n], T'; = til eAtT()eA™t 4t that is, each
I'; is a constant positive semi-definite matrix determined by
A, to and t;. To see why (5) holds true, observe that B =
diag(s) implies B = BBT = Y"1 | 6,1, and (5) follows
upon replacing this in (2). Furthermore, note that (5) together
with the fact that I'; = 0, for any ¢ € [n] gives 'a, < Ta,
whenever A C As.

C. Actuator Placement Problem

We consider the problem of actuating a small number of
system’s (1) states so that the minimum control energy for
a given transfer meets some specified criterion and controlla-
bility is ensured. The challenge is in doing so using as few
actuators as possible. This is an important improvement over
the existing literature where the goal of actuator placement
problems have either been to ensure just controllability [1]
or the weaker property of structural controllability [16], [17].
Other relevant results consider the task of leader-selection [18],
[19], where the leaders, i.e. actuated agents, are chosen so as
to minimize an appropriate mean-square convergence error of
the remaining agents. Our work also departs from a set of
works that study average energy metrics, such as the minimum
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eigenvalue of the controllability Gramian or the trace of its
inverse [8], [9], [12]. Instead, here we consider an exact energy
objective and require it to satisfy a particular upper bound.

Let C, = {A CV:|A| <r,Ta > 0} be the actuator sets
of cardinality at most 7 that render (1) controllable. Then, for
any A C V, we write A € C|p| to denote that A achieves
controllability. Furthermore, we set

A

v= (1 —exg)/ |21 — eATfL'O”Q.

We consider the problem
migiénvize |A
subject to )
A€ Chﬁh
vTI‘glv < F,

for some positive constant E. This problem is a generalized
version of the minimal controllability problem considered
in [1], so that its solution not only ensures controllability,
but also provides a guarantee in terms of the minimum input
energy required for the normalized transfer from zg to z;
indeed, for £ — oo, we recover the problem of [1].

For some extra properties of (I), note that for any A € Cja,
0 < Ta =Ty, ie vTT,'w < v T1'v [20]. Hence, (I) is
feasible for any F such that

T, < E. (6)

Observe that this lower bound depends only on A and v, i.e.
also on n, as well as on £y and t;.

Moreover, (I) is NP-hard, since it looks for a minimal
solution and so it asks if C. # () for any r < n [1]. Thus,
we need to identify an efficient approximation algorithm for
its solution, which is the subject of the next section.

III. MINIMAL ACTUATOR SETS WITH CONSTRAINED
MINIMUM ENERGY PERFORMANCE

We present an efficient polynomial-time approximation al-
gorithm for (I). To this end, we first generalize the involved
energy objective to an e-close one, that remains well-defined
even when the controllability matrix is non-invertible. Next,
we relax (I) by introducing a program that makes use of
this objective and ignores controllability constraint of (I).
Nonetheless, we show that for certain values of e all solutions
of this auxiliary program still render the system controllable.
This fact, along with the supermodularity property of the
generalized objective that we establish, leads to our proposed
approximation algorithm. The discussion of its efficiency ends
the analysis of (I).

A. An e-close Auxiliary Problem
Consider the following approximation to Problem (I)

minimize |A|
ACY
1)

subject to

$(A) < E,

where ¢(A) = 0T (Ta+el) o+eX ol (Ta+e2) 1,
for any A C V, while vy,%2,...,0,_1 are an orthonormal
basis for the null space of v, and ¢ is fixed such that 0 < € <
1/E, given E. Observe that the controllability constraint is
now ignored, while the energy objective is well-defined for any
actuator set A including the empty set, since the invertibility
of Ta + €l and T'a + €21 is always guaranteed for € > 0.

The e-closeness is evident, since for any A € Cja}, ¢(A) —
vTFglv as € — 0. Notice that we can take ¢ — 0, since we
assume any positive € < 1/F.

B. Approximation Algorithm for Problem (1)

We first prove that all solutions of (I') for 0 < € < 1/F,
render the system controllable, notwithstanding that no con-
trollability constraint is imposed by this program on the choice
of the actuator sets. Moreover, we show that the involved e-
close energy objective is supermodular, and then we present
our approximation algorithm, followed by a discussion of its
efficiency, which ends this subsection.

Proposition 1. Fix w > 0. Then, Ve, 0 < e < 1/w, if VA C V),
#(A) < w, then A € Cja).

Note that w is chosen independently of the parameters
of system (1). Therefore, the absence of the controllability
constraint at Problem (I') for 0 < € < 1/F is fictitious;
nonetheless, it obviates the necessity of considering only those
actuator sets that render the system controllable.

The next lemma is also essential and suggest an efficient
approximation algorithm for solving (I').

Proposition 2 (Supermodularity). The function v (T'a +
e+ e T (Ta + 2N A CV = Ris
supermodular with respect to the choice of A.

Inspired by the literature on set-covering problems subject to
submodular constraints, [21], [22], [23], we have the following
efficient approximation algorithm for Problem (I'), and, as we
illustrate by the end of this section, for Problem (I) as well. We
note that a corollary of the above proposition is that v” T v is
supermodular as well, but over the sets A C V that render (1)
controllable.

Algorithm 1 Approximation Algorithm for the Problem (I').

Input: Upper bound E, approximation parameter ¢ < 1/F,
matrices I'y,I's,...,I",, vector v.
Output: Actuator set A.
A+
while ¢(A) > E do
a; € argmax, y\ a {6(A) — S(A U {a})}
A+~ AU {ai}
end while

For the efficiency of Algorithm 1 the following is true.
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Theorem 1 (A Submodular Set Coverage Optimization).
Denote as I* the cardinality of a solution to Problem (I') and
as A the selected set by Algorithm 1. Then,

A €Cay, ()
P(A) < E, ®)
|A ne ' —o(V) _

F = O(logn +loge™! +log E%qi)(V)) (10)

Therefore, the polynomial-time Algorithm 1 returns a set of
actuators that meets the corresponding control energy bound
of Problem (I"), while it renders system (1) controllable. More-
over, the cardinality of this set is up to a multiplicative factor
of F' from the minimum cardinality actuator sets that meet
the same control energy bound. In Section III-C we elaborate
further on the dependence of this multiplicative factor on
n, € and E, using (10), while in Section III-D we finalize
our treatment of Problem (I) by employing Algorithm 1 to
approximate its solutions.

C. Quality of Approximation of Algorithm 1 for Problem (I')

The result in (10) was expected from a design perspective:
Increasing the network size n or improving the accuracy by
decreasing ¢, as well as demanding a better energy guarantee
by decreasing F, should all push the cardinality of the selected
actuator set upwards. Also, note that loge~! is the design
cost for circumventing the difficulty to satisfy controllability
constraint of Problem (I) directly [1].

Furthermore, per (10) and with £ — ¢(V) and ¢ both
fixed, the cardinality of the actuator set that Algorithm 1
returns is up to a multiplicative factor of O(logn) from
the minimum cardinality actuator sets that meet the same
performance criterion. We note that this is the best achievable
bound in polynomial-time for the set covering problem in the
worst case [24], while (I') is a generalization of it (cf. [1]).

D. Approximation Algorithm for Problem (1)

We present an efficient approximation algorithm for Prob-
lem (I) that is based on Algorithm 1. To this end, let A be
the actuator set returned by Algorithm 1, i.e. A € Cja| and
¢(A) < E. Moreover, denote as A1, Ag, ..., A, and g1, go, . . .,
qn the eigenvalues and the corresponding orthonormal eigen-
vectors of I'a, respectively. Additionally, let \,;, = min;cp, A
and qy = argmaxqme[n]qui. Finally, consider a positive €
such that ne(vTqpr)? /A2, < cE, for some ¢ > 0. Then,

nooT N2
6(8) > 7 (T + ey o = Y L0 an
=1 T
T 2
> Tty — 7“(7&7;“”) (12)
m
>oTT ' — cE, (13)

where we derived (12) from (11) using the fact that for any
x > 0,1/(1 4+ x) > 1 — z, while the rest follow from
the definition of A,, and ¢p;, as well as the assumption

ne(vl'qar)? /N2, < cE. Moreover, it is also true that ¢(A) <
E by the definition of A, and therefore from (13) we get

VT < (14 0)E. (14)

Hence, we refer to ¢ as approximation error.

On the other hand, A, and g5, are not in general known
in advance. Hence, we need to search for a sufficiently small
value of € so that (14) holds. One way to achieve this, since
¢ is lower and upper bounded by 0 and 1/FE, respectively, is
to perform a binary search. We implement this procedure in
Algorithm 2, where we denote as [Algorithm 1](F, €) the set
that Algorithm 1 returns, for given F and e.

Algorithm 2 Approximation Algorithm for the Problem (I).

Input: Upper bound E, approximation error c, bisection’s
accuracy level a, matrices I'1, ', ..., T, vector v.
Output: Actuator set A.
1+ 0, u+1/E, e+ (I+u)/2
while v — [ > a do
A <+ [Algorithm 1](E, €)
if v'T'v —vT(Ta + el)"'v > cE then
U< €
else
l+¢€
end if
e+ (Il+u)/2
end while
if vIT'v — 0T (DA + el)"'v > cE then
u+¢€ e (I+u)/2
end if
A < [Algorithm 1)(E, €)

Note that in the worst case, when we first enter the while
loop, the 1 f condition is not satisfied and as a result, € is set to
a lower value. This process continues until the i f condition
is satisfied for the first time, from which point and on, the
algorithm converges, up to the accuracy level a, to the largest
value € of € such that v'T'{'v — vT(Ta + el)"'v < cE;
specifically, |e — €] < a/2, due to the mechanics of the
bisection. Then, Algorithm 2 exits the while loop and the
last if statement ensures that e is set below € so that
vIT ' — T (Ta + el)"'v < cE. The efficiency of this
algorithm for Problem (I) is summarized below.

Theorem 2 (Approximation Efficiency of Algorithm 2 for
Problem (I)). Denote as U* the cardinality of a solution to
Problem (I') and as A the selected set by Algorithm 2. Then,

A€ CLAh

vIT o < (14 0)E, (15)

14 <F, (16)

l*

F =0O(logn+ 1o ;4’10 L) (17)
T UL T N E T B E— s

We remark that as ¢ — 0, ¢(-) — o7 () + eE) to.
Therefore, for any solution A° to Problem (I) and ¢ small
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Fig. 1. A 5-node integrator chain.

enough, |A°| > I*; to see this, note that as e — 0 for any A°,
P(A°) = vT (Tao+el)"tv < vTT1tv < E, since also € > 0,
i.e. any A° is a candidate solution to Problem (I'), which
implies |A°| > [*. Therefore, for ¢ small enough we have
|A]/|A°] < |A]/l*. Hence, (16) is written as |A|/|A°| < F,
that is, the worst case bound (16) holds also with respect
to the cardinality of any solution to (I); and as a result, the
best-approximation properties of Algorithm 1 are inherited by
Algorithm 2 as well.

IV. EXAMPLES AND DISCUSSION
A. The Case of an Integrator Chain

We first illustrate the mechanics and efficiency of Algo-
rithm 2 using the integrator chain in Fig. 1, where we let

-1 0 0 0 0
1 -1 0 0
A= 0 1 -1 0
0 0 1 -1
0 0 0 1 -1

o O O

We first run Algorithm 2 with E + UTF{711’5}7) and a,c +
.001 and examine the transfer from z(0) < [0,0,0,0,0]” to
x(1) « [1,1,1,1,1]7. The algorithm returned the actuator
set {1,4}. As expected, node 1 is chosen, and this remains
true for any other value of z(1), since for a chain network to
be controllable, it is necessary and sufficient that node 1 be
actuated. Additionally, {1, 4} is the exact best actuator set for
achieving this transfer. This is true because using MATLAB®
we can compute

Tp-1, — 6  Tp—1 _ 4
v F{l}v =5.2486 - 10°,v P{LQ}U = 2.0860 - 104,
Tp-1 Tr—1
v F{1,3}U = 159.9369, v F{1,4}v = 159.1712,
v F{1,5}v =2.1086 - 10°.

Hence, node 1 alone does not satisfy the upper bound FE,
while vTF{_ll_ 41 not only satisfies this bound, but it also takes
the smallest value among all the actuators sets of cardinality
two that induce controllability. Therefore, {1,4} is the best
minimal actuator set to achieve the given transfer.

Next, we set z(1) < [0,0,0,1,0]7 in Algorithm 2, which
led again to the selection {1,4}, as one would expect for any
transfer that involves only the movement of the fourth node,
while controllability is desired. In other words, even though
we chose E vTF{*ll’S}v, Algorithm 2 respected this energy
bound and with the best possible actuator set for the given
transfer, which is {1, 4}, as verified in the following

Tp—1 7, Tp—1 4
vTT o = 1.5425 - 107, 0"}, 0 = 5.8675 - 107,
oTT v = 401.7997,0 T v = 6.2889),

Tp—-1 5
vTT 5 0 = 2.7445 - 10%,

Moreover, note that although node 1 is selected as an actuator,
in this case its corresponding input signal is zero. Thus, one
may choose not to implement an actuator at this node, at the
expense, however, of losing the overall network controllabil-
ity. This observation motivates the analysis of (I) when no
controllability constraint is placed on the end actuator set.

B. Erdds-Rényi Random Networks

Erdés-Rényi random graphs are commonly used to model
real-world networked systems [25]. According to this model,
each edge is included in the generated graph with some
probability p, independently of every other edge.

We implemented this model for varying network sizes n, as
shown in Fig. 2, where the directed edge probabilities were
set to p = 2log(n)/n, following [1]. In particular, we first
generated the binary adjacency matrices for each network size
so that every edge is present independently with probability p,
and then we replaced every non-zero entry with an independent
standard normal variable to generate a randomly weighted
graph.

To avoid the computational difficulties associated with
the integral equation (2) we worked with the controllability
Gramian instead, which for a stable system can be efficiently
calculated from the Lyapunov equation AG+GAT = —BB”
and is given in closed-form by

to
Using the controllability Gramian in (4) corresponds to the
minimum state transfer energy with no time constraints. There-
fore, we stabilized each random instances of A by subtracting
1.1 times the real part of their right-most eigenvalue and
then we used the MATLAB® function gram to compute the
corresponding controllability Gramians.

Next, we set zg to be the zero vector and x; the vector of
all ones. We also set ¢ <— 0.1 and a <« 1. Finally, for each
instance of n we first computed the corresponding lower bound
of E so that (I) is feasible, vTGglv, and then run Algorithm 2
for E equal to k:vTG;lv, where k ranged from 2 to 22°.

The number of selected actuator nodes by Algorithm 2 for
each n with respect to k is shown in Fig. 2. We observe that as
k increases the number of actuators decreases, as one would
expect when the energy bound of (I) is relaxed. In addition, we
notice that for k& large enough, so that (I) becomes equivalent
to the minimal controllability problem of [1], the number of
chosen actuators is one, as it was generally observed in [1]
for a similar set of simulations.

V. CONCLUDING REMARKS

We introduced the problem of minimal actuator placement
in a linear system so that a bound on the minimum control
effort for a given state transfer is satisfied while controllability
is ensured. This problem was shown to be NP-hard and to have
a supermodular structure. Moreover, an efficient algorithm was
provided for its solution. Finally, the efficiency of this algo-
rithm was illustrated over large Erd6s-Rényi random networks.
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Fig. 2. Number of selected actuators by Algorithm 2 in Erd&s-Rényi networks of several sizes n and for varying energy bounds E. For each n, the values
of E are chosen so that the feasibility constraint (6) of Problem (I) is satisfied: Specifically, for each set of values for n and k, Algorithm 2 was executed
for B < vaG(n);lv, where G(n)y is the controllability Gramian corresponding to the generated network of size n with B set to be the identity matrix.

Our future work is focused on investigating the case where no
controllability constraint is placed on the end actuator set, as
well as, on exploring the effects that the network topology has
on this selection.
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