2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

Location-dependent Privacy

Fragkiskos Koufogiannis and George J. Pappas

Abstract— We study the problem of releasing private data
where the severity of the privacy concerns depends on the data
itself. As a working example, we focus on the problem where
a user shares an approximation of her private GPS location
with a location-based service under privacy constraints that
depend on the population density at user’s current location
itself; in densely populated areas, less noise is required to
preserve privacy. We formalize this notion by extending the
definition of differential privacy to locally Lipschitz privacy,
we establish a connection between differential privacy and the
eikonal equation, and we propose a method for computing such
privacy-preserving mechanisms. Specifically, this connection
allows existing optimized solvers to be used for numerically
building private mechanisms and provides a different view of
differential privacy. Our approach is illustrated in the scenario
where a user within the greater Philadelphia area privately
reports her location, where the privacy concerns depend on the
population density.

I. INTRODUCTION

Location-based services (LBSs) are daily used by many
individuals. In a typical scenario, users retrieve their exact
location using a GPS sensor, report it to a provider of an
LBS, and receive information regarding this location. For
example, a user might request information about nearby
places of interest (POI), such as gas stations and restaurants,
or subscribe to alert notifications, such as extreme weather
and traffic conditions.

From a privacy point of view, reporting the exact GPS
location poses a privacy threat to the users and possibly
deters them from using LBSs. These privacy issues can be
mitigated if users perturb their exact location before using
an LBS [1]. By reporting a noisy GPS location, user’s exact
position cannot be confidently inferred. On the other hand,
the utility users receive from using the LBS does not dramat-
ically deteriorate when a perturbation is applied. Indeed, for
example, consider a user on a highway inquiring for nearby
gas stations. A perturbation of the user’s location by a few
miles is unlikely to significantly affect the response by such
an LBS. Nonetheless, for a user within an urban environment
such a perturbation possibly renders the responses from an
LBS useless; within city bounds, a perturbation of the user’s
location by a few blocks is enough to provide privacy without
significantly distorting the response of the LBS. Therefore,
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the amount of the perturbation varies and depends on the
private location itself.

Providing privacy guarantees, especially for users’ lo-
cations, has been studied in the literature. For example,
authors in [2] consider mobile users and an adversary that,
given a training set of traces, attempts to track them. The
privacy is then defined by quantifying the effectiveness of
the adversary’s best inference attack. Another method was
proposed in [3] where users aggregate their traces using
cloaking techniques to provide privacy guarantees. Contrary
to the aforementioned approaches which provide privacy
guarantees against modeled adversaries, differential privacy
[4] —for a literature review of results see [S]— provides
strong privacy guarantees without explicitly modeling the ad-
versary. Intuitively, differential privacy injects noise such that
an adversary cannot confidently infer the private data. Using
differential privacy, authors in [1] considered stationary users
interacting with LBSs, whereas authors in [6] aggregate the
traces of mobile users for traffic estimation purposes.

Our contributions are both theoretical and applied. On
the application side, we consider stationary users who report
their private locations with a privacy level that depends on the
location itself —tighter privacy levels in more sparsely popu-
lated areas. In this setting, we extend geo-indistinguishability
[1] to the case where different privacy levels are used for
different regions. We propose an algorithm to numerically
construct such differential private mechanisms by establish-
ing a connection between differential privacy and the eikonal
equation and, thus, leveraging existing optimized eikonal
equation solvers. On the theoretical side, we formulate the
problem of designing a differential private mechanism where
the privacy level depends on the private data itself. Our work
can be viewed as the “dual” of that in [7]. Specifically,
authors in [7] consider differential private mechanisms with
a constant privacy level that approximate queries whose
sensitivity varies with the private data. This paper considers
mechanisms that approximate identity queries —whose sen-
sitivity is independent of the private data— under a privacy
level that varies with the private data.

The paper is structured as follows. Section II motivates
and informally introduces the notion of data-dependent pri-
vacy level, briefly reviews existing results in differential
privacy, presents our notion of privacy as a dual to the
notion of “smooth local sensitivity”, and formally states the
problem of designing mechanisms that satisfy this extended
notion of privacy, which we call locally Lipschitz privacy.
Next, Section III proposes an algorithm to numerically
compute locally Lipschitz private mechanisms by reducing
the problem to solving multiple eikonal equations and a
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linear system. Section IV illustrate our algorithm in the
scenario of reporting a private GPS location to an LBS where
the privacy level map is given by Philadelphia’s population
density. Finally, we conclude this work with a discussion and
future directions in Section V.

II. PROBLEM FORMULATION

In this section, we motivate and formulate the problem
of designing differential private mechanisms with “input-
dependent” privacy level. Initially, we informally state the
problem, whereas in Subsection II-A we review the frame-
work of differential privacy, Subsection II-B provides a
formal problem statement, and Subsection II-C explores the
connection to the smooth local sensitivity introduced in [7].

Let (U, || - ||) be a normed space which includes the set
of possible private data and let q : &/ — ) be a deterministic
query of interest, where ) is the set of possible responses. In
our case, we will focus on users reporting their locations to
LBSs and, thus, we will mostly focus on Euclidean spaces
(R%,]| - |l2) and identity queries g(u) = u. Moreover, we
consider a privacy level map ¢ : U — R, where €(u)
quantifies the need for privacy in a neighborhood of u —
smaller values of e(u) correspond to stronger privacy needs.
Then, we wish to design a mechanism () which outputs a
noisy approximation y = Q(u) of the private data u which
is “e(u)-differential private around private data u”. Note
that for constant privacy level maps €(u) = €, our problem
reduces to standard e-differential privacy.

There are several practical scenarios where an input-
dependent privacy level is meaningful. Specifically, we men-
tion the following two examples:

o Location-based services: We consider users interacting
with an LBS, as a running example throughout the
paper. Whenever the users report their location u with
e-privacy, they release an approximation y = u + V,
where the noise V is proportional to e !. However,
in practice, the desired privacy level € depends on the
location wu itself. Specifically, as illustrated in Figure 1,
densely-populated areas achieve sufficient privacy by
using larger values of privacy level. Conversely, a user
can more easily be identified in less-crowded areas
unless a smaller value of privacy level € is used. By
allowing the privacy level to depend on the user’s
location itself, we can design a single mechanism that
satisfies the privacy needs over all regions.

e Data-dependent incentives: From the system designer’s
perspective, having a fixed privacy level for all possible
data inputs might not be possible. We depict this idea
by sketching the following scenario. Assume that users’
private data capture their wealth u € [0, 1], e.g., quantile
of income distribution. Then, when users report their
private data, people with v — 0 may require a tight
privacy level to protect their privacy, whereas people
with © — 1 might benefit by an increased accuracy of
the system and, thus, require larger values for privacy
levels. Since people may opt out of using such a system,
having a flat privacy level is problematic. Instead, a
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Fig. 1: Within densely populated areas (user A), a small perturbation
of the exact but private GPS location provides significant privacy.
On the contrary, user B requires a larger perturbation in a sparsely-
populated area. The figure is adapted from Statistics Canada.

privacy level map € : [0, 1] — R captures the needs of
all users.

A. Differential Privacy

Differential privacy was introduced in [4] and was, ini-
tially, stated in terms of databases. Informally, a randomized
algorithm, called mechanism, is differentially private if its
outcome does not change significantly for “adjacent” private
data. Therefore, an adversary that observes the outcome of
such a mechanism cannot confidently infer the private data.
Definition 1 formalizes this concept.

Definition 1 (Differential Privacy). Consider a set U of
possible private data, a privacy level € > 0, an (symmetric)
adjacency relation A C U X U, and a set Y of possible
responses. Then, the mechanism™ Q

Q:U—-A(Y),
is e-differential private if
P(Q(u) € S) <eP(Q(u) eS), (1)
for all subsets S C Y and any adjacent inputs v and ',
(u,u) € A.

The privacy level € is a constant that controls the strength
of the privacy guarantees; smaller values of € imply stronger
privacy and, therefore, more noisy results. Additionally, the
constant € in Equation (1) is independent of the inputs u
and u’. A frequently used adjacency relation for real-valued
private data v € R™ is a norm-induced one:

(u,u/) S ‘AH'H = ||u — u/|| < q,
for some parameter o > 0. In particular, for such adjacency

relations, differential privacy can be almost equivalently

*For a set 1" and a rich-enough o-algebra 7 on 7', we denote the set
of all probability measures on (T, 7) with A(T).
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reduced to a Lipschitz condition [8], [9], [10], as in Defini-
tion 2. Specifically, Lipschitz privacy inherits all properties
of practical interest from differential privacy with an example
of this discrepancy being exploited in [11].

Definition 2 (Lipschitz Privacy). Consider the normed space
(U, || - ) of private data, a privacy level € > 0, and a set )
of possible responses. Then, the mechanism Q : U — A ()
is e-Lipschitz private if

In P(Q(u) € S) is e-Lipschitz in u for all S C Y. (2)

B. Local Differential Privacy

In the case of users reporting their location, the private
data u € R? is their GPS coordinates and we focus on
mechanisms Q that approximate the private data itself

Q(u) ~ u.

Nonetheless, the definition of Lipschitz privacy cannot di-
rectly capture the problem of input-dependent privacy level,
as motivated earlier in this section. Specifically, in Equa-
tion (2), the privacy level € is a uniform constant in wu.
Definition 3 alleviates this by using a privacy level map and
relaxing the requirement for a uniform Lipschitz constant in
Equation 2.

Definition 3 (Local Lipschtiz Privacy). Consider a normed
space (U, || - ||) of private data, a privacy level map € : U —
R, and a set Y of possible responses. Then, the mechanism
Q:U — A(Y) is €(-)-Lipschitz private if, for any S C ),
the function

fs(u) = InP(Q(u) € 5)

is locally Lipschitz continuous with constant €(u) for any
u € U.

Locally Lipschitz privacy extends Lipschitz privacy,
which implies the standard notion of differential privacy
(e.g. Proposition 6 in [9]). Specifically, for constant privacy
level maps €(u) = eg, we retrieve Definition 2. Additionally,
Proposition 4 states that, similar to differential privacy,
locally Lipschitz privacy is resilient to post-processing; any
further processing of the outcome of a locally Lipschitz
private mechanism cannot break the privacy guarantees.

Proposition 4. Let Q : U — A (Y) be a locally Lipschitz
mechanism, and h : Y — Z be a (possible randomized)
post-processing, where Y and Z are two sets of responses.
Then, the mechanism h o Q that post-process the outcome of
mechanism Q is e-locally Lipschitz private.

Proof. The statement follows by re-writing the probability
distribution of h o Q in terms of that of Q

P((ho Q)(u) € 8) = P(Q(u) € h™* (5))

and noting that the right-hand side is locally Lipschitz at u
with constant e(u). O

Remark 1. Similarly to the privacy level € in differential
privacy, the privacy level map € : &/ — R, in Definition 3
is considered public knowledge and is a designer’s choice.

In the light of Definition 3, our problem can be naturally
formulated as follows.

Problem 1. Given a set of private data (U, || - ), a privacy
level map € : U — R, and a query q : U — Y, design an
e-locally Lipschitz private mechanism Q that approximates

q.

C. Smooth Local Sensitivity

The notion of locally Lipschitz privacy is related to [7]
which introduced the notion of smooth local sensitivity as a
mean of building differentially private mechanisms. From a
theoretical point of view, we consider our present work as
the “dual” of [7]. Specifically, let (R™, || - ||) be the space of
private data and consider a real-valued deterministic query g
which mechanism Q should approximate:

q:R" —> R.
The Laplace mechanism [4] allows one to build a private

mechanism by adding Laplace-distributed noise as in Propo-
sition 5.

Proposition 5 (Laplace Mechanism). Consider the Laplace
mechanism Q defined as

A global
O(u) = q(u) +V, withV~Lap< a ),

where Lap(b) is the Laplace distribution with probability
density function fy (v) = 3 e~° vl and Ag8'b is the global

sensitivity defined as

Ags = lq(u) — q(u')].

Then, mechanism Q is e-differentially private.

max
w,u’: (u,u’)EA

Proposition 5 shows that the ratio
A qglobal

sensitivity

privacy level €

is a key quantity, determines the amount of the injected noise,
and is independent of the input u. Work in [7] considers
input-dependent noise by replacing the global sensitivity
Aqg°P by a smooth version of the local sensitivity Aq'°c!,
where local sensitivity is defined as

A¢°(u) = lq(u) — q(u)].

In our case, the sensitivity is independent of the input; in fact,
we will later focus on identity queries which reduces local
sensitivity to a constant. Nonetheless, we allow the privacy
level € to depend on the private data u and, thus, add input-
dependent noise as well.

Although authors in [7] introduced smooth local sen-
sitivity as a means to create less noisy but still private
mechanisms, we introduce the privacy level map to increase
the expressitivity of differential privacy. Moreover, authors in
[7] use heavy-tailed (polynomially decaying) noise V' instead
of the exponentially decaying Laplace distribution. In our
approach we exploit a link between differential privacy and

max
u': (u,u’)eA
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the eikonal equation in order to numerically design private
mechanisms.

III. EIKONAL-BASED LOCALLY-LIPSCHITZ PRIVATE
MECHANISMS

In the following we focus on Euclidean spaces
(R™, ]| - |]2) and we focus on building locally Lipschitz
private mechanisms that approximate a query ¢q : R™ — ).
To this end, we identify the privacy constraint of Definition 3
as an instance of the eikonal equation.

A. The Eikonal Equation

First, we provide a brief overview of the eikonal equation,
a PDE that takes the form of Equation (3):

IVu(@)ll, = f(@), v € Qand u(@)|,co0 =0, @)

where @ C R™. The solution u(z) of Equation (3) can
be thought as the shortest path problem in the continuous
domain

= d
u(z) = mindy(z,y),

where dy is a distance function such that df(z,z + dz) ~
f(x) ||dz||2, for small enough dz.

Although the boundary value problem in (3) does not
always admit strong solutions, literature provides efficient
algorithms for computing weak solutions of it. For example,
authors in [12], [13] introduced the fast-marching methods
for numerically solving such boundary value problems over
discretized grids of N points with complexity O (N log N).
Following work provided improved algorithms for general
meshes [14] and approaches with accuracy bounds [15].

By identifying the locally Lipschitz private property in
Equation (3) as an eikonal equation, we leverage existing,
efficient and accurate numerical solvers in order to build
locally private mechanisms.

B. Computing Locally Lipschitz Private Mechanisms

Algorithm 1 proposes a technique to numerically com-
pute locally Lipschitz private mechanisms Q that approxi-
mate a query q.

Theorem 6. Let (R™, || - ||2) be the space of possible private
data and let q : R™ — ) be a query. Then, in Algorithm I,
if

w(y) >0, Vyey,
then, the mechanism Q is e-locally Lipschitz private.

Proof. The proof is straightforward. The mechanism Q such
that

P(Q(u) = y) = g(u,y) = w(y) e +®

has, by assumption, a proper probability density; g(u,y) > 0
and 3 .y, g(u,y) = 1. Moreover, we compute the following

Algorithm 1 Building a mechanism that satisfies local

Lipschitz privacy level map through an eikonal equation

solver.

Require: Privacy level map € : R™ — R, and query ¢ :
R™ = .

1: function PRIVACYMAPMECHANISM(Privacy map € :
U—Ry, Query g: U — )

2 for each output y € ) do

3: Compute f, by solving the eikonal equation
problem
IV £y (w)]| = €(u) with f, (¢~ (y)) = 0.
4: end for
5: Compute w(y) by solving the linear system
Z e W) =1, uel.
yey
if w(y) >0, for all y € Y then
7: Define mechanism Q as

P(Q(u) = y) = w(y) e~ /().

8: end if
9: end function

derivative in the weak sense

Vo InP(Q(u) = y)lly = [|Vu (In w(y) = fy(w)]| = e(w).

Therefore, mechanism Q satisfies Definition 3 and, thus, is
e-locally Lipschitz private. O

Algorithm 1 works as follows. For each possible re-
sponse y € ), we solve the following boundary value
problem stated in line 3, where the exact boundary condition
Jy(¢ ' (y)) = 0 is a design choice. This choice stems from
the need that the response y should be close to u, although
there is no guarantee that the mode of the resulting dis-
tribution P(Q(u) = y) is at y = wu. Next, line 5 of the
algorithm computes the weights w(y) such that for each
input u, the probability P (Q(u) = y) = w(y) e /v is a
probability distribution. If there exists a positive solution to
this linear system, then, the computed mechanism is locally
Lipschitz private. As a guideline, for smooth enough privacy
maps (||Ve(u)|] < 1) with loose privacy at the edge of
map (e(u)|,cqy > 1) Algorithm 1 computes well-defined
mechanisms.

In practice, Algorithm 1 fails when the privacy level map
is not smooth enough although we do not provide sufficient
conditions. Nonetheless, for a constant privacy level map,
identity queries, and in the limit, we recover the Laplace
mechanism.

IV. EXAMPLE: GPS LOCATION IN PHILADELPHIA

We demonstrate our technique in the scenario of users
reporting their private GPS location to a location-based
service (LBS). Specifically, we consider an individual in the
greater Philadelphia area that observes her private position
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Fig. 2: The population density in Philadelphia’s area is shown
overlaid with the map is a publicly available knowledge and, thus,
has no privacy requirements. In more densely populated areas
(darker colored), the privacy level is larger and, thus, less noise
is required to mitigate privacy concerns.

u € R2, reports a proxy location y € R?, and receives a
response from the LBS. Due to privacy concerns, the proxy
location y is a perturbed version of the exact position u with
probability density

P(Q(u) =y) = g(u, y).

Under local Lipschitz privacy, we design a privacy level map
such that we provide tighter privacy (e(u) — 0) in sparsely
populated areas. To this end, the privacy level map is derived
from the population density as

e(u) = 107" d(u) + 0.4,

where d(u) is the population density at location w. The
constant term provides the tightest possible privacy level and
the linear term relaxes the privacy level in densely populated
areas. The population density map is originated from the
Global Rural-Urban Mapping Project (GRUMPv1) [16] and
truly is public knowledge. GRUMPvI1 provides an estimate
of the population of the whole globe up to a grid size of
30 seconds of arc. —in our case, roughly 0.5mi x 0.7 mi
rectangles. We focus on an area around Philadelphia of size
about 9mi X 6.2mi which is shown in Figure 2. Next,
we super-sample this patch to a 200 x 200 grid, and, for
simplicity, we re-parametrize it such that u € [0, 100]2.

We execute Algorithm 1 for the identity query q(u) = u

100 1.0e+00
) ‘

1.0e-01
50

1.0e-02

Latituce

1.0e-03

40

30
20 .

10 1.0e-05

1.0e-04
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Fig. 3: The figure shows the probability distribution for three points
(denoted with white circles) of high, medium, and low population
density as shown in Figure 2. Dense areas have higher values of
privacy level and, thus, less amount of noise is required to satisfy
the privacy constraint.

in Matlab using an eikonal equation solver [17]. Algorithm 1
can be run offline and users perturb their private locations
by using the stored result. The range of values of the privacy
level map is

e(u) € [0.4,2.0].

Figure 3 shows the probability distributions P(Q(u;) = y)
for three different locations. Mechanism Q adapts to the dif-
ferent values of privacy level for different inputs. Therefore,
our approach can provide a single privatizing mechanism
without the need to explicitly partition the set of private data.

Finally, we evaluate the performance of the designed
mechanism to the following two approaches. To this end,
we consider a prior m on the private data v given by the
population density itself

m(u) o d(u),

where d is the population density and we compute the
expected mean-squared error of the mechanism Q

- / () P(Q(w) = y) [l — g2 dudy.
Uxu

We compare this to the mean-squared error msepgplace Of the
Laplace mechanism with constant privacy level min, ez, €(u)
and to the mean-squared error mseqpimal that is computed by
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Mean-squared error

mS e aplace 37.5
MS €eikonal 5.78
MS €optimal 1.37

TABLE I: We evaluate the performance of the proposed approach
to Laplace-based mechanism and the optimal one.

the following optimization problem
minimize / g(u, y)m(u)|ly — ul|3 d*ud®u
gR*—>Ry R2 xRR2

S.t. / g(u,y) d*y =1, Vu
R2

IVug(u,y)|| < e(u)g(u,y),

where g(u,y) = P(Qop(u) = y). In fact, we solve a
coarse (35 x 35) discritization of Problem IV and report the
expected squared-error in Table I. As expected, a Laplace-
based approach injects significant amount of noise which
depends on the minimum value of the privacy level map;
a single area with tight privacy requirements dramatically
affects the performance of the mechanism. Moreover, post-
processing the responses of our approach can further improve
performance.

V. DISCUSSION

In this paper, we extended the notion of differential
privacy to that of locally Lipschitz privacy, which allows
the private level to depend on the private data used. We
established the connection between locally Lipschitz privacy
and the notion of smooth local sensitivity. Specifically, our
approach allows for input-dependent privacy level, whereas,
smooth local sensitivity allows for input-dependent sensitiv-
ity; the ration of these quantities defines the scale of the
noise required. Next, we observed the connection of locally
Lipschitz privacy to the eikonal equation and we proposed
an algorithm to numerically build private mechanisms using
existing optimized eikonal equation solvers. Finally, we
illustrated our approach to a practical scenario where a user
interacts with a location-based service.

Future work includes deriving necessary conditions on
the privacy level map ¢ : R? — R, such that Algorithm 1
defines a proper mechanism. Another promising direction is
to design the boundary conditions of the eikonal equation
solver in Algorithm 1 such that the performance of the
mechanism Q is optimized.
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