
Multi-agent coordination with asynchronous cloud access

Cameron Nowzari George J. Pappas

Abstract— In this work we study a multi-agent coordina-
tion problem in which agents are only able to communicate
intermittently with the cloud. To minimize the amount of
required communication, we are interested in developing a
self-triggered algorithm that determines when communication
with the cloud is necessary. Unlike the overwhelming majority
of similar works that propose distributed event- and/or self-
triggered control laws, this work doesn’t assume agents can
be ‘listening’ continuously. In other words, when an event is
triggered by one agent, neighboring agents will not be aware
of this until the next time they establish communication with
the cloud. Each time an agent communicates with the cloud,
it must determine the next time to reestablish communication
while guaranteeing the completion of some global task. We
show that our self-triggered coordination algorithm guarantees
that the system asymptotically reaches the set of desired states.
Simulations illustrate our results.

I. INTRODUCTION

This paper considers a multi-agent coordination problem

where agents can only communicate with one another indi-

rectly through the use of a central base station or ‘cloud’.

More specifically, we consider the problem of coordinating a

number of submarines that can only communicate with a base

station when at the surface of the water. While submerged,

communication with the outside world is impossible. Thus,

each time a submarine surfaces, we are interested in an

algorithm that determines the next time it should surface

in order to adequately achieve some desired global task.

While we motivate our problem via an underwater coordi-

nation problem in which communication while submerged

is impossible, it is also directly applicable to scenarios

where wireless-capable agents cannot be ‘listening’ to any

communication channels continuously.

Literature review: In this work we are interested in em-

ploying a self-triggered strategy that determines when it

is necessary for an agent to communicate with the cloud

in order to guarantee the completion of some global task.

Our work is motivated by the problem of coordinating

submarines, or Autonomous Underwater Vehicles (AUVs),

that are only able to communicate with the cloud when they

are at the surface of the water. This is because communi-

cating with the outside world when underwater is extremely

expensive, if not impossible [1], [2]. Thus, we are interested

in an algorithm that agents can use to determine when

communication with the cloud should be established in order

to achieve some desired formation.

Cameron Nowzari and George J. Pappas are with the Electrical and
Systems Engineering Department, University of Pennsylvania, Philadelphia,
{cnowzari,pappasg}@seas.upenn.edu.

A useful tool then is event-triggered control, where an

algorithm is designed to tune controller executions to the

state evolution of a given system, see e.g., [3], [4]. These

ideas have also been applied to multi-agent systems where

the goal is to trade in computation and decision making to

reduce the overall communication, sensing, and/or actuator

efforts of the agents. In [5], the authors find criteria for

agents that determine when their control signals should be

updated. In [6], the authors consider networked systems with

disturbances, communication delays, and packet drops. In

addition to deciding when control signals should be updated,

several works have also explored the application of event-

triggered ideas to the acquisition of information, be it through

either communication or sensing. To this end, [7], [8], [9]

combine event-triggered controller updates with sampled

data that allows for the periodic evaluation of the triggers.

Other works like [10] even drop the need for periodic access

to information by considering event-based broadcasts, where

agents decide with local information only when to share

information with neighbors. Self-triggered control [11], [12],

[13] relaxes the need for continuously monitoring some

‘trigger’ by deciding when a future sample should be taken

based on the available information from the last sample.

Regarding multi-agent coordination, there is a consid-

erable amount of available literature, see e.g., [14], [15],

[16]. In particular, we formulate our problem as a multi-

agent consensus problem for which there has been a lot

of work done already. A continuous-time algorithm that

achieves asymptotic convergence to average consensus for

both undirected and weight-balanced directed graphs is in-

troduced in [17]. The work [18] builds on this algorithm

to propose a Lyapunov-based event-triggered strategy that

dictates when agents should update their control signals.

However, this strategy requires each agent to have perfect

information about their neighbors at all times. The work [19]

uses event-triggered broadcasting with time-dependent trig-

gering functions to provide an algorithm where each agent

only requires exact information about itself, rather than its

neighbors. In [20], the authors propose an event-triggered

broadcasting law with state-dependent triggering functions

where agents again do not rely on the availability of contin-

uous information about their neighbors. More recently, these

works have been extended to arbitrary directed graphs, rather

than only undirected ones [9], [21], [22]. One large drawback

of all the above works is that all agents are required to be

‘listening’ at all times. More specifically, when an event is

triggered by some agent, neighboring agents are immediately

made aware of this. For example, in the case of event-

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8681-4/$31.00 ©2016 AACC 4649

triggered broadcasting, it is assumed that when a message

is broadcast it is immediately (or with some delay) received

by neighboring agents. Instead, we are interested in a setup

where an agent has zero access to the outside world when

disconnected from the cloud (i.e., when underwater).

In [23], the authors consider an extremely similar problem

as ours but develop an event-triggered solution in which all

AUVs must surface at the same time. Our work is very

closely related to [24], where the authors consider a very

similar problem, motivation, and solution to the ones we

propose. However, since they consider noise and propose a

time-dependent triggering rule, they are only concerned with

reaching practical consensus (i.e., a ball around the desired

consensus state). Instead, we are interested in developing a

state-dependent triggering rule that better aligns the events

with the global objective and guarantees the agents asymp-

totically reach an exact agreement state.

Statement of contributions: In this work we utilize a cloud

communication model for a multi-agent system motivated

by a multi-agent AUV coordination problem. In particular,

agents are only able to communicate with the cloud when at

the surface of the water, and must autonomously decide when

to resurface. Our main contribution is the development of a

novel distributed self-triggered algorithm that agents can use

each time they surface to determine the next time they need

to surface. In general, event- and self-triggered algorithms

are designed such that agents locally trigger events such

that they can each guarantee to be contributing positively

to some global task at all times. More specifically, they are

often designed with the use of some Lyapunov function V

for which each agent can guarantee they are monotonically

optimizing V . However, because we assume agents are

unaware of what is happening while they are underwater, our

algorithm does not rely on this guarantee. More specifically,

we actually allow an agent to be contributing negatively to

the global task as long as it is accounted for by its net

contribution. After developing the algorithm, we are able to

guarantee its convergence to the desired set of states. Finally,

we illustrate our results through simulations.

Preliminaries: We denote by R the set of real numbers.

The Euclidean norm on R
N is denoted by ‖ · ‖. A graph

G = (V,E) is comprised of a set of vertices V = {1, . . . , N}
and edges E ⊂ V ×V . The graph G is undirected if for any

edge (i, j) ∈ E, the edge (j, i) ∈ E also. An edge (i, j) ∈ E

means that vertex j is a neighbor of i. The set of neighbors

of a given node i is given by Ni. The adjacency matrix

A ∈ R
N×N is defined by aij = 1 if (i, j) ∈ E and aij = 0

otherwise. A path from vertex i to j is an ordered sequence

of vertices such that each intermediate pair of vertices is an

edge. An undirected graph G is connected if there exists a

path from all i ∈ V to all j ∈ V . The degree matrix D is a

diagonal matrix where dii = |Ni|. The Laplacian matrix is

defined as L = D−A. For undirected graphs the Laplacian

is symmetric L = LT and positive semidefinite. If the graph

G is connected, the Laplacian has exactly one eigenvalue

at 0 (with associated eigenvector 1N) with the rest strictly

positive, 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN (L).

II. PROBLEM STATEMENT

Consider the N agent coordination problem with single-

integrator dynamics

ẋi(t) = ui(t), (1)

for all i ∈ {1, . . . , N}, where we are interested in reaching a

configuration such that ‖xi(t)−xj(t)‖ → 0 as t → 0 for all

i, j ∈ {1, . . . , N}. For simplicity, we consider scalar states

xi ∈ R for all agents but note that all results are readily

extendable to arbitrary dimensions.

Given a connected communication graph G, it is well

known [17] that the distributed continuous control law

ui(t) = −
∑

j∈Ni

(xi(t)− xj(t)) (2)

drives each agent of the system to asymptotically converge

to the average of the agents’ initial conditions. In compact

form, this can be expressed by

ẋ = −Lx,

where x = (x1, . . . , xN)T is the column vector of all agent

states and L is the Laplacian of G. However, in order

to be implemented, this control law requires each agent

to continuously have information about its neighbors and

continuously update its control law.

There have been many recent works aimed at relaxing

one or both of these requirements [9], [25], [22], [19].

However, they all require events triggered by some agent

to be immediately acknowledged by neighboring agents.

In other words, when an event is triggered by one agent,

its neighbors are immediately aware and can take action

accordingly.

In all of these works, they utilize a piecewise constant

implementation of the controller (2) given by

ui(t) = −
∑

j∈Ni

(x̂i(t)− x̂j(t)), (3)

where x̂j(t) is the last broadcast state of agent j. Note

that although agent i has access to its own state xi(t),
the controller (5) uses the last broadcast state x̂i(t). This

is to ensure that the average of the agents’ initial states

is preserved throughout the evolution of the system. More

specifically, utilizing this controller, one has

d

dt
(1T

Nx(t)) = 1
T
N ẋ(t) = 1

T
NLx̂(t) = 0, (4)

where x̂ = (x̂1, . . . , x̂N)T and we have used the fact that

L is symmetric and L1N = 0. This means that when an

agent i broadcasts its current state xi(t
∗) at some time t∗,

all its neighbor j ∈ Ni immediately update x̂i = xi(t
∗) so

that the average can be preserved.

4650

Unfortunately, we do not have the luxury of being able to

continuously detect events that occur. Instead, we assume

that agents are only able to update their control signals

when their own events are triggered (i.e., when they are

surfaced). Let {tℓi}ℓ∈Z≥0
be the sequence of times at which

agent i surfaces. Then, we utilize a piecewise constant

implementation of the controller (2) given by

ui(t) = −
∑

j∈Ni

(xi(t
ℓ
i)− xj(t

ℓ
i)), t ∈ [tℓi , t

ℓ+1
i). (5)

The purpose of this paper is to develop a self-triggered

algorithm that determines how the sequence of times {tℓi}
can be chosen by the agents such that the system converges

to the desired agreement statement. More specifically, each

agent i at each surfacing time tℓi must determine the next

surfacing time tℓ+1
i only using information available to them

on the cloud. The closed loop system should then have

trajectories such that |xi(t) − xj(t)| → 0 as t → 0 for all

i, j ∈ {1, . . . , N}. We describe the cloud communication

model next.

Cloud communication model

We assume there exists a base station or ‘cloud’ that agents

are able to upload and download data to when the communi-

cation link between them is open. The cloud can essentially

store as much data as it needs to, but no computations can

be done on the cloud. At any given time t ∈ [tℓi , t
ℓ+1
i),

the cloud stores the following information about agent i:

the last time tlast
i (t) = tℓi that agent i surfaced, the next

time tnext
i (t) = tℓ+1

i that agent i is scheduled to surface, the

state xi(t
last
i) of agent i when it last surfaced, and the last

control signal ui(t
last
i) used by agent i. This information is

summarized in Table I.

For simplicity, we assume that agents can down-

load/upload information to/from the cloud instantaneously

and that only one agent can be connected to the cloud

at a time. Let tℓi be a time at which agent i surfaces to

communicate with the cloud. The communication link with

the cloud is established at time tℓi , and we immediately

update tlast
i = tℓi and xi(t

ℓ
i) based on agent i’s current

position. While the link is open, agent i has access to all

the information in Table I for each neighbor j ∈ Ni. Note

that, using the information available in the cloud, agent i is

able to perfectly reconstruct the states of its neighbors

xj(t
ℓ
i) = xj(t

last
j) + uj(t

last
j)(tℓi − tlast

j),

for all j ∈ Ni. Using this information, agent i computes and

uploads its control signal,

ui(t
ℓ
i) = −

∑

j∈Ni

(xi(t
ℓ
i)− xj(t

ℓ
i)),

to the cloud. Finally, before closing the communication link

to the cloud, agent i must determine the next time tnext
i =

tℓ+1
i > tℓi at which it will resurface. The goal of this paper

is then to find a way to determine tnext
i such that the system

tlast
i Last time agent i surfaced

tnext
i

Next time agent i will surface

xi(t
last
i) Last updated position of agent i

ui(t
last
i) Last trajectory of agent i

TABLE I

DATA STORED ON THE CLOUD FOR ALL AGENTS i AT ANY TIME t.

converges to an agreement state, i.e., |xi(t)− xj(t)| → 0 as

t → ∞ for all i, j ∈ {1, . . . , N}.

Remark II.1 (Multi-agent formation control) We note

here that for simplicity, we formulate the multi-agent

coordination problem as a consensus problem. The formal

treatment can easily be modified to handle a formation

control problem by letting xi(t) = pi(t) − bi, where pi(t)
is the actual position of agent i and bi is the desired

displacement from the average position of the fleet.

III. DISTRIBUTED TRIGGER DESIGN

Consider the function

V (x(t)) =
1

2
xT (t)Lx(t).

Note that V (x) ≥ 0 and V (x) = 0 if and only if xj = xi

for all i, j ∈ {1, . . . , N}. Thus, the function V (x) encodes

the objective of the problem and we are interested in driving

V (x(t)) → 0. For simplicity, when we drop the explicit

dependence on time we are referring to time t. Then, if all

agents use the control law (5), we have

V̇ = xTLẋ

= −
N∑

i=1


∑

j∈Ni

xj − xi





∑

j∈Ni

xj(t
last
i)− xi(t

last
i)




= −
N∑

i=1


∑

j∈Ni

xj − xi




2

+




∑

j∈Ni

xj − xi







∑

j∈Ni

xj − xi − (xj(t
last
i)− xi(t

last
i))


 .

Let us split up V̇ =
∑N

i=1 V̇i, where

V̇i = −




∑

j∈Ni

xj − xi







∑

j∈Ni

xj(t
last
i)− xi(t

last
i)


 . (6)

Then,

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ

= V (x(0)) +
N∑

i=1

∫ t

0

V̇i(x(τ))dτ.

4651

Ideally, at this point we would be able to design a self-

triggered algorithm such that V̇i ≤ 0 for all agents i at all

times. This means that at time tℓi , agent i must determine

tℓ+1
i such that V̇i(t) ≤ 0 for all t ∈ [tℓi , t

ℓ+1
i). To do this we

need to be able to enforce

∣∣∣
∑

j∈Ni

xj − xi

∣∣∣ ≥
∣∣∣
∑

j∈Ni

(xj − xj(t
last
i))− (xi − xi(t

last
i))

∣∣∣

(7)

at all times t ∈ [tℓi , t
ℓ+1
i), which requires exact information

about agent i’s neighbors for all time t ≥ tℓi . Fortunately,

agent i can compute a neighboring agent j’s state exactly

for t ∈ [tℓi , t
next
j] by computing

xj(t) = xj(t
last
j) + uj(t

last
j)(t− tlast

j) (8)

using information available on the cloud. Unfortunately,

this is only valid until time tnext
j when agent j resurfaces

and changes its trajectory. Let Ti = minj∈Ni
tnext
j be the

next time at which a neighboring agent of i is scheduled

to surface. This means agent i can exactly compute the

trajectories of its neighbors using (8) until time Ti. Next,

we show how this is used to compute the next triggering

time tnext
i .

Self-triggered communication

At time tℓi , agent i uses the information on the cloud about

its neighbors to compute the trajectories of its neighbors

assuming they never change their control signals using (8).

For now, we assume that
∣∣∣
∑

j∈Ni

xj(t
ℓ
i)− xi(t

ℓ
i)
∣∣∣ 6= 0. (9)

Thus, at time tℓi , the LHS of (7) is strictly positive while the

RHS is exactly 0. Agent i then computes t∗ as the smallest

time t∗ ≥ tℓi such that (7) is not satisfied. It is easy to show

that t∗ > tℓi if (9) is satisfied, but we note that this is not

enough to rule out the possibility of Zeno behaviors; we will

comment on this later. If t∗ ≤ Ti, then agent i simply sets

tnext
i = tℓ+1

i = t∗ and by continuity of V̇i, it is guaranteed

that V̇i(t) ≤ 0 for all t ∈ [tℓi , t
ℓ+1
i). On the other hand, if

t∗ > Ti it can no longer be guaranteed that V̇i(t) ≤ 0 for

t > Ti. However, we do know that V̇i(t) ≤ 0 for t ∈ [tℓi , Ti].
Using this, we define

Bi =

∫ Ti

tℓ
i

V̇i(τ)dτ (10)

as the ‘benefit’ or ‘contribution’ that agent i has made to

the global objective between tlast
i and Ti, from which point

on it is no longer guaranteed that it is making a positive

contribution.

However, in order to reduce the frequency of resurfacing,

and more importantly to avoid multiple agents surfacing

together, we allow agent i to stay underwater so long as

the net contribution is still positive. Thus, we define the next

surfacing time as

tℓ+1
i = Ti + σh(Bi),

where h(·) is to be determined and σ ∈ [0, 1). Note that

h(·) will depend on more than Bi, but we dot not show the

explicit dependence on other parameters for simplicity. That

is, the bigger the benefit that agent i can guarantee between

time t ∈ [tℓi , Ti], the longer agent i can stay submerged after

time Ti. Ideally, h(Bi) is implicitly defined by

−

∫ Ti+h(Bi)

Ti

V̇i(τ)dτ = Bi,

i.e., the time at which no net contribution can no longer be

made. Unfortunately, computing this time requires informa-

tion that is not available to agent i while underwater. Instead,

we are interested in developing lower-bounds on h(Bi) that

can be computed with information available to agents while

underwater. For reasons of space, we refer this discussion to

future work and consider only σ = 0 in the remainder of

this paper.

In the case that (9) is not satisfied, that is,
∣∣∣
∑

j∈Ni

xj(t
ℓ
i)− xi(t

ℓ
i)
∣∣∣ = 0,

for some ℓ ∈ Z≥0 and i ∈ {1, . . . , N}, it is possible that

t∗ = ∞. In this case we automatically have t∗ > Ti, and

furthermore we have V̇i(t
ℓ
i) = 0. This essentially means

agent i has reached a local minimum and needs to wait for a

neighbor to resurface before it can move again. Theoretically,

it would ideally resurface at exactly the same time as its

first neighbor to do so, but we have assumed this to not be

possible. For simplicity, in this case we set tℓ+1
i = Ti+T dwell

where T dwell > 0 is an a priori chosen dwell time that agent i

must wait before surfacing.

We note that this is essentially done, for the sake of

simplicity, so there is no question of ‘who gets to up-

load/download first?’ when multiple agents surface simulta-

neously. One could alternatively imagine an ordering among

the agents such that if multiple agents surface simultane-

ously, the order of communications is determined, but we

do not enter into the details of this here. Our subsequent

analysis then simply assumes that T dwell is a negligible time

constructed to simplify the analysis.

The formal self-triggered coordination

algorithm is presented in Algorithm I and the main

convergence result is stated next.

Theorem III.1 Given the dynamics (1) with control law (5)

and G connected, if the sequence of update times {tℓi} is

determined by Algorithm 1 for all i ∈ {1, . . . , N}, then

|xi(t)− xj(t)| → 0

for all i, j ∈ {1, . . . , N} as t → ∞.

4652

Algorithm 1 : self-triggered coordination

algorithm

At surfacing time tℓi , agent i ∈ {1, . . . , N} performs:

1: download tlast
j , tnext

j , xj(tlast
j), ui(tlast

j) for all j ∈ Ni from cloud

2: compute neighbor positions xj(t
ℓ
i) = xj(t

last
j) + uj(t

last
j)(tℓi − tlast

j)

3: compute control ui(t
ℓ
i) = −

∑
j∈Ni

(xi(t
ℓ
i)− xj(t

ℓ
i))

4: compute Ti = minj∈Ni
tnext
j

5: compute t∗ as first time when (7) is no longer satisfied using (8)
6: if t∗ < Ti then

7: set tnext
i = t∗

8: else
9: if ui(tℓi) = 0 then

10: set tnext
i = Ti + T dwell

11: else

12: compute Bi using (10)
13: set tnext

i
= Ti + T dwell + σh(Bi)

14: end if

15: end if

16: upload tlast
i = tℓi , tnext

i = t
ℓ+1

i , ui(t
ℓ
i), xi(t

ℓ
i) to cloud

17: dive and set ui(t) = ui(tℓi) for t ∈ [tℓi , t
ℓ+1

i)

Proof: Consider V = 1
2x

TLx, then

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (τ)dτ

= V (x(0)) +

N∑

i=1

∫ t

0

V̇i(τ)dτ.

Letting ℓmax
i (t) = argmaxℓ∈Z≥0

tℓi ≤ t be the index ℓ∗ such

that tlast
i (t) = tℓ

∗

i , we can expand this as

V (x(t)) = V (x(0)) +

N∑

i=1

ℓmax
i∑

ℓ=0

∫ min{tℓ+1

i
,t}

tℓ
i

V̇i(τ)dτ.

By definition of the self-triggering times tℓ+1
i , we know that

∆V ℓ
i ,

∫ t
ℓ+1

i

tℓ
i

V̇i(τ)dτ ≤ 0

for all ℓ ∈ {1, . . . , ℓmax
i − 1}. Thus, we have

V (x(t)) ≤ V (x(0)) +
N∑

i=1

ℓmax
i

−1∑

ℓ=0

∆V ℓ
i .

It is then clear that V (x(t)) is a nonincreasing function along

the trajectories of the closed-loop system and bounded from

below (by 0). This means that limt→∞ V (x(t)) = C ≥ 0
exists. Furthermore, since ∆V ℓ

i ≤ 0 for all ℓ, it is guaranteed

that ∆V ℓ
i → 0 as ℓ → ∞ for all i ∈ {1, . . . , N}. Thus, by

LaSalle’s Invariance Principle [26], the trajectories of the

system converge to the largest invariant set contained in

{x ∈ R
N |V̇i(x) = 0 for all i ∈ {1, . . . , N}}.

Recalling (6), it is easy to see that this is equivalent to the

set

{x ∈ R
N |

∑

j∈Ni

xj − xi = 0 for all i ∈ {1, . . . , N}},

which means (Lx)i = 0 for all i, which concludes the proof.

Remark III.2 (Zeno behavior) It is important to note here

that we have not yet been able to rule out the possibility of

Zeno behavior between triggers. More specifically, we have

not been able to rule out the possibility of a single agent i

requiring an infinite number of resurfaces before another

agent can resurface. The proof of Theorem III.1 implictly

assumes that this does not occur, i.e., tℓi → ∞ as ℓ → ∞
and ℓ → ∞ for all i ∈ {1, . . . , N}. •

IV. SIMULATIONS

Here we demonstrate the effectiveness of our proposed

algorithm through a typical simulation with N = 5 agents

and initial condition x(0) = [−1, 0, 2.1, 2, 1]T . We run our

simulation for 10 seconds using a dwell time T dwell =
0.0001 seconds with an undirected topology given by E =
[(1, 4), (1, 5), (2, 3), (3, 4), (4, 5)].

Figure 1 shows the trajectories of the closed-loop system.

Figure 2 shows the evolution of V (x(t)) = 1
2x

T (t)Lx(t)
along the trajectories of the system and Figure 3 shows the

surfacing times of the five agents with a total of 422 events

occurring in 10 seconds. Note that this seems to corroborate

the assumption that Zeno behaviors are not an issue because

the dwell time of 0.0001 seconds hardly comes into play.

Note that we have not compared this against any other event-

triggered consensus algorithms as they would not be fair.

We are not aware of any other event-triggered consensus

algorithms in which an event triggered by one agent does

not immediately affect any other agent. The work [24] that

inspired ours is closest, but their consideration of noise

and only achieving practical consensus makes it difficult to

compare with ours.

0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5

2

Time

Fig. 1. Trajectories of the system.

V. CONCLUSIONS

We have considered a multi-agent coordination problem in

which agents can only communicate with one another indi-

rectly, via communication with a base station or ‘cloud’. To

minimize the amount of communications with the cloud, we

have developed a self-triggered algorithm that autonomously

determines the next time communication with the cloud

should be established in order to achieve some desired

4653

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

Time

Fig. 2. Evolution of the Lyapunov function V .

0 2 4 6 8 10
1

2

3

4

5

Time

Fig. 3. Events triggered (surfacing times) by each agent along the evolution
of the algorithm.

global task. Unlike the overwhelming majority of distributed

event/self-triggered algorithms in the literature, no agent is

required to be ‘listening’ at all times. For instance, many

problems propose event-triggered broadcasting solutions;

however, they implicitly assume that when an agent broad-

casts a message, other agents are able to instantaneously

(or with some delay) receive this information. Instead, when

an agent is disconnected from the cloud, we assume it has

absolutely no connection with the outside world and thus

will not know about neighboring events being triggered until

communication with the cloud is reestablished. We are very

interested in developing a more pragmatic algorithm that

guarantees that Zeno behavior cannot occur.

ACKNOWLEDGMENTS

This work was supported in part by TerraSwarm, one of six

centers of STARnet, a Semiconductor Research Corporation

program sponsored by MARCO and DARPA.

REFERENCES

[1] N. A. Cruz, B. M. Ferreira, O. Kebkal, A. C. Matos, C. Petrioli,
R. Petroccia, and D. Spaccini, “Investigation of underwater nerworking
enabling the cooperative operation of multiple heterogeneous vehi-
cles,” Marine Technology Science Journal, vol. 47, pp. 43–58, 2013.

[2] E. Fiorelli, N. E. Leonard, P. Bhatta, D. A. Paley, R. Bachmayer,
and D. M. Fratantoni, “Multi-AUV control and adaptive sampling in
Monterey Bay,” IEEE Journal of Oceanic Engineering, vol. 31, no. 4,
pp. 935–948, 2006.

[3] K. J. Åström and B. M. Bernhardsson., “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,” in IEEE Conf.

on Decision and Control, (Las Vegas, NV), pp. 2011–2016, Dec. 2002.
[4] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An intro-

duction to event-triggered and self-triggered control,” in IEEE Conf.

on Decision and Control, (Maui, HI), pp. 3270–3285, 2012.
[5] M. Mazo Jr. and P. Tabuada, “Decentralized event-triggered control

over wireless sensor/actuator networks,” IEEE Transactions on Auto-
matic Control, vol. 56, no. 10, pp. 2456–2461, 2011.

[6] X. Wang and M. D. Lemmon, “Event-triggering in distributed net-
worked control systems,” IEEE Transactions on Automatic Control,
vol. 56, no. 3, pp. 586–601, 2011.

[7] G. Xie, H. Liu, L. Wang, and Y. Jia, “Consensus in networked multi-
agent systems via sampled control: fixed topology case,” in American

Control Conference, (St. Louis, MO), pp. 3902–3907, 2009.
[8] W. P. M. H. Heemels and M. C. F. Donkers, “Model-based periodic

event-triggered control for linear systems,” Automatica, vol. 49, no. 3,
pp. 698–711, 2013.

[9] X. Meng and T. Chen, “Event based agreement protocols for multi-
agent networks,” Automatica, vol. 49, no. 7, pp. 2125–2132, 2013.

[10] M. Zhong and C. G. Cassandras, “Asynchronous distributed opti-
mization with event-driven communication,” IEEE Transactions on
Automatic Control, vol. 55, no. 12, pp. 2735–2750, 2010.

[11] A. Anta and P. Tabuada, “To sample or not to sample: self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic

Control, vol. 55, no. 9, pp. 2030–2042, 2010.
[12] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems

with finite-gain L2 stability,” IEEE Transactions on Automatic Control,
vol. 54, no. 3, pp. 452–467, 2009.

[13] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic net-
works for optimal deployment,” Automatica, vol. 48, no. 6, pp. 1077–
1087, 2012.

[14] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 215–233, 2007.
[15] W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle

Cooperative Control. Communications and Control Engineering,
Springer, 2008.

[16] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent

Networks. Applied Mathematics Series, Princeton University Press,
2010.

[17] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[18] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions

on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.
[19] G. S. Seybotha, D. V. Dimarogonas, and K. H. Johansson, “Event-

based broadcasting for multi-agent average consensus,” Automatica,
vol. 49, no. 1, pp. 245–252, 2013.

[20] E. Garcia, Y. Cao, H. Yu, P. Antsaklis, and D. Casbeer, “Decentralised
event-triggered cooperative control with limited communication,” In-

ternational Journal of Control, vol. 86, no. 9, pp. 1479–1488, 2013.
[21] C. Nowzari and J. Cortés, “Distributed event-triggered coordination for

average consensus on weight-balanced digraphs,” Automatica, vol. 68,
pp. 237–244, 2016.

[22] X. Meng, L. Xie, Y. C. Soh, C. Nowzari, and G. J. Pappas, “Periodic
event-triggered average consensus over directed graphs,” in IEEE Conf.
on Decision and Control, (Osaka, Japan), pp. 4151–4156, Dec. 2015.

[23] P. V. Teixeira, D. V. Dimarogonas, K. H. Johansson, and J. Sousa,
“Event-based motion coordination of multiple underwater vehicles
under disturbances,” in IEEE OCEANS, (Sydney, Australia), pp. 1–
6, 2010.

[24] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson,
“Control of multi-agent systems with event-triggered cloud access,”
in European Control Conference, (Linz, Austria), pp. 954–961, 2015.

[25] C. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered
communication and control for multi-agent average consensus,” in
American Control Conference, (Portland, OR), pp. 2148–2153, 2014.

[26] H. K. Khalil, Nonlinear Systems. Prentice Hall, 3 ed., 2002.

4654

