
Distributed Leader Selection

Sérgio Pequito ? Victor Preciado ? George J. Pappas ?

Abstract— In this paper, we address the problem of dis-
tributed leader selection in a network of agents. We assume that
each agent’s state is defined by a scalar that evolves according
to a linear dynamics involving the states of its neighbors and
its own state. We propose a distributed algorithm, assuming
a time-invariant communication graph, to determine: (i) those
agents that should behave as leaders (i.e., agents whose state
serves as a reference (or input) to the remaining agents – the
followers); and (ii) a communication protocol to ensure some
control-theoretical specifications and/or performance guaran-
tees. Finally, an illustrative example using the main results of
the paper is provided.

I. INTRODUCTION

The analysis of multi-agent systems is a vibrant research
field with applications in, for example, sociology (opinion
dynamics), vehicle coordination, power systems, distributed
clock synchronization, and distributed computing and sensor
networks [1], [2]. In this field, consensus-like protocols have
gained great popularity [3], [4]. These protocols can be
either autonomous (i.e., leaderless) or driven by a subset of
agents, referred to as leaders. The leader selection problem
can be stated as follows: Given a collection of agents
and a communication protocol (e.g., a linear update rule),
determine the smallest subset of agents that will receive
an external signal (i.e., an exogenous input), referred to as
leaders, so that we can drive the collective of agents’ states
towards a given goal. The leader selection problem is often
approached as a minimization of the energy cost [5], number
of leaders [6-10], assignability cost [11-12], network coher-
ence [13], mean square error with respect to the reference
trajectory, or variants of the former [14-20].

Due to the combinatorial nature of the leader selection
problems most of the literature relies in centralized (off-
line) methods to solve them, which limits its applicability
in distributed scenarios where agents only have access to
the information exchanged locally. Alternatively, some of the
distributed methods for leader selection problems proposed
to the date have strong assumptions, such as assuming that
the communication topology (or the dynamics induced by
it) is fully known by all the agents [19]. Other strong
assumptions considered in the literature are the assumption of
strong connectivity, balanced and/or acyclic communication
graphs [14-18,20]. At last, we notice that leader selection
problems can be seen as a particular case of input selection
problems, with similar optimization objectives [5,7,21-25].
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Hereafter, we study and provide a solution to the problem
of leader selection in a fully distributed setting, where agents
not only have to determine if they should behave as leaders,
but also the communication protocol (i.e., the weights used
to perform a linear combination of their neighbors’ states) –
see Section II for a formal statement. Therefore, the main
contributions of this paper are twofold: (i) determine the
minimum subset of agents that should behave as leaders;
and (ii) design a communication protocol (i.e., the weights
to be used in the linear updates performed by the different
agents) to ensure some control-theoretic specifications and/or
performance guarantees when the communication graph is
time-invariant. As mentioned before, we consider these two
questions in a purely distributed setting.

The rest of the this paper is organized as follows. In
Section II, we formally state the problem statement addressed
in this paper. Section III provides some preliminary concepts
and results. In Section IV we present the main technical
results, when the communication graph is assumed time-
invariant. Subsequently, we provide an illustrative example
in Section V. Conclusions and discussion avenues for further
research are presented in Section VI.

II. PROBLEM STATEMENT

Let D = (V, E) denote a communication graph connecting
a set of agents, represented by the vertices in V , and a set of
directed edges E . A directed edge (i, j) ∈ E indicates that
agent i is able to transmit information to agent j. We denote
by N−i the in-neighbors of agent i, i.e., all the agents j 6= i
such that (j, i) ∈ E . We assume that an agent can always
communicate with itself; thus, (i, i) ∈ E for all i. In the
context of this paper, a communication protocol is understood
as the following linear update of the agents’ states:

xi[k + 1] = wiixi[k] +
∑
j∈N−i

wijxj [k], (1)

where xi[k] is agent i state at time k, and {wij : j ∈
N−i ∪{i}} is the set of weights that determines the protocol
run by agent i. The network communication protocol can be
re-written as a discrete-time linear time-invariant dynamical
system:

x[k + 1] = W (D)x[k], (2)

where W (D) is the dynamics induced by the communication
graph D, with [W (D)]i,j = 0 if (j, i) /∈ E . Whereas (2) rep-
resents an autonomous dynamical system, we are interested
in the case where some of the agents are driven by exogenous
input signals. We call these agents leaders and describe the
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resulting non-autonomous dynamics by:

xi[k + 1] = xi[k] +
∑
j∈Ni

wijxj [k] + biui[k], (3)

where bi = 1 if agent i is a leader, and bi = 0 otherwise.
Similarly, we can rewrite (3) in matrix form as

x[k + 1] = W (D)x[k] + In(J )u[k], (4)

where In(J ) corresponds to the collection of columns of the
n × n identity matrix with index in J , where J is the set
of indices corresponding to the leaders.

The main problem addressed in this paper can be stated
as follows: Given the communication graph D = (V, E),
determine the communication protocol W ∗(D) and the set
of leaders J ∗ ⊆ {1, . . . , n}, in a fully distributed fashion,
such that
(W ∗(D),J ∗) = arg min

W (D)∈Rn×n,J⊆{1,...,n}
|J |

s.t. (W (D), In(J )) is controllable.
(5)

Notice that, at first glance, (5) is a hard combinatorial
problem involving a rank constraint. Nevertheless, despite
these challenges, we shall show that (5) can be solved by
resorting to polynomial complexity algorithms.

Complementarily, after a solution to the leader selec-
tion problem have been determined, one needs to design
the control law that drives the collective to a given goal.
Nonetheless, we notice that inherently to the design of a
control law it is (often) required to assume that W (D),
or its parametrization, is known. In particular, if only the
parametrization of W (D) is known, then one can resort to
robust adaptive control strategies [26-27]. Nevertheless, due
to the distributed nature of our problem, we can only assume
that leaders only have access to the local structure and state
of the network; in other words, the leaders do not known
W (D), neither its parametrization.

Subsequently, we consider the particular case in which
all leaders are fed with the same static input signal; i.e.,
u[k] = [u∗ . . . u∗]. We show that, in this case, we can
distributedly determine (W ∗(D),J ∗) that satisfies (5) such
that limt→∞ xi(t) = limt→∞ xj(t) for all i, j ∈ V . In other
words, all agents in the network synchronize asymptotically
to the same state.

III. PRELIMINARIES AND TERMINOLOGY
In this section, we review some results from structural

systems theory [28] to be used in our derivations, since
structural controllability plays a key role in our analysis.

Definition 1 ([28]): (Structural controllability) Consider a
discrete linear time-invariant system

x[k + 1] = Ax[k] +Bu[k], x[0] = x0 ∈ Rn,

and let (Ā, B̄) denote the sparsity (or structural pattern) of
the pair (A,B), with Ā ∈ {0, ?}n×n and B̄ ∈ {0, ?}n×p,
where 0 corresponds to zero entries and ? with an arbitrary
parameter. The pair (Ā, B̄) is said to be structurally control-
lable if there exists a controllable pair (A,B), with the same
sparsity pattern as (Ā, B̄). �

In fact, a stronger characterization of structural controlla-
bility holds, as stated in the following result.

Proposition 1 ([29]): For a structurally controllable pair
(Ā, B̄), a numerical realizations (A,B) with the same spar-
sity pattern as (Ā, B̄) that is non-controllable lies in a proper
variety in Rn×n × Rn×p. Therefore, almost all realizations
respecting the structural pattern of a structurally controllable
pair are controllable. �
We now introduce some graph theoretic concepts. A digraph
is defined as a set of vertices V and a set of directed
edges E of the form (vi, vj), where vi, vj ∈ V . Given
(Ā, B̄), we can define the following digraphs: (i) the state
digraph, denoted by D(Ā) = (X , EX ,X ), which is the
digraph that comprises only the state variables as vertices
(i.e., X = {x1, . . . , xn} as state vertices) and a set of
directed edges between the state vertices (i.e., EX ,X ={

(xi, xj) : xi, xj ∈ X and Āj,i 6= 0
}

); (ii) the system di-
graph, denoted by D(Ā, B̄) = (X ∪U , EX ,X ∪EU,X ), where
U = {u1, . . . , up} denote the input vertices and EU,X ={

(ui, xj) : ui ∈ U , xj ∈ X and B̄j,i 6= 0
}

the set of edges
connecting input to the state vertices. In addition, the edges
in EX ,X and EU,X are referred to as state edges and input
edges, respectively.

A digraph D is said to be strongly connected if there exists
a directed path1 between any two vertices. A subgraph DS
of D is a digraph whose vertex and edge sets are subsets
of those of D. A strongly connected component (SCC) is
a maximal2 subgraph DS = (VS , ES) of D such that for
every u, v ∈ VS there exists a path from u to v and from
v to u. We can create a directed acyclic graph (DAG) by
visualizing each SCC as a virtual vertex, in which a directed
edge between two virtual vertices (SCCs) exists if and only
if there exists a directed edge between the states from the
corresponding SCCs in the digraph D = (V, E), i.e., the
original digraph. A directed tree T = (V, E) is a directed
acyclic graph that is rooted in a vertex without incoming
edges on it, and where there exists exactly one incoming edge
in each of the remaining vertices. A directed spanning forest
of a digraph D = (V, E) is a disjoint union of directed trees
Ti = (Vi, Ei), with i = 1, . . . , n, such that ∪i=1,...,nVi = V .
At last, the SCCs in the DAG may be further categorized as
follows.

Definition 2 ([7]): An SCC is said to be linked if it has
at least one incoming (respectively, outgoing) edge from
(respectively, to) another SCC. In particular, an SCC is non-
top linked if it has no incoming edge to its vertices from the
vertices into another SCC. �

The characterization of the SCCs provided in Definition 2
is particularly useful to characterize structural controllability
as presented in the next result.

Corollary 1 ([10]): Let D(Ā) = (X , EX ,X ) be the state
digraph such that {(xi, xi) : i ∈ {1, . . . , n}} ⊂ EX ,X . The
pair (Ā, IJ ′n ) is structurally controllable if and only if at least

1A directed path is a sequence of directed edges where the end-vertex of
one edge is the start-vertex of the other.

2A subgraph is maximal with respect to a property if there is no other
subgraph, strictly containing it, with the same property.
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one state variable in each non-top linked SCC of the state
digraph D(Ā) has an incoming edge from an input vertex in
system digraph D(Ā, IJ ′n ). �

Given a communication graph D(V, E), the min-consensus
algorithm consists in the following update rule for each agent
i ∈ V:

xi[k + 1] = min
j∈N̄−i

xj [k], (6)

where N̄−i = N−i ∪{i}. Further, we say that min-consensus
is achieved [30], if there exists an instance of time l for
which xi[l

′] = xj [l
′], for all i, j ∈ {1, . . . , n} with l′ ≥ l,

and for all initial conditions x[0] = [x1[0] . . . xn[0]]ᵀ. In
particular, the value of l suffices to be equal to the length of
the longest shortest path between any pair of agents in the
digraph.

Lemma 1: [30] If D is strongly connected, then min-
consensus is achieved. �

Further, we say that min-consensus is achieved in a
subgraph DS = (VS , ES) of D if there exists an instance
of time l for which xi[l

′] = xj [l
′], for all i, j ∈ VS and

l′ ≥ l for all initial conditions x[0]. Subsequently, if D is
not strongly connected, then we have the following result.

Proposition 2: Let D∗ = (V∗, E∗) denote the DAG de-
composition of D = (V, E), and N T

j = (Vj , Ej) with
j = 1, . . . , β are the non-top linked SCCs. Then, the min-
consensus is achieved in each non-top linked SCC N T

j with
j = 1, . . . , β. �

In fact, as a by-product of Proposition 2, the reason why
min-consensus may not be achieved in a top-linked SCCs is
described by the following result.

Proposition 3: Let D∗ = (V∗, E∗) denote the DAG de-
compostion of D = (V, E), and Ni, with i = 1, . . . , α,
correspond to the different SCCs of D∗. Then, by performing
the min-consensus protocol we obtain that xm[l′] = xi[l

′],
with m, i ∈ Nj , and l′ greater than the length of the longest
shortest path from any state that have a directed path to
k ∈ Nj . In addition, xm[l′] = x∗[0] where x∗[0] is the lowest
initial state among the states associated with the vertices that
have a directed path to m. �

IV. MAIN RESULTS

In this section, we present the main results of this paper.
First, in Algorithm 1, we present a distributed algorithm
to compute the minimum number of leaders. Further, the
complexity and correctness of Algorithm 1 are presented in
Theorem 1. Next, we introduce a fully distributed scheme
to obtain a communication protocol, for a given collection
of leaders, to ensure controllability of the system (see
Algorithm 2). The proof of correctness and complexity of
Algorithm 2 are given in Theorem 2. Subsequently, resorting
to Algorithm 1 and Algorithm 2 a solution to (5) is obtained,
as stated in Theorem 3. In fact, the solution obtained ensures
asymptotic stability of the agents’ dynamics to a common
steady-state reference value given to the leaders, as described
in Theorem 4. In order to obtain these results, the only
assumption we need is that each agent has a unique id, which

hereafter we assume to be given by a prime number (for
simplicity).

Now, we let the parameters of the dynamics W (D),
i.e., the communication protocol, to be undetermined, so
to determine the minimum number of leaders in (5) we
resort to structural systems theory. Let D = (V, E), and
W̄ (D) be the matrix such that [W̄ (D)]j,i = ? if (i, j) ∈ E ,
and [W̄ (D)]j,i = 0 otherwise, then we want to determine
J ∗ ⊆ {1, . . . , n} such that

J ∗ = arg min
J⊆{1,...,n}

|J |

s.t. (W̄ (D), Īn(J )) is struct. controllable,
(7)

where Īn has the structural pattern of the n × n identity
matrix.

The fully distributed solution to (7) is presented in Algo-
rithm 1. Briefly, agents have to determine if they belong to a
non-top linked SCC, towards the satisfaction of Corollary 1
by the leaders. More specifically, each agent i has to deter-
mine the number of agents Ni able to route data to it; in
other words, the number of different agents for which there
exists a directed path starting at those agents and ending at
agent i. Next, a min-consensus protocol is performed, where
the initial state of agent i equals Ni; if the min-consensus
value of agent i equals that of Ni, then the agent lies in a
non-top linked SCC, since any agent in a top linked SCC
receives data from the agents in at least one non-top linked
SCC – see Proposition 2 and Proposition 3. Then, because
each agent keeps a list of the identities of the agents from
whom it receives information, those in the non-top linked
SCCs can choose to be the leader, being the agent with the
lowest id the one that declares itself as a leader.

The correctness and complexity of Algorithm 1 is pre-
sented next:

Theorem 1: Let J ∗ be the indices of the agents that de-
clare themselves as leaders when Algorithm 1 is performed,
then J ∗ is a solution to (7). In addition, let n̂ be an upper-
bound on the total number of agents in a single SCC, then
each agent runs Algorithm 1 with complexity O(n̂2). �

Proof: The proof consists in the following steps: first,
we show that J ∗ contains the id of one agent from each
non-top linked SCC (hereafter assumed to be the SCCs of
the DAG representation of the communication digraph), and,
secondly, (W̄ (D), ĪJ ∗n ) is a minimal feasible solution to (7)
by invoking Corollary 1.

By Proposition 3, all the agents with states in the top-
linked SCCs, which ids we denote by A, are such that
zi[n̂] < |Li| for i ∈ A (with zi[k] and Li defined as in
Algorithm 1), because zi[n̂] = min

j∈Di[n̂]
{|Lj |} (by performing

Steps 5-6), where Di[n̂] contains the ids of the agents from
where a directed path starts and that ends in agent i. Further,
n̂ is an upper-bound on the number of agents in an SCC,
and ∅ 6= Lj ( Li for j ∈ Di[n̂] and i ∈ A after executing
Steps 1-4.

On the other hand, by performing Steps 1-4, each non-top
linked SCC achieve the min-consensus after n̂ iterations, see
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ALGORITHM 1: Distributed solution to (7)
Let each agent i have a list Li describing the agents ids
from which there exists a directed path to agent i; and
n̂ an upper-bound on the total number of agents in a
single SCC of the network.
Set Li = {i}, and let agents transmit/receive the
information about Li; more precisely, Γki that denotes
the difference between the information received and in
Li. Notice that Γki describes the agents’ ids exactly k
hops away from agent i, i.e., there exists a directed
path starting in the agents with id in Γki and ending in
agent i, but not at k′ < k hops away from agent i.
Set Γ1

i = Li;
For k = 1, . . . , n̂
1. Receive Γkj for all j ∈ N−i ;

2. Update Γki =
(⋃

j∈N−i
Γkj

)
\ Li;

3. Transmit Γki ;
4. Set Li = Li ∪ Γki ;
endFor
5. Set zi[0] = |Li|;
For k = 1, . . . , n̂
6. zi[k + 1] = min

j∈N̄−i
zj [k],

endFor
7. If zi[n̂] == |Li| and i == arg minLi, then i is a
leader.

Proposition 2. Further, let N T
j , with j = 1, . . . , β, corre-

spond to the β non-top linked SCCs of the communication
graph and I(N T

j ) the ids of the agents’ states in N T
j .

Then, we have zi[n̂] == |Li| where i corresponds to the
ids of the agents in the same non-top linked SCC, i.e.,
i ∈ I(N T

j ). Therefore, any collection of agents J such that
{i1, . . . iβ} ⊂ J , with i1 ∈ I(N T

1 ), . . . , iβ ∈ I(N T
β ), leads

to a structurally controllable (W̄ (D), IJn ) by Corollary 1,
since all follower agents’ states have self-loops. In addition,
Step 7 choses i1, . . . iβ to be the smallest agent id (which
are unique) in the corresponding non-top linked SCC, which
implies that exactly one agent is considered from each non-
top linked SCC, and, by Corollary 1, setting J ∗ to be
the collection of the leaders’ states ids as computed by
Algorithm 1, the results follow.

The complexity of Algorithm 1 is O(n̂2) since it requires
two for-loops bounded by n̂, and where the operations
involved in each step have either linear complexity in n
(i.e., the total number of agents in the network) or logarithm
complexity in n as it is the case of the min-operator; the
results follows by noticing that n̂ ≥ n.

Once the leaders have been identified by the indices in J ∗,
the communication protocol (i.e., the weights of W(D)) has
to be determined at the agent level such that (W (D), IJ ∗n ) is
controllable. Notice that a controllable pair (W (D), IJ ∗n ) is
guaranteed to exist, by definition of structural controllability
of the pair (W̄ (D), ĪJ ∗n ). In Algorithm 2, given a collection

of leaders from Algorithm 1, we present a solution where
agents actively set to zero some of the free parameters in
W̄ (D), i.e., the ?-entries, such that controllability is ensured
as presented in the next result.

ALGORITHM 2: Determining the weights in W (D),
given J ∗ as in Algorithm 1

Let li[k] denote the distance (measured in terms of the
length of the shortest path) from a leader agent with id
in J ∗ to agent i at instance of time k.
Set li[1] = 0 for the leader agents i ∈ J ∗ and
li[1] = ñ+ 1 otherwise, where ñ an upper-bound on the
length of the longest shortest path between agents in
the network.
For k = 1, . . . , ñ
1. Receive the token of the agents denoted by lj [k] for
j ∈ N−i and take l∗i = minj∈N−i

{li[k] : j ∈ N−i }.
2. If l∗i < li[k], then li[k] = l∗i and
ai = min

{
arg min{lj [k] : j ∈ N−i }

}
denotes an

agent’s id that is closest to a leader.
3. Transmit li[k];
endFor
4. Agent i sets [W (D)]i,i = αi, where
αi = id

pi
∈ (−1, 0) ∪ (0, 1) with pi ∈ N. In addition, the

follower i ∈ {1, . . . , n} \ J ∗ sets [W (D)]i,ai = 1− αi,
and [W (D)]i,j = 0, with j /∈ {i, ai}.

Theorem 2: Given a collection of leaders identified by J ∗
(as provided by Algorithm 1) and a communication protocol
W (D), constructed as in Algorithm 2, then (W (D), IJ ∗n ) is
controllable. In addition, each agent runs Algorithm 2 with
complexity O(N2), with N = max{n̂, ñ}, where n̂ is an
upper-bound on the total number of agents in the network
and ñ an upper-bound on the length of the longest shortest
path between agents in the network. �

Proof: First, note that (by construction) Algorithm 2
produces a directed spanning forest with directed trees rooted
in the leaders’ states, and, additionally, the remaining state
vertices associated with the followers have self-loops. To see
that Algorithm 2 produces a directed spanning forest with
directed trees rooted in the leaders’ states, we recall the
properties of the min-consensus algorithm and notice that
agent i changes the value of li[k] only after a leader is k
hopes away form it; in addition, this data requires at most
as many iterations as the length ñ of the longest shortest
path from the leaders to the agents in the network. Further,
we notice that each follower uses ai to select a single agent
from which agent i receives data from, which implies that
there exists only a single directed path from a leader to an
agent i, which is a possible characterization of a directed tree
rooted in the leaders. Moreover, because those leaders belong
to non-top linked SCCs, it readily follows that there exists a
directed path from at least one leader to every follower. Thus,
the conclusion that Algorithm 2 produces a directed spanning
forest with directed trees rooted in the leaders’ states is
obtained. Subsequently, D is a spanning tree where {αi}ni=1
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with αi 6= αj for i 6= j; hence, it is controllable [31], [32].
The complexity of Algorithm 2 is O(N2) since it requires

one for-loop bounded by ñ, where the operations involved in
each step have linear complexity in n̂, i.e., the upper-bound
on the total number of agents in the network.

Furthermore, as a direct consequence of Theorem 1 and
Theorem 2, we obtain one of the main results of this paper:

Theorem 3: Let J ∗ and W ∗(D) be the output of in Algo-
rithm 1 and Algorithm 2, respectively. Then, (W ∗(D),J ∗)
is a solution to (5). �

Remark 1: In Step 4 in Algorithm 2, we choose to set
[W (D)]i,i = αi with αi ∈ (−1, 0)∪(0, 1) for follower agent
i, but from the proof of Theorem 2 it readily follows that
[W (D)]i,i ∈ R \ {0} and [W (D)]i,ai ∈ R \ {0} also ensures
controllability of (W (D), IJ ∗n ). Nonetheless, the choice we
made is closely related with the asymptotic stability of the
communication protocol W (D) described next. �

In Theorem 3, we obtained a controllable system, yet in
order to define a control strategy, each leader would require
knowledge on W (D) or its structure. In practice this may
not be the case, therefore, we relax the constraints, as we
already pointed out in Section II, and instead of considering
controllability we focus in determine W (D) in a distributed
manner such that the overall system is asymptotically stable
towards leaders’ states. Notice that in terms of leader-
follower problems this makes sense in the case where agents
try to keep relative position to their neighbors. In fact,
Algorithm 1 and Algorithm 2 already provide such dynamics,
as stated in the next result.

Theorem 4: Let W ∗(D) be constructed as in Algorithm 2,
given the indices J ∗ of leader agents constructed using Algo-
rithm 1. Then, W (D) is asymptotically stable. In addition, if
uj [k] = u∗ in (4) is a constant signal provided to the leaders
j ∈ J ∗, then we have x[k] → 1u∗ when k → ∞, where 1
is the vector of ones with appropriate dimensions. �

Proof: By construction, Algorithm 2 produces a di-
rected spanning forest D = (V, E) rooted in the leaders’
states, where state vertices associated with the followers have
self-loops. Consequently, W (D) is a triangular matrix (up
to permutation of the columns and rows) where the diagonal
entries are {αi}i=1,...,n. These entries are the eigenvalues
of W (D) that are in the range (−1, 1), which implies that
W (D) is asymptotically stable. Further, by expanding the
xi[k] in its series it is easy to see that these converge, since
both αi and (1−αi) are stricly less than 1 in absolute value;
in fact, one obtains that xi[k]→ xj [k] where (j, i) ∈ E and
xl[k] = u∗ for the leader agent l, where l ∈ J ∗, and the
result follows.

Remark 2: The parameters αi (i ∈ {1, . . . , n} \ J ∗)
as prescribed in Algorithm 2, accordingly to Theorem 4,
ensure that the followers will converge to the leaders’ state.
Nonetheless, in practice, the choice of αi should depend on a
specific goal of the agents and/or physical constrains imposed
on the agents dynamics. For example, when the agents aim to
keep a fixed distance/position with respect to the neighboring
agents, or energy constraints that depend on the choice of αi.

�

V. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the main results obtained in
this paper. Consider the communication graph depicted in
Figure 1. By executing Algorithm 1, and considering that all
agents have upper-bound on the total number of agents in the
network given by n̂ = 10, we obtain that Li = {1, 2, 3, 4}
with i ∈ {1, 2, 3, 4}; Lj = Li ∪ {6, 7} with j = 6, 7; and
L5 = {5}. Therefore, we have z[0] = [4 4 4 4 1 7 7], and
z[n̂] = [z1[n̂] . . . z7[n̂]] = [4 4 4 4 1 1 1]; therefore, one of
the agents {1, 2, 3, 4} can be a potential leader, but only the
one with lowest index declares itself as a leader, i.e., agent
1 becomes a leader. Similarly, it follows that agent 5 is also
a leader, which implies that J ∗ = {1, 5} is the output of
Algorithm 1.

Fig. 1. Evolution of the communication graph, where the edges depict
the communication being performed in the network. In particular, there
exist self-loops in all state vertices (not depicted), except the leaders’
states depicted by red vertices, and the solid edges correspond to the the
transmissions being considered by the agents into their dynamics. In a)
we have the original communication graph, and in b) the communication
protocol W (D) used in the remaining of the computations.

Fig. 2. Evolution of the agents’ states over time.

After the leaders are chosen using Algorithm 1, Al-
gorithm 2 is performed, leading to the communica-
tion graph depicted in Figure 1-b) at k = 1. The
ids of the agents 1-7 are [2 3 5 7 11 13 17], re-
spectively; therefore, considering all these ids divided
by 18 to ensure that αi ∈ (0, 1), we obtain α =
[0.1111 0.1667 0.2778 0.3889 0.6111 0.7222 0.9444].

The evolution of the system’s states is presented in Fig-
ure 2, where the initial conditions where chosen uniformly
from (0, 2) and the reference value shared to the leaders is
u∗ = 1, around which we can see that the agents’s states
have converged to. Finally, we notice that, as observed in
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Remark 2, the choice of αi has implications in the evolution
of the dynamics and should be tuned to satisfy additional
constraints. In particular, in Figure 2, we notice that agents
5-7 have “smooth” dynamics since 0.6 ≤ |αi| < 1, with
i = 5− 7. On contrary, agents 1-3 have an abrupt change in
the dynamics to speed-up the convergence to the remaining
agents’ states.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we provided a distributed solution to the
leader selection problem where agents have scalar states,
and the communication graph can be an arbitrary time-
invariant digraph. In this problem, agents not only decide
who has to become a leader, but also design a communica-
tion protocol, to ensure some control-theoretic specifications
and/or performance guarantees. Whereas in the current paper
we explored control strategies that aim to asymptotically
converge towards a common (and constant) reference given
to the leaders, it is left to explore how the proposed scheme
can cope with time-varying (and potentially different) refer-
ences provided to the leaders. Additionally, it would be of
interest to explore how the current results can be extended
to agents with arbitrary state space dimension and time-
varying topologies. Finally, it would be interesting to explore
practical applications, for instance, swarm formation, and
understand how the present solution can be adapted to model
biological scenarios.
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