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Event-Based Information-Theoretic Privacy: A Case Study of Smart Meters
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Abstract— Traditional information-theoretic privacy uses the
mutual information rate as a metric of privacy for protecting
the input data stream sent by participating users; a low infor-
mation rate implies that the entire input data stream cannot
be correctly inferred from the output with high probability.
In many applications such as smart metering, however, the
private event (e.g., whether the user is having dinner within a
particular time slot) that a user does not wish to reveal may only
be associated with part of the data stream, which can still be
inferred correctly by adversaries under a low information rate.
To this end, we propose a new information-theoretic metric that
can provide event-based privacy guarantees. As a case study, we
consider the problem of protecting the privacy in user’s home
energy usage profile with the aid of an internal energy storage
device (e.g., a rechargeable battery). Through charging and
discharging, the energy storage device is capable of altering
the real-time energy usage profile and masking distinctive
patterns that may be of interest to adversaries. We evaluate
the new privacy metric under the best-effort control policy,
which tries to keep the reported energy usage constant through
compensation from the storage device. Through simulations, we
show that the new privacy metric can be computed numerically
and gives a nontrivial privacy guarantee.

I. INTRODUCTION

With the advance in real-time computing and sensing
technology, a growing number of user-based cyber-physical
systems start to utilize user data for more efficient operation.
This typically involves a central authority who collects
user information for the purpose of system analysis and
decision making. In power systems, for example, the utility
company is able to collect real-time power consumption
data from individual households through advanced metering
infrastructures (i.e., “smart meters”) in order to improve
the demand forecast accuracy and facilitate the operation of
power plants [1].

By sharing their data, however, individual customers are
exposed to the risk that the central authority or a potential
eavesdropper can learn about information (e.g., personal
daily activities) that the customers did not intend to share.
Concerns on such privacy issues have been raised [15] and
start to become one major hindrance to effective user partic-
ipation [9]. The possibility of decoding user’s private infor-
mation from real-time energy usage has been demonstrated
in the research area of nonintrusive load monitoring [5], [8],
[11], [12]. By making use of features in the consumption
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profile of different appliances, nonintrusive load monitoring
techniques are able to disaggregate the consumption of indi-
vidual appliances from the total energy consumption profile.
The detailed energy usage of individual appliances may often
be considered private by the users; for example, the usage
of a microwave oven is strongly correlated to the time of
dining. Although the goal of nonintrusive load monitoring
is to provide users with detailed consumption information
in order to improve user awareness and lead to reduction
in future energy consumption (e.g., by encouraging users to
upgrade to more energy efficient appliances), the capability
of learning about such detailed information from aggregate
consumption also makes the users vulnerable to undesirable
usage of their private information by potential adversaries.

There have been approaches that propose to protect the
privacy of users by making use of an energy storage device
whose state is invisible to the outside adversaries [14]. The
energy storage device serves as a buffer, which allows the
user to alter their reported energy usage profile (i.e., actual
power drawn from the power grid) through charging and
discharging. The energy storage device can be in the form
of a physical battery or, more abstractly, any kinds of flexible
loads. Throughout the paper, we will often simply use the
term battery to refer to a generic energy storage device.

One major challenge in developing solutions for protecting
privacy is that the specific algorithm used by potential
adversaries for learning about user’s private information is
often unknown. In order to provide strong privacy guarantees
that are independent from the adversaries, researchers have
proposed different rigorous frameworks for privacy protec-
tion. Among others, two popular frameworks for privacy are
differential privacy and information-theoretic privacy.

Differential privacy was first proposed for publishing
statistics of a database consisting of user information [6],
[7]. In its original setting, differential privacy is capable of
hiding the participation of any user in the database, since
participation in the database may be linked to user privacy
(e.g., in the case of a database of patients infected by
a certain disease). The participation of any single user is
captured through a binary relation called adjacency relation
and can be viewed as an event (i.e., whether a user has
participated or not). By defining different adjacency relations,
differential privacy allows us to capture the private event that
we wish to hide from adversaries [13]. In the context of
smart metering, for example, an event can be the activation
of a certain appliance during a specific time slot, which
may be associated to a user’s private activities. In other
words, differential privacy can be considered as an event-
based framework of privacy.
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On the other hand, traditional information-theoretic pri-
vacy does not usually handle private events; the framework
views the input data and output statistics as input and
output of a communication channel [16]. The metric of
privacy is defined as the mutual information between the
input and output; less mutual information implies that the
output preserves more privacy of the input containing user
information.

Both differential privacy and information-theoretic privacy
have been applied for preserving the privacy of real-time
smart meter data in the presence of an energy storage
device. For differential privacy, the presence of constraints in
physical systems poses a new challenge in applying existing
algorithms that were previously used for publishing statistics
of a database. In the framework of differential privacy, a
privacy-preserving algorithm typically works by adding noise
to the output. In order to guarantee differential privacy, the
noise must be independent of the current state (i.e., charging
level) of the battery, because information on the battery state
can be used to infer the true energy consumption profile.
However, there may be situations where the battery does not
hold enough charge in order to provide the amount of noise
required for preserving privacy [3], [20]. On the other hand,
information-theoretic privacy is capable of handling physical
constraints, since it does not restrict the noise to a particular
form [10], [17]-[19]. However, the framework is not based
on private events so that it may not provide satisfactory
guarantees. As we will discuss in Section II-C, the mutual
information rate used in previous literature only gives a lower
bound on the probability of error when an adversary wants
to infer the entire input sequence over time. In practice,
the adversary may only be interested in events associated
with certain part of the input sequence (e.g., energy usage at
some particular time during the day). As a result, the privacy
guarantee provided by the mutual information rate can be too
optimistic, since it is easier to infer part of the input sequence
correctly than the entire sequence.

Contribution: In this paper, we propose a new
information-theoretic metric of privacy that can provide
guarantees for event-based privacy. It retains the flexibility of
traditional information-theoretic privacy (for handling phys-
ical constraints in the case of smart metering) while adding
the capability of defining private events as in differential
privacy. For the case of smart meters with energy storage,
we show how this new metric can be computed numerically
by analyzing the privacy of a specific battery control policy
named the best-effort charging policy, which is a policy that
tries to hold the reported energy usage constant. Numerical
results show that the new metric yields nontrivial privacy
guarantees; in particular, the presence of an energy storage
device makes it more difficult for an adversary to learn about
user energy consumption from the smart metering data.

II. PROBLEM FORMULATION

In this section, we start by describing the model of system
that uses an energy storage device (e.g., rechargeable battery)
for protecting the privacy of information contained in the

Battery control

policy
Reported

/l\ABt =B, — B
Xy P > Y;

Energy usage energy usage
N

Fig. 1. System model. The battery control policy decides the change A By
in the charging level based the history of the true energy usage X; and
reported energy usage Yi.

energy usage profile reported by the smart meter. We propose
a new privacy metric based on private events, in contrast
to previous information-theoretic measures that use mutual
information rate and are not event-oriented. Rather than
designing the battery control policy, we focus on analyzing
the privacy guarantee given by a chosen policy named the
best-effort policy, which tries to maintain the reported energy
usage constant through compensation from the battery.

A. Privacy protection using an energy storage device

We consider the problem over an infinite time horizon in
which the time slots are indexed by ¢t € {0,1,...}. The
(discrete) user energy consumption over time is denoted by
a stochastic process {X:}, where X; € {0,...,n} is the
energy consumption during time slot ¢, and n is the max-
imum consumption; the charging level of the rechargeable
battery during time slot ¢ is denoted by B; € {0,1,...,m},
where m is the capacity of the battery. The quantity By is
a random variable and denotes the initial charging level of
the battery. The actual energy drawn from the power grid
(i.e., the energy consumption measured by the smart meter)
is denoted by Y; for t € {1,2,...}, which is given by

Yi=Xy+ By — Bi—1. (1)

In other words, the smart meter measurement corresponds to
the sum of the user energy consumption X; and the change
(B — B;—1) of the energy stored in the battery as illustrated
in Fig. 1. We consider that Y is also given as a random
variable. For simplicity, we will denote the infinite sequences
{X:} and {Y;} by X and Y, respectively.

For the purpose of preserving privacy of the user con-
sumption X;, the charging level B; needs to be con-
trolled according to a certain policy that only depends
on the history {X1, Xs,...,X;}, {Bo,Bi1,...Bi—1}, and
{Y0,Y1,...,Y:_1}. In this paper, we consider the best-effort
policy proposed by McLaughlin et al. [14] for its simplicity.
The best-effort policy chooses B, as

B, =[Y;1 — X + Bt_1]’.5” , 2

where the notation [-]* denotes the truncation operation
defined as

0<z<m,

z <0,

‘,I"7
[2]5" = 0,
m, T >m.
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If the truncation [-]{}* in (2) is removed, then B, satisfies
Yio1=X¢+ By — Bia.

From (1), we obtain that Y; = Y;_; in the absence of battery
capacity constraints 0 < B; < m. In other words, the best-
effort policy (2) chooses the charging level B; to make
Y; as close to Y;_; as possible under the battery capacity
constraints, hence the name “best-effort”. Throughout the
paper, we assume that the attacker knows the description
of the random process X (but not its instantiation, which
our goal is to keep private), the battery capacity m, and the
battery control policy being used.

B. Mutual information as a metric of privacy

From an information-theoretic point of view, the effect
of the rechargeable battery can be viewed as a commu-
nication channel, whose input sequence is the user energy
consumption X = {X;} and output sequence is the smart
meter measurement Y = {Y;}. As a result, the problem
of preserving privacy for smart metering can be viewed
more generally as preserving the privacy between the input
and output of the channel. Previous work on information-
theoretic privacy uses the mutual information rate

1
I(va) étE}IrOIO?I(XhXQw"aXt;YhYVQw--aY;)

as a metric for privacy; smaller I(X;Y) implies more
privacy, and the goal of designing the battery control policy
is usually to minimize I(X;Y).

Before proposing our new metric of privacy, we would like
to discuss the connection between the mutual information
rate I(X;Y) and privacy, which has not been discussed
in previous work on information-theoretic privacy. Suppose
the goal of the adversary is to learn about the entire input
sequence X from the output sequence Y. In particular, the
adversary tries to build an estimator X(Y) of X, where
X is a function of the output Y. One way to quantify the
performance of the estimator X is the probability of error

P £ P(X(Y) # X). 3)

Using Fano’s inequality from information theory [4], we
know that P is related to I(X;Y) as follows. For any
estimator X, we have

H(Pe)+PeIOg2(|X|_1>ZH<X)_I(X;Y)’ (4)

where H(P,) £ —P,.logy, P. — (1 — P.)logy(1 — P.) is the

binary entropy function, X is the set of alphabets of X, and

| X| is the cardinality of X. In our case, we have |X'| = n+1.

A weaker version of the Fano’s inequality can be obtained

as

HX)-I(X;Y)-1
log, X

by noting the fact that H(P.) < 1. Both H(X) and |X|
in inequality (5) are constants. As a result, smaller I(X;Y)
implies that it is more difficult to infer X correctly from
the output Y. If the probability of error (3) is viewed as a

P> (&)

fundamental quantification of privacy, then inequality (5) es-
tablishes the fact that the mutual information (or equivalently,
the conditional entropy) can be used as a metric of privacy.
The privacy guarantee given by (5) is a strong guarantee,
since the lower bound holds regardless of the estimation
algorithm that an adversary may use.

C. Problem statement

In many cases, however, the goal of the adversary is not to
infer the entire input sequence X from the output Y. Instead,
the adversary may be interested only in some part of X. In
the context of smart metering, for example, the adversary
may want to infer the energy usage X, for some particular
time slot ¢ (but the specific ¢ is unknown to the user who
reports their energy usage). To this end, we consider the
quantity

I(X;Y) £ sup I(Xi5Y)
t

=sup lim I(Xy;Y7,Ys,...,Y7). (6)
t T—oo

Later, we will show that the supremum and limit in (6) exist.

Using the interpretation of privacy by Fano’s inequality (5),

the quantity 7(X;Y") gives a lower bound on

P, £ iftlfP(Xt(Y) # Xi),

which corresponds to a lower bound on the probability of
error for inferring X; from Y for any time slot £. Our choice
of the privacy metric (6) is inspired by the framework of
differential privacy, which focuses on the privacy of events.
The quantity 7(X;Y) can be viewed as a metric for the
privacy related to a particular event, which is the amount of
energy usage within any single time slot ¢ in the context of
smart metering.

In this paper, we intend to solve problems related to the
privacy metric 1(X;Y") in the context of smart metering with
internal energy storage controlled by the best-effort policy
as described in Section III. Firstly, we would like to know
whether I(X;Y) is well-defined (i.e., whether the supremum
and limit in (6) exist). Secondly, we would like to compute

I(X;Y) for the best-effort policy, at least numerically.

III. EVENT-BASED INFORMATION PRIVACY

In this section, we show that the quantity I(X;Y) for
describing event-based privacy is well-defined. Namely, both
the supremum and the limit in the definition (6) of I(X;Y")
exist. Since it is generally difficult to obtain I(X;Y) in
closed form, we also discuss the numerical computation of
I(X;Y). In particular, we show that computation of the
supremum that appears in I(X;Y") can be made numerically
feasible under certain assumptions on the initial states of the
system.

Proposition 1. The limit and supremum in the definition (6)
of I(X;Y) exist.

Proof: In order to show that the supremum and limit
in the definition of I(X;Y") exist, we start by considering
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the mutual information

I(Xt;Yl;Y27"'aYT)

for outputs of a finite length 7. We first show that
I(X4;Y1,Ys, ..., Yr) grows monotonically with 7' for any
given t. Namely, for any ¢ and 77 < T5, we have

'aYT2)'

This can be shown using a property of mutual information:
for any random variables X, Y, and Z, we have I(X;Y) <
I(X;Y,Z). Next, we show that I(Xy;Y7,Ys,...,Yp) is
upper bounded. From the definition of mutual information,
we have

I(Xt;Yla}/Qw";YTl) SI(XhYla}/Qa

I(Xt;Y17Y27 N 7YT) = H(Xf) — H(Xt|Y1,1/2, .. YT)

Since H(X,;) < oo and H(X;|Y1,Y>,..
that

., Yp) >0, we know

(X Y1,Ys,...,Yr) < H(X}) < 0.

As a result of monotonicity and boundedness, we know that
the limit

lim I(Xy;Y1,Ys, ..., Y7)

T—o0
in (6) exists from the monotone convergence theorem. The
boundedness also ensures that sup, I(X;;Y') in (6) exists. W

Generally, it is difficult to obtain I(X;Y) in closed

form. Instead, we seek numerical methods for computing
I(X;Y). In order to compute I(X;Y) numerically, we
need to evaluate both the limit and the supremum in the
definition (6). The limit can be approximated by choosing T’
to be large enough; on the other hand, it is generally difficult
to evaluate sup, I(X¢;Y). In the following, we will show
that, in the problem of smart metering with energy storage,
we can obtain

sup I(Xy;Y) = lim I(XyY) @)
¢ t—o0

under some further assumptions. The relation (7) allows
approximating the supremum by choosing ¢ to be large
enough, hence approximating I(X;Y) if we can compute
I(Xt;YlaYQa"'aYT)'

In the problem of smart metering, the random process
(B:,Y;) forms a discrete-time Markov chain, where the
transition probabilities are given by

P(Btv}/;ﬁ|Bt717 )/tfl)

P(X; = xy), B, =[Yi—1 —xe + By
= Y, =xy+ By — B, ®)
0 otherwise,

according to the dynamics (1) and (2).

Proposition 2. The Markov chain (By,Y;) defined in (8) is
irreducible.

Proof: We prove this by showing separately that the
state (0,0) is reachable from any state, and any state is
reachable from the state (0,0).

We first prove the reachability of the state (0, 0) from any
state (B(), YE)) = (b, y)

e Case 1: y =0. Choose X, =1forall 1 <7 <¥b, and
it can be seen from (8) that (By, Ys) = (0,0).

e Case 2: y > 0. Choose X, = 0 for 7 > 1 until
(Br,Y;) = (m,0). The existence of such 7 can be
shown as follows. Note that we have B, > B, 1
whenever B,_; < m from (8). Once we have B, = m
for some 7, choosing X1 = 0 yields (Br41,Yr41) =
(m,0). Then, the reachability of (0,0) follows from
case 1.

We then prove the reachability of any state (By,Yy) =
(b,y) from the state (0,0).

e Case 1: y > 0. Choose X; = y, which yields
(B1,Y1) = (0,y). Then, choose X,11 = y — 1 for
all 1 <7 <b, which yields (Br41,Yr4+1) = (b,y).

e Case 2: y = 0. From case 1, we know that
the state (B;,Y;) = (m,n) is reachable. Choose
X¢+1 = 0, which yields (Bi41, Yi41) = (m, 0); choose
Xiyr41 = 1 for 1 < 7 < m — b, which yields
(Bt+7+7n—b+17}/t+7'+m—b+1) = (b7 O)

H

The irreducibility of the Markov chain (By,Y;) ensures

that (B, Y;) has a unique stationary distribution, which we
will denote by 7.

Proposition 3. If the distribution of (Bo,Yy) is the station-
ary distribution 7 of the Markov chain (By,Y}), then we have
sup, I(Xy;Y) = limy 00 I (X1 Y).

Proof: Using the fact that 7 is the stationary distribution
of (B:,Y:), we know that the distribution of (B, Y:) is 7
for any ¢. As a result, we have

I(Xt; Yl, YQ, ceey YT) = I(Xt+1; YQ, Yg, ey YT+1)
for any ¢ and T'. Then, we can obtain
I(Xt;Y17Y27 . 7YVT) S I(Xt+1;Y17Y2, e 7YT+1) (9)

using the property of mutual information used in the proof
of Proposition 1. The inequality (9) implies that

lim I(Xt; Y17 YQ, N 7YT)
T—o0

< lim I(Xt+1;Y17}/27 oo 7YT+1);
T—o00

and hence
I(X;:Y) <I(Xe1;Y) (10)
by using the fact
lim I(Xt+1; Yl, YQ, . ,YT)
T—o00
= lim I(Xt+1; }/1,)/27 . ,YT+1).
T—o00
The result follows from the monotonicity (10) of I(X;;Y).
|

From a practical point of view, the assumption that the
initial states (B, Yy) follow the stationary distribution is not
particularly restrictive. It can be shown that the Markov chain
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(B:,Y;) is also aperiodic, since for any state the transition
probability of returning to the state itself is always nonzero
(by choosing X; = Y;_1). As a result of aperiodicity, we
can imagine a practical situation as follows: the system has
evolved for long enough time to settle at the stationary
distribution, after which the potential adversary starts to
collect outputs from the system.

Finally, we note that the new privacy metric that we have
proposed can be potentially applied beyond the case of smart
meters. We can view the battery charging dynamics (1)
and (2) as a nonlinear dynamical system whose states are
(B¢,Y:), control input is X, and output is Y;. The goal is
to protect the privacy of the input X; when an adversary has
access to the output Y; but not all the internal states such
as B;. The new privacy metric gives a lower bound on the
probability of error for inferring any single entry of inputs
X from all the outputs Y.

IV. NUMERICAL RESULTS

In this section, we show numerical results on computing
the privacy metric I(X;Y). Throughout the section, we
assume that (By,Yy) follows the stationary distribution as
described in Section III. We consider the case that X; is an
i.i.d. process with the uniform distribution

1
n+1’
Using the results from Section III, we know that we can
approximate I(X;Y) by computing I(X;;Y1,Ys,...,Yr)
for large enough ¢ and T. Denote by p(x¢,y1,...,yr) the
joint distribution P(X; = x,Y1 = y1,...,Yp = y) of
(X, {Y,}X_,). In all the following simulations, we com-
pute the mutual information I(Xy;Y7,Ys,...,Yy) from its
definition

P(thl't): It:(),l,...,ﬂ.

I(Xt;Y17Y27...

= 2

Tt Yl YT
Recall from (1) and (2) that (B, Y;) is a function of
{X;}t_; and (By,Yp). We can obtain the joint distribution
of ({X,}_, {B-}I_,,{Y;}1_,) and then marginalize to
obtain the joint distribution of (X, {Y,}Z_,). The stationary
distribution 7 can be obtained by solving the linear system
m = mFp,y), in which Pp y is the transition probability
matrix whose entries are given by (8).

It should be mentioned that computing the mutual infor-
mation from its definition can be quite expensive because
the number of probability masses in the joint distribution
of ({X7} 1 AB o Y7 y) is (m+ 1)(n + )T
(There are (m + 1) possibilities for By, (n+ 1) possibilities
for Yy, and (n + 1) possibilities for each X..) In the
following simulations, we restrict ourselves to relatively
small m and n for tractability. In the future, we plan to
explore approximate numerical methods such as sampling-
based methods that have been previously used for estimating
mutual information [2].

7YT)
P(l’uyh e ayT)
p(x)p(y1s - -, yr)

p(xtu Y, .- 7yT) 10g
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Fig. 2. The mutual information I(X¢; Y1, Ya, ..., Yr) as a function of the
number of observations 7". Different curves correspond to different choices
of ¢.
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IX;Y)

0.35
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Fig. 3.
m = 1).

The mutual information I(X¢;Y") as a function of ¢ (n = 1 and

Fig. 2 shows the mutual information I(X;; Y1, Ys,...,Y7)
as a function of the number of observations 7', in which
we choose n = 1 and m = 1. For each curve, we start
computing I(X;;Y1,Ys,...,Yy) with T = ¢ and keep
increasing T" until I(X;;Y7,Ys,...,Yr) stops changing (up
to a tolerance of 10~%). For any given ¢, we note that
I(X4;Y7,Ys, ..., Yr) grows monotonically with T' (T > t)
and eventually converges, exactly as what is described in
Section III. We record the values of I(Xy;Y1,Ys,...,Yy)
at the point it converges and use them as approximations to
I(X:Y).

Fig. 3 shows how I(X;;Y) (using the approximate values
obtained from Fig. 2) changes as a function of ¢. It can be
seen that I(X;;Y") grows monotonically with ¢, which is the
same as what is described in Proposition 3. From Fig. 3, we
consider that I(X;;Y") has reached convergence at t = 9,
which gives us I(X;Y) = 0.460.

Fig. 4 shows how the mutual information I(X;;Y)
changes under different battery capacities m. For visual-
ization, the curve in Fig. 3 is also included in Fig. 4 for
comparison. It can be seen that I(X;;Y) decreases as m
increases. Intuitively, it is easier to hide information about the
input X; with a larger battery, since the battery can provide
more buffer for flattening out the patterns in X; so that these
patterns do not appear in the output Y;.

In the end, we list in Table I the privacy guarantee
expressed in the probability of error P, = P(X,(Y) # X;),

2078



0.6

05 o5

0.4

10X, Y)

0.3

0.2

0.1

Fig. 4. The mutual information I(X¢;Y) as a function of ¢. Different
curves correspond to different choices of m. For all curves, we choose
n=1

TABLE I
l m [ n [ I(X;Y) [ Lower bound on P(X;(Y) # X;) ‘
1 1 0.460 0.124
2 1 0.303 0.188
3 1 0.224 0.229
2 2 0.565 0.234

which is computed from the original Fano’s inequality (4).
For n = 1, we have |X| = 2, and the entropy H(X;) =1
for all ¢. It can be seen that when the battery capacity is
3 times the maximum total energy consumption within a
single time slot, the probability of error for an adversary to
infer about X; is at least 0.229. Note that the best privacy
guarantee in this case is P, = 0.5, which corresponds
random guess without any additional information on X;
other than its distribution. We keep the ratio between the
maximum consumption and battery capacity but increased
the quantization level (m = 2 and n = 2). The result of
computation is also listed in Table I. It can be seen that
the probability of error has increased significantly to 0.234
compared to 0.124 in the case of m = 1 and n = 1. The
simulation results have shown that our metric of privacy
I(X;Y) defined in (6) can be numerically computed, and
the metric yields nontrivial privacy guarantees (i.e., a strictly
positive probability of inference error).

V. CONCLUSIONS AND FUTURE WORK

We propose a new information-theoretic metric of event-
based privacy for systems that process data streams from
users. The new metric combines the benefits of both dif-
ferential privacy and traditional information-theoretic pri-
vacy based on the information rate. As a case study, we
consider the problem of collecting real-time home energy
usage profiles (e.g., from smart meters) while protecting the
privacy of participating individual households by controlling
an internal energy storage device. The private event that we
consider is the amount of energy usage within any single
time slot, and we would like to protect the privacy of this
event even when the adversary has access to the smart meter
recordings. Through numerical simulations, we demonstrate
that the best-effort battery control policy gives nontrivial
privacy guarantees by evaluating the policy under the new

privacy metric. As expected, the level of privacy improves
as the amount of storage increases.

Currently, our method for evaluating the new privacy
metric is only limited to a small number of discretization
levels for both the input (energy usage) and internal states
(battery capacity). Future work will be focused on scalable
numerical methods (e.g., sampling-based methods) that are
able to compute the privacy metric for larger number of
discretization levels.
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