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Optimal resource allocation for competing epidemics over arbitrary networks
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Abstract— This paper studies an S7,51>S spreading model of
two competing behaviors over a bilayer network. In particular,
we address the problem of determining resource allocation
strategies that ensure the extinction of one behavior while not
necessarily ensuring the extinction of the other, and pose a
marketing problem in which such a model can be of use. Our
discussion begins by extending the S7;57>S model to node-
dependent infection and recovery parameters and generalized
graph topologies, contrasting prior work. We then find condi-
tions under which a chosen epidemic becomes extinct. We show
that a distribution of resources which realizes this goal always
exists for some budget under mild assumptions. We address the
case in which the available budget is not sufficient for extinction
by establishing analytic means for mitigating the spreading
rate of the unwanted behavior. We demonstrate a method for
tractably computing solutions to each problem via geometric
programming. Our results are validated through simulation.

I. INTRODUCTION

Modeling, analysis, and control of spreading processes in
complex networks has recently garnered significant attention
from the research community. The applications for such
methods are diverse: epidemiology, social modeling, cyber
security, and product adoption serve as suitable examples.
However, prior work has focused primarily on the case of a
single spreading network. It is clear that such an abstraction
is limited in modeling capacity; many real world networks
transmit phenomena through markedly different channels,
motivating the need to study multi-layer models.

This paper studies such a model (heterogeneous SI;.5155)
with which the spread of competing beliefs and behaviors
through social interaction can be modeled. We direct our
attention to a set of problems focused on a single theme:
controlling a spreading process so as to eliminate a chosen
behavior while allowing the possibility another survives in
steady state. This is a natural choice of equilibrium concept
for several socially relevant frames; a few readily come to
mind: the effect of political strategies on the opinions of
the populace, the ramifications of gossip in professional net-
works, and the influence of marketing strategies on consumer
behavior. We expand upon the latter in Section II.

We consider three problems in detail: (i) stabilization of a
chosen equilibrium, (ii) allocation of resources to attain the
chosen equilibrium, and (iii) mitigation of spread given a
fixed budget. The solutions of these problems form a strong
base for future work in the field. They not only serve to
generalize prior efforts in the single-layer (SIS) domain,
but also to strengthen the results of earlier works in the
multilayer domain, both of which we now review.
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Literature review: Many well-known models of spreading
processes in networks are developed for the case of a single
contagion spreading over a single network layer; we refer
the reader to [1], [2] for an overview. Recent efforts have
been made in extending this body of work to account for
the possibility of competitive and/or coexistent processes on
single-layer networks. Particular examples include investi-
gations into the effects of multiple pathogens in a single-
layer ‘Susceptible-Infected-Removed’ (S1R) model [3]-[5],
a study of an extension to the SIR model (SICR) for
assessing the effects of competition and cooperation between
pathogens spreading on a single network [6], and the devel-
opment of a model for the spread of competing ideas using
the ‘Susceptible-Infected-Susceptible’ (S1.5) model on scale-
free networks [7].

A more recent trend is the investigation into systems
with multiple pathogens and multiple spreading layers. An
overview of this research area can be found in [8]. Particular
examples of interest include an investigation into the effects
of pathogen interaction on overlay networks with STR
dynamics [9], the development of a model in which disease
awareness and infection spread on separate layers of SIS
dynamics [10], [11], the development of a model (S1;.5155)
that generalizes the classic SIS model to a competitive
multilayer framework [12], and work to find conditions under
which processes in the S17;.515.5 model can coexist [13].

We concern ourselves with finding resource allocations
which control the system at optimal cost. This approach
was used in controlling the mean-field approximation for the
single layer SIS model in [14], and a multilayer model in
[15]; we accomplish this for the SI;515S model here.

Statement of contributions: We begin by extending the work
of [12] and [13] by generalizing the homogeneous parameter
model to a heterogeneous setting and extending the allowable
graph layer topologies to a larger class. Extending the model
to the heterogeneous case - one in which each node (or
agent) is affected differently by the spread of the behavior
- is of importance for determining a method of controlling
the processes at hand. In particular, such an extension allows
for the design of a resource allocation strategy to effectively
protect against an outbreak of an undesired phenomenon.
Extending the allowable layer topologies from undirected
graphs with identical node sets to the case of directed graphs
with arbitrary node sets allows for more realistic modeling.
In particular, we can capture the effect of agents having
asymmetric influence over each other, and can analyze the
case in which sets of agents are immune to a particular
contagion: the work presented in [13] does not allow for
this possibility.

We determine conditions for creating an exponentially stable
equilibrium in the generalized model under which one pro-
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cess becomes extinct while allowing the possibility that the
other survives, a technique which we motivate by framing in
the context of a marketing problem. We develop a method
for computing a minimal-cost set of resource allocations for
which the desired equilibrium is attained. In consideration of
the case for which budget constraints prevent stabilization of
the desired equilibrium, we develop a method for minimizing
the rate of spread of the unwanted behavior. We demonstrate
that each of these problems can be formulated as an equiv-
alent geometric program, and hence solved tractably. Note
that the proofs have been omitted for brevity, but will be
made available in future publications.

A. Notation and Mathematical Review

Let R and R3¢ denote the set of real and nonnegative
real numbers, respectively. We use the notation & € R™ to
denote an n-dimensional column vector, and Z7 to denote
its transpose, both with components z; € R. We use the
notation ||Z|[; to denote the 1-norm of 7, i.e. ) . |x;|. We
use |S| to denote the cardinality of a finite set.

We say a matrix A is nonnegative if every entry a;; is
nonnegative. A is irreducible if no similarity transformation
exists which places A into block upper-triangular form. We
denote the ith column of a matrix A as A;. We denote by
® the Hadamard product, i.e. the component-wise product
of two identically-shaped arrays. We denote by diag(ad) a
matrix with entries diag(@);; = a; for all ¢ and 0 elsewhere.
A weighted directed graph (digraph) is given by a triplet
G ={V, E, A} in which V is the set of vertices, E C V xV
the set of edges, and A € RLVOMV‘ the weighted adjacency
matrix. In such a graph, the weight a;; > 0 if and only if
there exists an edge (i,j) € E connecting node 7 to node j,
and 0 otherwise. We define the set of in-neighbors of node ¢
given the adjacency matrix A as N4 = {j € V | a;; > 0}.
A path p is given by an ordered set of vertices p =
{v1,v2, ..., vy} such that for each pair of consecutive nodes
(vk,vg+1) 1s an edge in E. We say that some path p connects
node ¢ and j if both ¢ and j are listed as nodes in the path. We
say a digraph is strongly connected if there exists some path p
connecting node v; to node v; for all 7, j € V. The adjacency
matrix of a strongly-connected digraph is irreducible.

A bilayer graph is a collection of two graphs, G =
{G4,Gp} which satisfy the following property: the vertex
set V' and edge set E of GG are such that V = VA U VB,
and £ = EA U EB, where VA and VP are the vertex sets
of G4 and Gp , respectively, and E4 and EZ are the edge
sets of G4 and G g, respectively. We define the complement
VA” of the vertex set of a layer G4 as VA =V \ VA, We
say a bilayer graph is strongly connected if each layer G 4
and G p is strongly connected with respect to its node set.

We use the technique of geometric programming [16]. Geo-
metric programs form a class of quasiconvex optimization
problems which have posynomial objective functions and
inequality constraints, and monomial equality constraints.

In the language of geometric programming, a function f :
R%, — R is called a monomial if it can be written in the
form f(Z) = cal'ay? ... xlm, where ¢ > 0 is used to denote

a leading constant, the r; terms represent constant powers to

which the arguments are raised, and the x; terms represent
f’s arguments. A function is said to be a posynomial if it
can be written as a sum of monomials.

Geometric programs can be made into convex optimization
problems by performing a logarithmic change of variables
and a logarithmic transformation of the objective and con-
straint functions. For more details on geometric programs
and their solution, we refer the reader to [17].

II. PROBLEM STATEMENT

In this section, we construct an example application, formal-
ize our model, and present the problems we seek to solve.

A. An Application in Marketing

We consider a problem faced by two firms, 2 and 93, in
a competitive market: how might marketing resources be
allocated so as to maximize effect? We model the relations
between consumers by a multilayer graph G, with layers
G 4 and Gpg. In accordance with this choice, we let nodes
in A2 VANVE" be the customers in the base of firm 2.
We define B likewise. We let U £ VA N VB be the set of
customers in the base neither firm.

We define I** to be an agent-state such that the agent is
considering the purchase of 9’s product; we define I%
similarly. In what follows, we present a model in which 14
will spread through the agents populating A and U (i.e. in
layer G 4). This represents the share of 2’s potential market
considering the purchase of a competitor’s device. It is clear
that the managers of 2 would like to suppress this behavior,
insofar as it is possible. This is the problem we formalize
and solve in the remainder.

B. Competitive Bilayer Spreading Model

We begin our discussion by extending the S1;.5155 model
proposed in [12] and analyzed further in [13]. Our primary
contributions in extending this model are allowing the pro-
cesses to be influenced by heterogeneous parameters, and
allowing for the graph layers to be strongly connected di-
graphs with arbitrary node sets. This contrasts with the work
in [13], which assumes homogeneous spreading parameters
and undirected layers with identical node sets. Our extension
allows the possibility of asymmetric influence and nodal
immunity.

Recall that we denote a bilayer graph as G = {G4,Gp}.
We consider the spreading of viruses A and B over digraphs
G 4 and G g, respectively. We describe the state of node i by
X; € {I AIB. S }, denoting whether it is affected by virus
A (I, virus B (IB), or neither (S).

Transitions from S to I** occur at a rate determined by the
product of the infection rate of .4 with respect to node i
(denoted B;A) with the weighted sum of i’s infected neighbors
}/i.A ZjEN'iAm Qj; 1]A(Xj), where 11A(Xj) = 1 if
X; =1 “ and 0 otherwise. Similar considerations hold for
transitions from S to IZ. Transitions from I to S occur
at a rate 67'; likewise for transitions from 7% to S. A
compartmental illustration of the process at node ¢ is given
in Figure 1. It can now be seen that the dynamics of the
infinitesimal generator [19] can be written as
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Fig. 1: Stochastic compartmental model for node 3.

Pr (Xi(t+At):S]X,-(t) I, X (1) = i At,

Pr (X;(t + At) = S|X;(t) B,X(t))& o8t (1)

Pr(X;(t + At) = I X,(t) = S, X (t) = B YA(X (1)) At,
Pr (X;(t + At) = 17| X4(t) —&X( ) = 87 YE(X(1)At,

where X (t) denotes the state of the Markov process at time
t, and At is an arbitrarily small time increment.

We note that the number of possible process states X grows
exponentially with the number of nodes in the model: analy-
sis of the exact dynamics is not tractable for large problems.
Hence, we do not attempt to analyze the dynamics (1)
directly, but rather their mean-field approximation:

(I"ZA = SlﬁiA Z aj,»q)f - 5;4@.1,47

JENAin
OF =58P Y 008 - oPaF, ©))
jeNiBin

JENBin JEN Ain

where we allow @;“ to represent the probability that node ¢ is
in state T4, with <I)ZB and s; similarly defined. Note that this
approximation can be arrived at via elementary Markov chain
theory, but can be seen as a special case of the generalized
epidemic mean-field (GEMF) model presented in [20].
Note that the additivity of probability must be satisfied,
which implies ®A + ®8 + s; = 1 for all i. We use this
to further simplify (2) to the dynamics:

oA =(1-0-0F) > auplelt -5, )
jeNiAin

P =(1—of —0F) Y b;pP0F —sF0E, (4
jENiBin

In the coming sections, we use this model to address three
central problems:

1) Stabilization (Section III): what conditions are needed
for asymptotic stability of the desired equilibrium?

2) Optimal Stabilization (Section IV): can we effectively
allocate resources to attain a desired equilibrium?

3) Rate Control (Section V): given a fixed budget, can we
limit the spreading rate of a particular behavior?

In the forthcoming sections, we will formalize each problem
and provide tractable solutions.

ITI. STABILIZATION
The goal of this section is solving the following:
Problem 1 (Stabilization) For some specified SI;SI>S
spreading process on a strongly connected bilayer graph

G, determine conditions under which a chosen behavior A
extincts in an asymptotically stable steady state.

For this reason, we solve for the steady states of (3)-(4)

oA
(1,@4,@3’_ Z a;;® &)
K3 jeNAm
oF 5
(1- oA - oF) =55 Z bi®;' ©
K3 K3 JENBm

where ®7* and ®% are the components of the steady state
solutions 4 and ®7 of the system. We are able to leverage
the work in [18] to construct a tractable method for numer-
ically computing the nontrivial solution of B’s steady state
equations (6) given the assumption <f>;4 =0 for all .

With the ability to claim knowledge of the steady state values

{i) @B}Z 1 , we may now construct a result to Problem
1. In fact, we prove a stronger result; we find necessary
and sufficient conditions for the desired equilibrium to be
exponentially stable:

Theorem 1 For any SI,SI5S spreading process on a
strongly connected bilayer graph G with mean field dynamics
given by (3) and (4), the equilibrium ® = {®7, ®BY,; v such
that @f = 0 and ‘i’iBLiA:o for all v is (locally) exponentially
stable if and only if

J = diag ((1 o) EA) AT — diag (5“4)
is Hurwitz.

This result is quite natural; note that the J matrix is very
nearly the linearizion of a single layer SIS process about
the origin. The only differences come from the competition
term (1 — 58), and serve to compress the values of AT,
Intuitively, this should allow for more aggressive parameter
selections. In Section VI, we will see that it is the case that
the competitive terms allow for more aggressive parameter
selections in simulation.

Note that this is similar to - but more general than - the
stability results presented in [13]. In particular, the condition
in [13] provides a scalar threshold inequality which serves
to provide a sufficient condition for stability in our gen-
eralized model, provided we enforce that each node obey
the threshold. Our result presents an eigenvalue condition
which is necessary and sufficient for exponential stability. In
Section VI, we will see that stability can be attained when the
spreading parameters violate the threshold derived in [13].

IV. OPTIMAL STABILIZATION

Having established conditions for stability of the desired
equilibrium, we now focus our attention on establishing a
solution to the following:
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Problem 2 (Optimal Stabilization) For some specified
S1;SI,S spreading processes on a strongly connected

bilayer gmph G, and cost functions {fz (BA)}W " and

{ ((5“4) i ll, determine a minimum cost allocation
of resources to enforce the stability conditions for the
equilibrium of Problem 1

Note that the stabilization condition does not lead to a prob-
lem that is inherently convex; it is an eigenvector problem.
However, if we allow ourselves to restrict considerations to
a reasonable class of cost functions, we may extend earlier
work [14] to arrive at our next result, which readily produces
the solution:

Theorem 2 Consider an equilibrium ® = {®#, dB}cy
such that & = 0 and B |ga_q for all i. Let z; = (1 — ®F)
for all 1. Then for any SIHSIgS spreading process on a
strongly connected bilayer graph G, any set of monotomcally

decreasing posynomial cost functions { fZ}2 1 , any set of
pry VA
H67 e (0.0 = Yy (A -04) )
i=1
and any € € (O,min {5;4}> Problem 2 can be solved by
3
the following geometric program:

functions { Gi

minimize Z fi (B + i ()
BATNT  opa
3 ena @iz + tiug + eu;
subject 1o IENE T T TR T <y,
)\ui
t;
5,,4 - (7)
(5—5?)
ANV
t.

ﬂf, 5:4, Uj, tlz()Vz,
0<A<)

where § £ max {5;“} and each §; function is the posyno-
3

mial transformation of the corresponding g, function. Fur-

thermore, the program is always feasible.

It is now clear that Problem 2 is solved for the specified class
of cost functions. However, this restriction is slight. Given
that the parameter B{“ is a rate of spread, it is natural to
associate it with a monotonically decreasing cost function -
it captures the intuition that enforcing a phenomenon to be
less aggressive is costly when attempting to extinct it. In the
case of the g; functions, the restriction is less severe. In fact,
the g; functions are structured so as to allow the g; functions
to be arbitrary posynomials - a quite flexible class.

V. RATE CONTROL

When some budget € > 0 is specified, we are interested in
the following:

Problem 3 (Rate Control) For some specified SI;SI15S
spreading processes on a strongly connected bilayer graph

G, and cost functions {fZ (BA)}W ! and {gi (5;4)}‘;;;1‘,

determine an allocation of resources which conforms to a
given budget € > 0 and limits the rate of spread of a chosen
behavior A.

We begin formalizing this approach by providing a com-
putable upper bound for the system:

Lemma 1 Consider the following linear system:
YA = (diag (BA) AT — diag (5““)) PA = WA

and let A = Apax (W). Then, for any SI1SI>S spreading
process on a strongly connected bilayer graph G and any

initial conditions 56“, 5(1)3},
forall t > ty:

the following inequality holds

[BA(E)|]1 < |[TA®)||2 < [[TA (k)] |1t

with initial conditions 554 = \1764 where the dynamics of A
and ®B are governed by (3) and (4), respectively.

‘We now use this result to construct a solution to Problem 3:

Theorem 3 For any SI,SI5S spreading process on a
strongly connected bilayer graph G, any set of Tonotonically
decreasing posynomial cost functions { fl}z 1 ! any set of
Sfunctions { 02 € (0,64 = 2, e (5“4 5t }W ‘,
and any budget € > 0, Problem 3 can be solved by the
following geometric program:

minimize A\

BAEN @
Z» _Aa-lﬂg“u-thiui
subject to JENE T ’ <1V,
)\UZ‘
\V \ A )
SN e
¢
gl 1V,
b=,
55475{4,11,1‘,@20,

where § £ max {51 } and each g; function is the posynomial

3
transformation of the corresponding g; function.

Here again, we see that the specified family of cost functions
for Theorem 3 are quite general, for the same reasons
given in Section IV for Theorem 1. It is also of interest
to note that the programs given in Theorem 1 and Theorem
3 are quite similar in form and function. For this reason,
one might believe that the rate-minimization problem is a
reasonable heuristic for controlling the chosen behavior when
extinction is not possible. This intuition is investigated in the
simulations of Section VI, and found to be sensible.
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VI. NUMERICAL SIMULATION

In our simulations, we consider a graph of 60 nodes: 40 in
G4, 40 in G, and 20 in G4 N Gp. We specify f; = 6%‘
for each i to guarantee the necessary monotonicity for the
fi functions. We specify §; = t? +t; + % to test the claim
that the g; functions can be arbitrary posynomials.

As a test for correctness to our solution of Problem 2, we
study an Euler simulation of the dynamics engendered by

the optirj‘lization problem of Theorem 2 for the system with

8 = ?f’A generated at random from the interval [0, 2], and

initial conditions for each virus and each node chosen at
random on the unit interval. It should be noted that for nodes
in G4 N Gp, the initial condition generated is such that a
value for <I>;4 is chosen first, with <I>f-3 then selected with
uniform probability from the interval [O, 1-— <I>g4] thereafter.
Figure 2 demonstrates that the system’s dynamics behave as
expected. In particular, the mean infection probability for .4
equilibrates to 0, as predicted by the design of the allocation.

It is interesting to note another behavior of the simulation:
Figure 3 demonstrates that the optimal solutions to the
stability problem act as a sort of “threshold,” with respect
to the disease transmissivity 7A. At and below the optimal
solution, the desired equilibrium is attained; above it, the
steady-state differs. This behavior is analogous to the concept
of a “survival threshold,” developed in [13]. Note again,
however, that the threshold here is more general. We plotted
a perturbation of the optimal vector 7/ of the form a7 for
simplicity, but the behavior is more complex than a scalar
inequality. In particular, it is possible to find other vectors
on the threshold of survival by increasing the transmissivity
at some nodes, with the expense of decreasing it elsewhere
- an effect not present in the homogeneous model.

In the interest of verifying that the results of our optimization
are nontrivial, we compare the generated solution to a
homogeneous condition which can be shown to stabilize the
desired equilibrium: 774 < Ao (ding (1_ 5) A7) for all 7. The
results are given in Figure 4. We see that our conditions
are, in fact, more lenient: the nodes in G4 N Gp all take
transmissivity values above the homogeneous threshold. This
is intuitive - the presence of competition from B allows for
“more aggressive,” selections of parameters for A.

In order to illustrate our solution to Problem 3, we con-
sider the optimization problem of Theorem 3 for the same
conditions as the simulation for Problem 2. The results are
plotted in Figure 5. Note that the apparent “noise,” in the
plot is a testament to the complexity of the optimization
at hand - ie. for slightly differing budgets, the optimal
parameter distributions may be markedly different, and hence
cause considerable changes in steady state behavior. It is
interesting to note that spreading rate minimization appears
to be a useful heuristic for controlling steady state behavior.
In particular, the extinction of A is attained at a cost very
near to the optimal-cost stabilization budget, and for funds
well below the threshold, the attained steady state infection
rate of A scales well.

0.6

Mean Infection Probability

0.1

0 0.1 0.2 0.3 0.4 0.5
Time

Fig. 2: A plot of mean infection probability for behavior .4
(the lower curve, in blue), and behavior 53 (the upper curve,
in red) as a function of time, with solutions generated from
the optimization formulation of Theorem 2.

Steady State Infection Probability

Fig. 3: A plot of steady-state infection probabilities as a
function of a7#, where 7 is a solution of the optimization
problem and « is a scale factor. A is rendered in blue
(lower on left); B is rendered in red (higher on left). The
dotted curve represents the maximum steady-state infection
probability; the solid curve represents the mean steady-
state infection probability; the dashed curve represents the
minimum (non-zero) steady-state infection probability.

VII. SUMMARY AND FUTURE WORK

The class of multilayer spreading processes is one with
great potential. We have managed to define a framework in
which the earlier work on competitive multilayer processes
can be extended to a class of heterogeneously parametrized
processes on generalized graph layers. Moreover, we have
provided an important first step in analyzing such systems
by finding necessary and sufficient conditions for the expo-
nential stability for any equilibrium of the system in which
one process dies and the other survives. This can be thought
of as a characterization in which one process “dominates,”
the other on a sufficiently long time horizon.

Furthermore, we have developed an optimization program
for determining optimal-cost parameter distributions such
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Fig. 4: A bar chart plotting the percent difference between
the computed optimal solution transmissivity and the homo-
geneous threshold transmissivity.
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Fig. 5: A plot of mean steady-state infection probability of .4
(blue, lower curve), and B (red, upper curve) of the solution
of the optimization of Theorem 3 with budget given by a&*
against «, where €* is the optimal budget of Theorem 2.

that the desired equilibrium is stabilized, and another which
minimizes an upper bound of the spreading rate of the chosen
behavior. The marketing problem we posed as motivation
is just one example of the many which can be posed for
such equilibria. By redefining the meaning of the variable
states, we can apply our model to diverse settings: optimizing
political strategies and protecting against virus spread come
to mind. We leave it to the reader to conjure further examples.

This work opens many possible avenues for future research.
It is obvious that a generalization to a k-layer, k-process
framework would be desirable - such an extension could
greatly improve the modeling capacity of the tools developed.
Additionally, different assumptions can be made about the set
of controllable parameters and the objective of our resources
allocations. For example, it may be reasonable to have
control over both the spreading parameters of A and B,
in which case it may be desirable to specify a steady state
and compute an optimal distribution which attains it. It may
also be of interest to further define tractable methods for

computing conditions of coexistence and extinction - both
of which have a useful interpretation in certain contexts.
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