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Abstract— In electric vehicle (EV) charging, the goal is to
compute a charging schedule that meets all user specifications
while minimizing the influence on the power grid. Usually, an
optimal schedule is computed by a central authority (called
mediator) according to the specifications reported by the users.
A desirable property of this procedure is to ensure that partic-
ipating users truthfully report their specifications rather than
maliciously manipulate the scheduling process by misreporting.
In this work, we show that approximate truthfulness can be
attained by adopting the popular notion of (joint) differential
privacy. Joint differential privacy can limit the power of each
user in manipulating the scheduling process by remaining
insensitive to changes in user specifications. As a result, a
user does not benefit much from misreporting his specifications,
which leads to truth-telling behaviors.

I. INTRODUCTION

Electric vehicles (EVs) are expected to put significant
stress on the power grid in the near future [1], [12]. The stress
not only comes from the aggregate demand requested by the
vehicles, but also from the fact that most charging activities
naturally happen around the same time (in most cases, after
rush hours). The key to reducing the influence of EVs on
the power grid is to make use of the intrinsic flexibility in
vehicle charging. In most cases, users only require that the
vehicles should be charged before a certain deadline, which
makes it possible to shift the load in time in order to avoid
simultaneous charging a large number of vehicles.

This paper considers the scenario of direct load control,
in which users report their charging specifications to a
centralized authority (called mediator), who then computes
a coordinated charging schedule over a certain time period
for all the participating users. This scenario is different from
indirect load control, in which a pricing scheme is used to
indirectly regulate the charging activities. User specifications
include the total charging demand and the maximum charg-
ing rates over the given time period. Computation of the
charging schedule is cast as an optimization problem, where
the objective can be minimizing the peak load, power loss,
or load variance [2], [10]. So far, researchers have proposed
various efficient and scalable algorithms that are able to
handle a large number of vehicles [5], [8].

There are two major concerns in the direct load control
scenario. One is the privacy of participating users. It is not
difficult to see that user specifications are strongly correlated
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to daily activities and life patterns, which are normally
considered as private information by the users. As a simple
example, zero demand from a charging station attached
to a single home unit may be a good indication that the
home owner is away from home. Trivially, if the mediator
is malicious, then reporting the true specifications to the
mediator leads to an immediate privacy breach. Perhaps a
more surprising fact is that user privacy can still be at risk
even if the mediator is trustworthy. This is possible due to
the fact that the aggregate load (which is assumed visible
to the public) still depends on user specifications. From
the aggregate load, an adversary can still potentially decode
private information of a single user by collaborating with the
remaining participating users. Another concern is that users
may untruthfully report their specifications and/or deviate
from the charging schedule as computed by the mediator.
This may happen especially if the user is able to benefit
(e.g., reduce electricity payment) from untruthful behaviors.
Such untruthful behaviors may lead to an increase in the
social cost and diminish the benefit of coordination.

A connection between these two seemingly unrelated
concerns of privacy and truthfulness has been recently dis-
covered in the study of differential privacy, which is a
rigorous and quantitative framework for database privacy.
The original purpose of differential privacy is to protect
sensitive user information in the database from potential ad-
versaries [3]. Recently, it has been proposed that differential
privacy can also be used as a mechanism design tool to
promote truthful behaviors in games where a mediator is
present [7]. In particular, the notion of differential privacy
has been extended to a related one named joint differential
privacy, which ensures that misreport from any single user
cannot significantly influence other users’ assignments given
by the mediator. In other words, joint differential privacy
limits the power of any user manipulating the coordination
process.

Contribution: In this paper, we apply the concept of
joint differential privacy to develop an EV charging mech-
anism that ensures approximate truthfulness. There are two
major results in the paper. Firstly, we show that joint differen-
tial privacy can be applied to ensure η-approximate truthful-
ness, and we derive bound on η for the EV charging problem.
Previous work on the application of joint differential privacy,
such as the work by Rogers et al. [9] on routing games,
does not directly apply, mainly because the cost function in
EV charging also depends on the mediator’s assignment (in
particular, an additional penalty term to prevent users from
deviating from the given assignment). Secondly, we present a
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charging mechanism that is able to achieve joint differential
privacy, based on our previous work [6] on differentially
private distributed EV charging.

Paper organization: The paper is organized as follows.
Section II introduces the EV charging problem considered
in this paper. In particular, we consider the scenario where a
mediator is present to coordinate the charging schedule for all
participating users according to the charging specifications
reported by the users. We assume that the users are selfish
and would like to minimize their cost (i.e., monetary payment
for electricity usage) by possibly misreporting their spec-
ifications and/or ignoring the mediator’s assignment. This
naturally defines a game among all users, which we call the
mediator induced EV charging game. Section III presents
one main result of the paper on achieving truthfulness
via joint differential privacy. It shows that approximately
truthful behavior of the users can be attained if the mediator
computes the charging schedule using a joint differentially
private mechanism. The result also shows the dependence
of truthfulness on the level of joint differential privacy.
Section IV presents another main result of the paper on
an algorithm that can be used by the mediator to ensure
joint differential privacy. An analysis of the algorithm on
the tradeoffs between suboptimality and truthfulness is also
presented.

II. MEDIATOR INDUCED EV CHARGING GAME

A. Notation

Denote the `p-norm of any x ∈ Rn by ‖x‖p. The
subscript p is dropped for p = 2. The vector consisting all
ones is written as 1. The symbol � is used to represent
element-wise inequality: for any x, y ∈ Rn, we have x � y
if and only if xi ≤ yi for all 1 ≤ i ≤ n. For any given set
U , positive integer n ∈ Z++, and {ui}ni=1 such that ui ∈ U ,
consider the n-tuple u := (u1, u2, . . . , un) ∈ Un. We use
the notation u−i to represent the tuple

(u1, . . . , ui−1, ui+1, . . . , un)

generated by removing ui from u. For any v ∈ U , we use
the notation (v, u−i) to represent the tuple

(u1, . . . , ui−1, v, ui+1, . . . , un)

formed by inserting v into u−i when the position of insertion
is clear from the context.

B. Electric vehicle charging with a mediator

We consider the EV charging problem consisting of n
participating users over a horizon of T time steps. For
simplicity, we assume that each user has only one vehicle
to charge, and we will use the terms “user” and “vehicle”
interchangeably hereafter. For user i, denote by ri ∈ RT
the temporal user charging profile over the horizon. The
tuple r = (r1, r2, . . . , ri) is called a charging schedule. By
the end of the time horizon, each user i needs to charge his
vehicle by a total amount of Ei ∈ R. In addition, each user
i can specify his maximum charging rates over time as a
vector r̄i ∈ RT so that ri does not exceed r̄i. Both Ei and

r̄i constitute the charging specifications of user i, which can
be written as the following constraints:

0 � ri � r̄i, 1T ri = Ei. (1)

For convenience, we also define

Ci := {ri : ri satisfies the constraints (1)}.

In this paper, we consider the scenario of direct load control,
where there exists a central mediator who is responsible for
coordinating the charging activities. The mediator serves two
purposes. Firstly, it needs to collect the charging specifica-
tions from users and compute a charging schedule that meets
the specifications. Secondly, it needs to collect monetary
payments from users according to their electricity usage. In
this process, we do not assume that each user always reports
his true specifications to the mediator, nor do we assume that
each user will follow the charging profile computed by the
mediator. Suppose that the charging schedule computed by
the mediator is r = (r1, r2, . . . , rn), but user i decides to
use r′i as his actual charging profile instead of ri. Then the
cost of user i is given by

c(i, r′i, r) =

µ
r′i +

∑
j 6=i

rj

+ p̄

T r′i + λ ‖r′i − ri‖
2
,

(2)
for some constants µ, λ > 0 and p̄ ∈ RT+. The first term in (2)
corresponds to the cost of electricity, where p̄ is the base
electricity price, and µ indicates the increase in electricity
price caused by the additional load from electric vehicles;
the second term in (2) penalizes user i for deviating from
the assigned charging profile ri computed by the mediator.

C. Mediator induced EV charging game

We assume that the users are selfish; each user is inter-
ested in minimizing his cost by possibly manipulating the
scheduling process in two ways. Firstly, each user can choose
to misreport his specifications. Secondly, upon receiving the
assigned charging profile ri from the mediator, user i can
choose to use a different charging profile r′i (but pay the
penalty λ ‖r′i − ri‖

2 as described in (2)). For generality, we
assume that user i uses a function fi (called policy) that
computes r′i from the charging schedule r given by the
mediator, so that r′i = fi(r). For example, if user i decides
to always follow the charging profile given by the mediator,
his policy fi satisfies fi(r) = ri (for all r). We define the
action of user i as the tuple (Ei, fi), if user i reports Ei to the
mediator and uses the policy fi for post-mediator decisions.

Throughout the paper, we shall make the following as-
sumption on how users are allowed to misreport their spec-
ifications to the mediator.

Assumption 1 (Limited misreport). When reporting specifi-
cations to the mediator, each user must satisfy the following
conditions:

1) There exists Emax > 0 (independent of i) such
that user i can only misreport Ei within the inter-
val [0, Emax];
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2) User i must always report the true r̄i to the mediator.

For generality, we assume that the mediator computes
the charging schedule r using a randomized algorithm M ,
and each user is interested in minimizing his expected
cost (evaluated over the randomness in M ). Since we have
assumed that users will always report the true r̄, we write
r = M(E) where E = (E1, E2, . . . , En) and leave out the
dependence of M on r̄. Then, the expected cost of user i is
given by

cM (i, E, f) := Er∼M(E)[c(i, fi(r), r)]. (3)

Note that the expected cost cM (i, ·, ·) of user i not only
depends on his own action (Ei, fi), but also on the the joint
action (E, f) of all users. The expected cost function cM
defines a game, which we call the mediator induced EV
charging game. We say that a joint action (E, f) is an η-
approximate equilibrium of the mediator induced game if

cM (i, E, f) ≤ cM (i, (E′i, E−i), (f
′
i , f−i)) + η

for all i ∈ {1, 2, . . . , n}, E′i ∈ [0, Emax], and policy f ′i (i.e.,
user i changes his action unilaterally). In addition, the game-
theoretic setting allows us to define truthful behavior in this
mediator induced game as follows.

Definition 2 (Truthful behavior). Consider the mediator
induced game defined by the cost function (3). Suppose the
true user specifications are given by E = (E1, E2, . . . , En).
A joint action (Ê, f̂) is called a truthful behavior if for
all i we have Êi = Ei and f̂i(r) = ri for any r =
(r1, r2, . . . , rn).

The definition of truthful behavior implies that any user i
will report his true specification Ei and follow the assigned
charging profile ri from the mediator.

The main result of this paper is to present an algorithm that
ensures a truthful behavior is an η-approximate equilibrium
of the mediator induced game (for some η). Namely, the
algorithm guarantees that for any i ∈ {1, 2, . . . , n} and
policy f ′i , it holds that

Er∼M(E)[c(i, ri, r)] ≤ Er′∼M(E′)[c(i, f
′
i(r
′), r′)] + η,

where E′j = Ej for all j 6= i. Later, we will show that
this can be achieved if the mechanism M preserves joint
differential privacy.

III. TRUTHFULNESS VIA JOINT DIFFERENTIAL PRIVACY

In this section, we present one main result of this paper,
which shows that truthful behavior can be attained via joint
differential privacy. We assume that the mediator is able to
implement an allocation algorithm that is ε-joint differen-
tially private, and we leave the details of implementation to
Section IV. This section begins with several lemmas that
provide bounds that are used in the main result. The main
result is presented as a theorem in the end of the section.

A. Joint differential privacy

We first introduce the framework of differential privacy
before introducing joint differential privacy. Both differential
privacy and joint differential privacy consider a mecha-
nism M that acts on a set D (called database) consisting
of user information. In the EV charging problem considered
in this paper, the database is the set of user specifications
E = {Ei}ni=1. One important concept in differential privacy
is adjacent databases, which is defined through a binary
relation between two databases.

Definition 3 (Adjacent databases). Two databases D =
{di}ni=1 and D′ = {d′i}ni=1 are said to be adjacent with
respect to user i, denoted by Adji(D,D

′), if dj = d′j for
all j 6= i. Two databases D and D′ are said to be adjacent,
denoted by Adj(D,D′), if there exists i ∈ {1, 2, . . . , n} such
that Adji(D,D

′).

In the case of EV charging, we define the adjacency
relation as follows. Two databases (i.e., user specifications)
E and E′ are adjacent with respect to user i if and only if

Ei, E
′
i ∈ [0, Emax], Ej = E′j for all j 6= i. (4)

Note the similarity between the adjacency relation described
by (4) and condition (1) in Assumption 1. In the context
of ensuring truthfulness, the adjacency relation is generally
used to define the limitation on how each user is able to
misreport their information (specification).

With the definition of adjacent databases, we are ready to
give the definition of differential privacy.

Definition 4 (Differential privacy [3]). Given ε > 0, a
randomized mechanism M preserves ε-differential privacy
if for all R ⊆ range(M) and all D and D′ such that
Adj(D,D′), it holds that

P(M(D) ∈ R) ≤ eεP(M(D′) ∈ R).

The constant ε indicates the level of privacy: smaller ε
implies a higher level of privacy. For the EV charging
problem, however, it is impossible for the mediator to im-
plement a differentially private mechanism M that computes
the charging schedule as (r1, r2, . . . , rn) = M(E) for the
following reason. In order to satisfy the specifications from
user i, the mechanism M must always satisfy 1TMi(E) =
Ei and 1TMi(E

′) = E′i. When Ei and E′i are different, it
can be verified from Definition 4 that M does not preserve
differential privacy. To circumvent this difficulty, the notion
of differential privacy has been relaxed to joint differential
privacy as originally proposed in [7]. Note that the notion of
joint differential privacy only applies when the output of the
mechanism is an n-tuple, where n is the number of users.

Definition 5 (Joint differential privacy). Given ε > 0, a ran-
domized mechanism M whose output is an n-tuple preserves
ε-joint differential privacy if all i ∈ {1, 2, . . . , n}, all R ⊆
range(M−i) , and all (D,D′) such that Adji(D,D

′), it holds
that

P(M−i(D) ∈ R) ≤ eεP(M−i(D
′) ∈ R).
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Informally speaking, when joint differential privacy is pre-
served, changes in any single user’s information does not
affect significantly the output of the mechanism M that
corresponds to other users. In contrast, differential privacy
requires that the entire output of the mechanism (i.e., output
corresponding to all users) should not be affected.

Applying the definition of joint differential privacy to the
EV charging problem, we say that the mediator’s mecha-
nism M for computing a charging schedule preserves ε-joint
differential privacy if for all i ∈ {1, 2, . . . , n}, all R ⊆
range(M−i), and all specifications E and E′ that satisfy (4),
it holds that

P(M−i(E) ∈ R) ≤ eεP(M−i(E
′) ∈ R).

B. Joint differential privacy induces truthfulness

In order to show that a joint differentially private media-
tor’s mechanism induces truthfulness, we begin by bounding
the change in the cost function c for user i if the correspond-
ing charging profile given by the mediator is changed from
ri to r′i. The policy fi of user i is assumed to be always
accepting the mediator’s assignment.

Lemma 6. For any charging schedule r from the mediator
and any r′i ∈ RT , we have c(i, ri, r)− c(i, r′i, (r′i, r−i)) ≤ δ,
where

δ = 2Emax · ‖µ(
∑n
i=1ri + Emax) + p̄‖∞ . (5)

Proof: By definition, we have

c(i, ri, r) =
[
µ
(
ri +

∑
j 6=irj

)
+ p̄
]T
ri,

c(i, r′i, (r
′
i, r−i)) =

[
µ
(
r′i +

∑
j 6=irj

)
+ p̄
]T
r′i,

so that

c(i, ri, r)− c(i, r′i, (r′i, r−i))

=
(
µ
∑
j 6=irj + p̄

)T
(ri − r′i) + µ ‖ri‖2 − µ ‖r′i‖

2

=
(
µ
∑
j 6=irj + p̄+ µ(ri + r′i)

)T
(ri − r′i)

= (µ
∑n
i=1ri + p̄+ µr′i)

T
(ri − r′i)

≤ ‖µ
∑n
i=1ri + p̄+ µr′i‖∞ · ‖ri − r

′
i‖1 (6)

Recall that we have ‖ri‖1 , ‖r′i‖1 ≤ Emax , which implies
‖ri − r′i‖1 ≤ 2Emax. Applying this to (6) leads to

c(i, ri, r)− c(i, r′i, (r′i, r−i))
≤ 2Emax · ‖µ

∑n
i=1ri + p̄+ µr′i‖∞

≤ 2Emax · ‖µ (
∑n
i=1ri + Emax) + p̄‖∞ .

The next lemma bounds the maximum individual cost of
user i. The policy fi of user i is still assumed to be always
accepting the mediator’s assignment.

Lemma 7. For any charging schedule r from the mediator,
we have c(i, ri, r) ≤ cmax, where

cmax = µnE2
max + Emax ‖p̄‖∞ . (7)

Proof: By definition, for any r we have

c(i, ri, r) = (µ
∑n
i=1ri + p̄)T ri

≤ ‖µ
∑n
i=1ri + p̄‖∞ ‖ri‖1 (8)

From the fact that ‖ri‖1 ≤ Emax for all i, we know that
‖ri‖∞ ≤ Emax for all i and

‖µ
∑n
i=1ri + p̄‖∞ ≤ µ

∑n
i=1 ‖ri‖∞ + ‖p̄‖∞

≤ µnEmax + ‖p̄‖∞ .

Substitute the above into (8) to complete the proof.
Before presenting the final lemma, we need to define the
optimal policy of any individual user (after the user receives
the mediator’s assignment).

Definition 8 (Optimal policy). For any charging schedule r,
the optimal policy f∗i of user i is defined as

f∗i (r) = arg min
r̂i∈Ci

c(i, r̂i, r).

The final lemma bounds the difference in the individual
cost of user i between choosing the optimal policy and
choosing to always follow the mediator’s assignment.

Lemma 9. For any charging schedule r, we have c(i, ri, r)−
c(i, f∗i (r), r) ≤ γ, where

γ =
‖µri + µ

∑n
i=1 ri + p̄‖2

4(µ+ λ)
. (9)

Proof: For notational convenience, define a =
µ
∑
j 6=i rj + p̄ so that

c(i, x, r) = (a+ µx)Tx+ λ ‖x− ri‖2

= (µ+ λ) ‖x‖2 + (a− 2λri)
Tx+ λ ‖ri‖2 .

Consider the optimal solution of the unconstrained problem:

x∗ = arg min
x∈RT

c(i, x, r).

It can be shown that

x∗ =
2λri − a
2(µ+ λ)

.

Substitute the expression of x∗ into c to obtain the optimal
value of the unconstrained problem as

c(i, x∗, r) = (µ+ λ) ‖x∗‖2 + (a− 2λri)
Tx∗ + λ ‖ri‖2

= −‖2λri − a‖
2

4(µ+ λ)
+ λ ‖ri‖2 .
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On the other hand, we have c(i, x∗, r) ≤ c(i, f∗i (r), r). Then
we have

c(i, ri, r)− c(i, f∗i (r), r)

≤ c(i, ri, r)− c(i, x∗, r)

= (a+ µri)
T ri +

‖2λri − a‖2

4(µ+ λ)
− λ ‖ri‖2

= aT ri +
‖2λri − a‖2

4(µ+ λ)
+ (µ− λ) ‖ri‖2

=
4(µ+ λ)aT ri + ‖2λri − a‖2 + 4(µ2 − λ2) ‖ri‖2

4(µ+ λ)

=
‖2µri + a‖2

4(µ+ λ)

=
‖µri + µ

∑n
i=1 ri + p̄‖2

4(µ+ λ)
.

With Lemmas 6–9 at hand, we are ready to present the main
result of this paper on the truthful behavior of users induced
by joint differential privacy.

Theorem 10 (Approximate truthfulness). Consider the
mediator induced EV charging game where E =
(E1, E2, . . . , En) consists of the true specifications of the
users. Suppose the mediator uses a randomized mechanism
M to compute the charging schedule r for all users. If
M preserves ε-joint differentially privacy for some ε ∈
(0, 1), then the truthful behavior is an η-approximate equi-
librium of the mediator induced game. Namely, for any
i ∈ {1, 2, . . . , n} and policy f ′i , it holds that

Er∼M(E)[c(i, ri, r)] ≤ Er′∼M(E′)[c(i, f
′
i(r
′), r′)] + η,

where E′i ∈ [0, Emax] and E′j = Ej for all j 6= i.
Specifically, we have η = γ + 2εcmax + δ, where δ, cmax,
and γ are given by equations (5)–(9).

Proof: From Lemma 6, we have

Er∼M(E)[c(i, ri, r)]

≤ Er′i∼Mi(E′),r−i∼M−i(E)[c(i, r
′
i, (r

′
i, r−i))] + δ (10)

From the definition of joint differential privacy, we have

Er′i∼Mi(E′),r−i∼M−i(E)[c(i, r
′
i, (r

′
i, r−i))]

≤ eεEr′i∼Mi(E′),r′−i∼M−i(E′)[c(i, r
′
i, (r

′
i, r
′
−i))]

= eεEr′∼M(E′)[c(i, r
′
i, r
′)]. (11)

Recall that eε ≤ 1 + 2ε for ε ∈ (0, 1). Then we have

eεEr′∼M(E′)[c(i, r
′
i, r
′)]

≤ (1 + 2ε)Er′∼M(E′)[c(i, r
′
i, r
′)]

≤ Er′∼M(E′)[c(i, r
′
i, r
′)] + 2εcmax. (12)

The last step uses the result from Lemma 7. Finally, we have
from Lemma 9

Er′∼M(E′)[c(i, r
′
i, r
′)] ≤ Er′∼M(E′)[c(i, f

∗
i (r′), r′)] + γ

≤ Er′∼M(E′)[c(i, f
′
i(r
′), r′)] + γ

(13)

for any policy f ′i . Combining equations (10)–(13) completes
the proof.
The goodness of approximation η depends on three terms.
The term γ can be reduced by increasing the level of
penalty λ, which essentially prevents users from deviating
from the assigned charging profile. The term 2εcmax can be
reduced by decreasing ε (i.e., increasing the level of privacy).
On the other hand, as we will show in the next section, doing
so will introduce more randomness in the mechanism M
and consequently lead to undesired effects such as increased
operating cost (from the perspective of the mediator). The
last term is somewhat “intrinsic”, since it is related to how
user i can potentially benefit from affecting Mi(E), which
is not controlled by joint differential privacy.

IV. A JOINT DIFFERENTIALLY PRIVATE
CHARGING MECHANISM

In this section, we present a joint differentially private
mechanism that computes a charging schedule according to
reported user specifications. The mechanism is based on
our previous work on differentially private distributed EV
charging. After reviewing our previous results, we show that
the same algorithm can be used to ensure joint differential
privacy.

We will use the following notations throughout this sec-
tion. For any convex set C ⊂ Rn, define the (Euclidean)
projection operator ΠC such that ΠC(x) is the projection of
any x ∈ Rn onto C — i.e., ΠC(x) = arg minz∈C ‖z − x‖2.
For any λ > 0, denote by Lap(λ) the zero-mean Laplace
probability distribution such that the probability density
function of X ∼ Lap(λ) is pX(x) = 1

2λ exp(−|x|/λ).

A. A joint differentially private charging mechanism

The charging mechanism used in this paper is presented
in Algorithm 1. In the algorithm, the function U can be an
arbitrary convex function whose gradient ∇U is L-Lipschitz
under the `2-norm. Namely, there exists L > 0 such that

‖∇U(x)−∇U(y)‖2 ≤ L ‖x− y‖2 , ∀x, y ∈ RT . (14)

The function U is normally selected by the mediator as some
objective function to minimize. The choice of U does not,
however, influence joint differential privacy, so that we will
postpone the discussion on choosing U until Section IV-B.

Algorithm 1 was studied in our previous work in the
context of differentially private distributed EV charging. The
following proposition shows that the mechanism Mp(E) :=
(p̂(1)(E), p̂(2)(E), . . . , p̂(K)(E)) is ε-differentially private
for p̂(k) given by (15) in Algorithm 1. We have explicitly
indicated the dependence of p̂(k) on the user specifications
E = {Ei}ni=1 for clarity.

Proposition 11 (Han et al. [6]). The mechanism Mp :=
(p̂(1), p̂(2), . . . , p̂(K)) is ε-differentially private with respect
to the adjacency relation defined by (4). Namely, the mech-
anism Mp satisfies

P(Mp(E) ∈ R) ≤ eεP(Mp(E
′) ∈ R)
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Algorithm 1 ε-joint differentially private EV charging mech-
anism.
Input: U , {Ci}ni=1 (i.e., the constants {r̄i, Ei}ni=1), K,
{αk}Kk=1, L, Emax, and ε.
Output: {r(K+1)

i }ni=1.
Initialize {r(1)

i }ni=1 arbitrarily. Let r̃(1)
i = r

(1)
i for all i ∈

{1, 2, . . . , n} and θk = 2/(1 + k) for k ∈ {1, 2, . . . ,K}.
For k = 1, 2, . . . ,K, repeat:

1) If k = 1, then set wk = 0; else draw a random
vector wk ∈ RT from the distribution (proportional
to) exp

(
− 2ε‖wk‖
K(K−1)L∆

)
.

2) Compute

p̂(k) := ∇U
(∑n

i=1 ri
(k)
)

+ wk. (15)

3) For i = 1, 2, . . . , n, update r
(k+1)
i and r̃

(k+1)
i as

follows:

r̃
(k+1)
i := ΠCi(r̃

(k)
i − αkp̂

(k)) (16)

r
(k+1)
i := (1− θk)r

(k)
i + θkr̃

(k+1)
i . (17)

for all R ⊆ range(Mp) and all E and E′ such that
equation (4) holds for some i ∈ {1, 2, . . . , n}.

Note that the guarantee of ε-differential privacy is for the
gradients {p̂(k)}. In the next, we show that Algorithm 1 also
preserves ε-joint differential privacy for the output charging
schedule r(K+1). The proof makes use of the post-processing
theorem from differential privacy.

Proposition 12 (Post-processing [4]). Suppose a mech-
anism M preserves ε-differential privacy. Then, for any
function f , the functional composition f ◦M also preserves
ε-differential privacy.

The post-processing theorem allows us to construct new
differentially private mechanisms from existing ones. Now
we are ready to show that the output of Algorithm 1 is a
joint differentially private mechanism.

Theorem 13. Consider the mechanism M :=
(r

(K+1)
1 , r

(K+1)
2 , . . . , r

(K+1)
n ) acting on the user

specifications E = {Ei}ni=1, where {r(K+1)
i }ni=1 is

given by the output of Algorithm 1. Then M is ε-joint
differentially private under the adjacency relation defined
by (4).

Proof: Observe from Algorithm 1 that for all i and k
we can write

r̃
(k+1)
i = g1(Ei, r̃

(k)
i , p̂(k)(E)),

r
(k+1)
i = g2(r

(k)
i , r̃

(k+1)
i )

for some functions g1 and g2. Here we have used p̂(k)(E) to
emphasize the dependence of p̂(k) on E. By induction, we
can write

r
(K+1)
i = g(Ei, r

(1)
i , {p̂(k)(E)}Kk=1)

for some function g. Consider E and E′ such that
Adji(E,E

′) according to (4). For all j 6= i, we have

r
(K+1)
j (E) = g(Ej , r

(1)
j , {p̂(k)(E)}Kk=1),

r
(K+1)
j (E′) = g(E′j , r

(1)
j , {p̂(k)(E′)}Kk=1)

= g(Ej , r
(1)
j , {p̂(k)(E′)}Kk=1).

Then, we can view M−i := r
(K+1)
−i as a post-processing re-

sult of the mechanism Mp := (p̂(1), p̂(2), . . . , p̂(K)), which is
ε-differentially private according to Proposition 11. Using the
post-processing theorem (Proposition 12), we conclude that
M−i is ε-differentially private for all i, which is equivalent
to M being ε-joint differentially private.

Remark 14. In our previous work, Algorithm 1 was used
in the context of distributed EV charging, in which the mes-
sages {p̂(k)}Kk=1 are broadcast to all users, and {p̂(k)}Kk=1 can
be potentially eavesdropped. It was shown that Algorithm 1
preserves privacy of the users. Namely, an adversary cannot
obtain information on Ei (for any user i) with high confi-
dence, even if the adversary has access to all the messages
{p̂(k)}Kk=1. This implies that Algorithm 1, when used by the
mediator, can ensure both privacy and truthfulness of the
participating users simultaneously.

B. Tradeoffs between truthfulness and suboptimality

Aside from satisfying all user specifications, the mediator
is often interested in computing a charging schedule that is
optimal with respect to a certain objective such as minimal
variance or minimal peak load. Formally, the mediator would
like to solve an optimization problem in the following form:

min.
{ri}ni=1

U (
∑n
i=1 ri) (18)

s.t. ri ∈ Ci, i = 1, 2, . . . , n.

The objective function U : RT → R in problem (18) is
assumed to be convex. This assumption holds for a number
of common objectives such as minimal variance and minimal
peak load.

As we showed in our previous work [6], Algorithm 1 can
be viewed as an implementation of the stochastic gradient
descent algorithm. Suppose the step sizes {αk}Kk=1 is chosen
optimally (see [6] for details). It can be shown that the
expected suboptimality of Algorithm 1 is given as follows:

E
[
U
(∑n

i=1 ri
(K+1)

)
− U∗

]
≤ O

(
T 1/8(Emax/nε)

1/4
)
,

(19)
where U∗ is the optimal value of problem (18). Ideally, the
mediator wishes to choose ε in order to have both small
suboptimality gap and small η in the approximately truthful
behavior. Unfortunately, there exists an intrinsic trade-off
between truthfulness and suboptimality. As ε increases, it can
be seen from (19) that the suboptimality decreases, whereas
the parameter η given by Theorem 10 increases (which
implies that it is less likely to obtain truthful behavior).
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we apply the notion of joint differential pri-
vacy, originally proposed in [7], to the EV charging problem
to ensure truthfulness of participating users. In particular,
we consider the scenario of direct load control, where a
mediator is present to collect user specifications and compute
a charging schedule for all participating users. Due to their
selfish nature, users may misreport their specifications and/or
ignore the mediator’s assignment in order to minimize their
individual cost (i.e., payment for electricity usage).

The paper shows that approximately truthful behavior of
the users can be attained if the mediator computes the charg-
ing schedule using a joint differentially private mechanism.
This is possible since joint differential privacy can limit the
power of each user in manipulating the scheduling process
by remaining insensitive to changes in user specifications.
The paper also presents an algorithm that can be used by the
mediator to attain joint differential privacy. The same algo-
rithm has been shown in our previous work [6] to protect the
user information (specifications) from potential adversaries.
This implies that it is possible to guarantee both privacy and
truthfulness of the users simultaneously using the algorithm
presented. From the perspective of the mediator, an analysis
of the algorithm on the tradeoffs between suboptimality (in
terms of operating cost) and truthfulness is also presented. It
is found that more truthfulness can be attained at the expense
of sacrificing optimality.

One interesting direction for future work is to compare
our current results with other mechanisms that promote
truthfulness, such as the recent work on faithful distributed
optimization by Tanaka et al. [11]. Instead of introducing ran-
dom perturbations as in our paper, the work by Tanaka et al.
achieves truthfulness by designing deterministic tax/subsidy
rules, which can lead to a more consistent performance by
eliminating randomness as used in our algorithm, although it
remains under investigation how this kind of algorithm can
be applied to the EV charging problem.
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