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Abstract— In this paper we propose a generalized version
of the Susceptible-Exposed-Infected-Vigilant (SEIV) disease
spreading model over arbitrary directed graphs. In the stan-
dard SEIV model there is only one infectious state. Our model
instead allows for the exposed state to also be infectious to
healthy individuals. This model captures the fact that infected
individuals may act differently when they are aware of their
infection. For instance, when the individual is aware of the
infection, different actions may be taken, such as staying home
from work, causing less chance for spreading the infection. This
model generalizes the standard SEIV model which is already
known to generalize many other infection spreading models
available. We use tools from nonlinear stability analysis to
suggest a coordinate transformation that allows us to study the
stability of the origin of a relevant linear system. We provide
a necessary and sufficient condition for when the disease-free
equilibrium is globally exponentially stable. We then extend
the results to the case where the infection parameters are not
homogeneous among the nodes of the network. Simulations
illustrate our results.

I. INTRODUCTION

The modeling and analysis of infectious diseases on com-
plex networks is fast becoming an interesting and popular
research topic. There are many works that focus on a
myriad of different disease spreading models using various
techniques for their analysis. Proper modeling and analysis
of such systems is important in being able to determine
when a certain disease in a community will naturally die
out or cause an epidemic. Understanding the answer to this
question will allow better decisions to be made regarding
how much treatment or vaccine should be administered to
different people.

In this paper we are interested in studying an epidemic
model that generalizes many other models studied in the
literature and also captures effects that human awareness may
have. By considering arbitrary strongly connected directed
graphs, we extend the applicability of our results beyond the
motivating human disease spreading problem. For instance,
our model is able to capture the spread of rumors or computer
viruses through social networks, or the popularity of various
products in a large market. We also consider node-dependent
parameters which are able to capture natural inclinations or
affinities that different individuals may have towards different
diseases and/or products.

Literature review

The most widely studied infection model is the
Susceptible-Infected-Susceptible (SIS) model. Earlier works
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often consider structured contact graphs such as homoge-
neous models that assume each individual has equal contact
to everyone else [1]. A discrete-time model over arbitrary
contact graphs is considered in [2]. One of the first works to
consider a continuous-time SIS model over arbitrary contact
graphs using mean field theory is [3]. A further analysis in [4]
provides conditions on the disease and contact graph for
global exponential stability of the disease-free equilibrium
for both the continuous and discrete-time cases, i.e., condi-
tions on when the disease will naturally die out. In case these
conditions are not satisfied, the authors also show the exis-
tence of a nontrivial equilibrium where the disease never dies
out. Unlike the above works, we consider arbitrary strongly
connected directed networks. While undirected graphs are
useful in modeling spreading of diseases among humans,
directed graphs may be more appropriate when considering
the spreading of computer viruses [5], [6] or products and
information [7]. For instance, famous website or celebrities
may have direct influence over many individuals while not
being directly affected by them. Unlike the above works,
we are also interested in relaxing the assumption that the
infection parameters are homogeneous throughout the net-
work. By allowing infection parameters to be different, we
are able to capture the fact that individuals may respond to
a given disease differently based on their personalities or
bodies. This has very recently been rigorously studied for
the two state SIS model [8].

An important factor in how infections can spread besides
the contact graph and parameters such as infection rate and
recovery rate is how humans adapt their behavior to the
possibility of an emerging epidemic [9], [10]. A survey of
results studying how disease spreading can be affected by
changing human behavior is provided in [11]. The work [12]
considers the possible effect of human behavior changes for
the three state Susceptible-Alert-Infected-Susceptible (SAIS)
model. In this model there are two healthy states and one
infectious states; however, people in the alert state are aware
of the possible epidemic and taking actions accordingly such
as wearing masks or decreasing contact with other people.
The authors are able to provide conditions for when the
disease dies out, and additional conditions for when the non
disease-free equilibrium is similar to that of the well known
SIS model’s equilibrium.

Another model that has recently become popular is the
Susceptible-Exposed-Infected-Vigilant (SEIV) model. This
model is appealing not only in that it can model diseases
which have a latent period where a person can have the
disease but not yet be infectious, but it also generalizes a
large number of other studied models as shown in [13],
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[14]. A generalized version of the SEIV model in which
birth and mortality are also considered are studied in [15],
[16], but without considering graph interactions. Instead, we
are interesting in studying another generalized version of the
SEIV model over complex graphs in which human reaction
to succumbing to the disease is also modeled, which also
generalizes the popular SIS model.

Some recent works study control or resource allocation
(such as a vaccine or cure) for simple models such as the SIS
model [17], [18], [19]. By being able to properly analyze the
generalized model we propose, we hope to facilitate control
of the spreading of a given virus or infection in more general
settings as well.

Statement of contributions

In this paper we propose a generalized version of
the continuous-time Susceptible-Exposed-Infected-Vigilant
(SEIV) model in which both the exposed and infected states
are infectious. This model generalizes many models studied
in the literature including SEIV, SIS, SIR, SIRS, SEIR, SEIS,
and SIV [13], [14]. The reason for having two infectious
states is to model human behavioral changes when infected
with a disease. The exposed state corresponds to a person
having the disease and being contagious, but not yet aware
that they are sick. The infected state means the person is
infected and aware of the disease, which means the person
might behave differently. For instance, a person knowingly
infected with a disease may have less contact with others due
to staying home from work or school, yielding less chance of
spreading the infection. After proposing the model in detail,
we provide a useful coordinate change that allows us to study
the stability of the origin of a relevant nonlinear system. By
showing that the nonlinear system is upper-bounded by its
linearization, we are able to provide necessary and sufficient
conditions on the graph and parameters of the infection such
that the disease dies out exponentially. We then extend the
results to the case in which infection parameters are node
dependent rather than constant throughout the entire network.
Simulations illustrate our results.

Notation

We denote by R and R≥0 the sets of real and non-
negative real numbers, respectively. Given a graph G,
we denote by A the associated adjacency matrix. Given
square matrices M1, . . . ,MN where Mi ∈ R

ni×ni , we let
diag (M1, . . . ,MN) denote the n×n block diagonal matrix
with M1, . . . ,MN on the diagonal where n =

∑N
i=1 ni. The

indicator function 1Z is 1 if Z is true, and 0 otherwise.

II. MODEL DESCRIPTION

Here we follow the idea of the N-intertwined SIS model
developed in [3] and its extension to the SAIS model devel-
oped in [12] and consider its extension to the generalized
SEIV model (G-SEIV) we are interested in.

We consider a virus spreading model with four states
for each node: susceptible S, exposed E, infected I , and
vigilant V . The susceptible state S corresponds to a healthy

individual who is capable of being exposed to the disease.
The exposed state E corresponds to an individual that has
been exposed to the disease and is contagious, but not yet
aware of this. The infected state I corresponds to an infected
individual who is aware of the infection. Lastly, the vigilant
state V corresponds to an individual that is not susceptible
or infected by the disease. This can mean the individual has
just recovered or been vaccinated and thus is not contagious,
nor immediately susceptible to be infected.

Consider a network with with N nodes. For each node
i ∈ {1, . . . , N} we define the random variable Xi(t) ∈
{S,E, I, V } as the state of node i at a given time t. We
consider a strongly connected contact graph G over which
the disease can spread. A susceptible node is only able to
become exposed if it has at least one neighbor that is either
exposed or infected. The in and out-neighbors of an agent i
on G are denoted by N in

i and N out
i , respectively. A node i can

only be infected by nodes in N in
i and can only infect nodes in

N out
i . We define the adjacency matrix A as ai,j = 1 if node

i can be infected by node j, i.e., j ∈ N in
i , and 0 otherwise.

Note that by definition, this is equivalent to saying i ∈ N out
j .

Figure 1 shows a simple 5 node network with an under-
lying directed contact graph G shown with solid black lines.
Depending on the states of the nodes and the contact graph,
the dashed red lines show which nodes are being affected by
an exposed or infected neighbor. As discussed above, a node
i can only affect a neighboring j ∈ N out

i if i is in either the
exposed state E or infected state I .

X1=E X2=I

X3=I X4=VX5=S

Fig. 1. An example of a 5 node network with underlying directed contact
graph shown by solid black lines and effects of infection shown by dashed
red lines.

Let δi be the rate of recovery when node i is infected.
Let γi be the rate of becoming susceptible once the node
has recovered. Let βE,i and βI,i ≤ βE,i correspond to the
rates of susceptible node i being exposed through a contact
graph G by an exposed or infected node, respectively. Let
εi be the rate at which the exposed node becomes infected
and let θi be the rate at which the susceptible node becomes
vigilant. All the infection parameters are nonnegative.

The dynamics of the epidemic spread is then modeled
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using the definition of the infinitesimal generator from [20],

P (Xi(t
′)= E|Xi(t)= S,X(t))≈ βE,i∆tYi(t)+ βI,i∆tZi(t),

P (Xi(t
′)= V |Xi(t)= S,X(t))≈ θi∆t,

P (Xi(t
′)= I|Xi(t)= E,X(t))≈ εi∆t, (1)

P (Xi(t
′)= V |Xi(t)= I,X(t))≈ δi∆t,

P (Xi(t
′)= S|Xi(t)= V,X(t))≈ γi∆t,

where t′ = t+∆t, and

Yi(t) =
∑

j∈N in
i

1Xj(t)=E ,

Zi(t) =
∑

j∈N in
i

1Xj(t)=I .

S E

V I

θ

γ

δ

ε

βE + βI

Fig. 2. Stochastic compartmental model for node 5 with one exposed and
infected neighbor as shown in Figure 1.

Figure 2 shows the stochastic compartmental model for
node 5, which is affected by one exposed and one infected
node as seen in Figure 1. In this figure the solid black lines
show the internal state transitions and the dashed red line
corresponds to the node having one or more infected or
exposed neighbors.

The state of the entire network X(t) then lives in a 4N

dimensional space making it very hard to analyze directly.
Instead, we utilize a mean-field approximation to reduce the
complexity of the entire system. We do this by replacing
Yi and Zi in (1) by their expected values E[Yi] and E[Zi],
respectively.

We denote by [Si(t), Ei(t), Ii(t), Vi(t)]
T the probability

vector associated with node i being in each of these states,
i.e.,

Si(t) + Ei(t) + Ii(t) + Vi(t) = 1, (2)

Si(t), Ei(t), Ii(t), Vi(t) ≥ 0,

for all i ∈ {1, . . . , N}. The G-SEIV model we consider in

this paper is then given by

Ṡi(t) = γiVi(t)− θiSi(t)

− Si(t)





∑

j∈N in
i

βE,iEj(t) + βI,iIj(t)



 ,

Ėi(t) = Si(t)





∑

j∈N in
i

βE,iEj(t) + βI,iIj(t)



− εiEi(t),

İi(t) = εiEi(t)− δiIi(t), (3)

V̇i(t) = δiIi(t) + θiSi(t)− γiVi(t),

It is easy to see that

Ṡi(t) + Ėi(t) + İi(t) + V̇i(t) = 0 (4)

for all i ∈ {1, . . . , N} and t ∈ R≥0.
For simplicity, we now consider only identical infection

parameters δ, γ, βE, βI , ε, θ for all nodes i ∈ {1, . . . , N}.
We refer to this as the homogeneous parameters case. We
will later relax this assumption.

Due to constraints (2) and (4), one of the equations (3) is
redundant. By setting Si(t) = 1−Ei(t)− Ii(t)− Vi(t), we
can describe the system by

Ėi(t) = (1 − Ei(t)− Ii(t)

− Vi(t))





∑

j∈N in
i

βEEj(t) + βIIj(t)



 − εEi(t)

İi(t) = εEi(t)− δIi(t) (5)

V̇i(t) = δIi(t) + θ(1− Ei(t)− Ii(t)− Vi(t)) − γVi(t).

III. STABILITY ANALYSIS OF G-SEIV MODEL

We are interested in studying the disease-free equilibrium
of (5) defined by Ei(t) = Ii(t) = 0. However, this does not
mean that Vi(t) will go to 0 as it depends on the parameters
θ and γ. Thus, we find a change of coordinates by solving
for the equilibrium point V e

i . Solving for V e
i in

0 = δIi(t) + θ(1 − Ei(t)− Ii(t)− V e
i (t)) − γV e

i (t),

we get

V e
i (t) =

θ + (δ − θ)Ii(t)− θEi(t)

θ + γ
.

For simplicity, we drop the explicit dependence on time when
not important. This gives us a suitable coordinate change

ri = Vi −
θ + (δ − θ)Ii − θEi

θ + γ
. (6)

Then, the system (5) can be rewritten in the new coordinates
as
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Ėi =
( γ

θ + γ
−

γ

θ + γ
Ei −

δ + γ

θ + γ
Ii

− ri

)

∑

j∈N in
i

(βEEj + βIIj)− εEi

İi = εEi − δIi

ṙi = −
εδ

θ + γ
Ei −

δ(θ − δ)

θ + γ
Ii − (θ + γ)ri

+
θγ

(θ + γ)2

∑

j∈N in
i

(βEEj + βIIj)

−
θ

θ + γ

(( γ

θ + γ
Ei +

δ + γ

θ + γ
Ii

+ ri

)

∑

j∈N in
i

(βEEj + βIIj)
)

.

Letting E = [ET
1 , . . . , E

T
N ]T , I = [IT1 , . . . , I

T
N ]T , and

r = [rT1 , . . . , rN ]T , we are able to rewrite the state equations
separating the linear and nonlinear components





Ė

İ

ṙ



 = Q





E

I

r



+





HE

0
Hr



 , (7)

where Q is defined as




γ
θ+γβEA− εI γ

θ+γβIA 0

εI −δI 0
1

θ+γ (
θγ
θ+γβEA− εδI) 1

θ+γ (
θγ
θ+γβIA− δ(θ − δ)I) −(θ + γ)I



 ,

with I being the N -dimensional identity matrix and

HE,i = −
( γ

θ + γ
Ei +

δ + γ

θ + γ
Ii (8)

+ ri

)

∑

j∈N in
i

(βEEj + βIIj)

Hr,i = −
θ

θ + γ

(( γ

θ + γ
Ei +

δ + γ

θ + γ
Ii (9)

+ ri

)

∑

j∈N in
i

(βEEj + βIIj)
)

.

Using (6) to plug Vi back into (8) and (9), we get

HE,i = − (Ei + Ii + Vi)
∑

j∈N in
i

(βEEj + βIIj) (10)

Hr,i = −
θ

θ + γ



(Ei + Ii + Vi)
∑

j∈N in
i

(βEEj + βIIj)



 .

(11)

Since Ei, Ii, Vi ≥ 0 for all i ∈ {1, . . . , N} at all times,
we see that HE,i, Hr,i ≤ 0 at all times. Letting X =
[ET , IT , rT ]T and H = [HT

E ,0, H
T
r ]

T , this means that the
linear system

Ẋ = QX (12)

upper bounds the original nonlinear system (7),

QX+H ≤ QX. (13)

Thus, if we can find conditions for which Q is Hurwitz,
we have found the necessary and sufficient condition such
that the origin of the nonlinear system (7) is globally
exponentially stable, and thus the disease-free set of the
original system (3) is as well. Sufficiency follows from (13)
and necessity follows from [21, Theorem 4.15].

The following result characterizes the condition for which
Q is Hurwitz causing the disease-free equilibrium to be
globally exponentially stable.

Theorem III.1 (Global exponential stability of disease-
free equilibrium) Given a directed contact graph G with
adjacency matrix A, the disease-free equilibrium of (3) with
homogeneous parameters is globally exponentially stable if
and only if

λmax(A) <
δε(θ + γ)

γ(δβE + εβI)
. (14)

Proof: It is clear that there are N eigenvalues of Q

given by λ = −(θ + γ). The remaining 2N eigenvalues
come from the matrix

Q12 =

[ γ
θ+γβEA− εI γ

θ+γβIA

εI −δI

]

∈ R
2N×2N ,

Let X12 = [ET , IT ]T , since dynamics of X12 don’t depend
on r,

Ẋ12 = Q12X12.

In the case that A is symmetric (i.e., the contact graph is
undirected), there exists A = VDV

T where V
T
V = I and

D = diag (d1, . . . , dN ) where di = λi(A). Then,

VT
Ẋ12 = VTQ12VV

T
X12,

where

V =

[

V 0
0 V

]

Letting X3 = [(VTE)T , (VT I)T ]T ,

Ẋ3 = WX3

where W = diag (W1, . . . ,WN ) is a 2N × 2N block
diagonal matrix with

Wi =

[ γ
θ+γβEdi − ε γ

θ+γβIdi

ε −δ

]

for i ∈ {1, . . . , N}.
The eigenvalues of Wi are then given by

λ(Wi) =
1

2

(

γ

θ + γ
βEdi − (δ + ε)

)

±
1

2

[

(

δ + ε−
γ

θ + γ
βEdi

)2

−4

(

εδ −
γ

θ + γ
(δβE + εβI)di

)]1/2

.
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From this we can see that for the real parts of the eigenvalues
to be negative we need

di < max

{

(θ + γ)(δ + ε)

γβE
,

δε(θ + γ)

γ(δβE + εβI)

}

,

for all i ∈ {1, . . . , N}. Finally, noticing that

δε(θ + γ)

γ(δβE + εβI)
≤

(θ + γ)(δ + ε)

γβE
,

justifies the result.
In the case that A is not symmetric, we are not able to

analytically compute the eigenvalues of Q12 exactly. Let

Q12 =

[

w x

y z

]

,

where

w =
γ

θ + γ
βEA− εI,

x =
γ

θ + γ
βIA,

y = εI,

z = −δI.

We can then reorder the states X12 such that

Ẋ21 = Q21X21,

where X21 = [IT , ET ]T , and

Q21 =

[

z y

x w

]

.

Using an LU block decomposition, this is

Q21 =

[

I 0
xz−1

I

] [

z 0
0 w − xz−1y

] [

I z−1y

0 I

]

.

It is clear that the first and last matrices have 2N eigenvalues
at 1. The matrix Q21 is then Hurwitz if and only if the middle
matrix is Hurwitz. Since this matrix is diagonal and z = −δI

is clearly Hurwitz, we are only interested in conditions when

w − xz−1y =
γ

θ + γ
βEA− εI+

1

δ

γ

θ + γ
βIεA

=
γ

θ + γ

(

βE +
ε

δ
βI

)

A− εI

is Hurwitz. From here it is easy to see that we arrive at the
same condition (14) as the undirected case.

We now consider the original dynamics (3) with heteroge-
neous parameters. By associating different parameters at each
node, we are able to capture the fact that different individuals
may have different levels of tolerance against a particular
disease or infection due to varying personalities or bodies.
We assume that the parameters are bounded for all i,

δ− ≤ δi ≤ δ+, γ− ≤ γi ≤ γ+,

β−
E ≤ βE,i ≤ β+

E , β−
I ≤ βI,i ≤ β+

I ,

ε− ≤ εi ≤ ε+, θ− ≤ θi ≤ θ+.

(15)

The following characterizes our result that extends The-
orem III.1 to the heterogeneous case. Its proof has been
omitted due to space restrictions.

Theorem III.2 (Global exponential stability for heteroge-
neous parameters) Given a directed contact graph G with
adjacency matrix A, the disease-free equilibrium of (3) is
globally exponentially stable if

λmax(A) <
δ+ε+θ+

γ−(δ−β−
E + ε−β−

I )
+

δ+ε+

δ−β−
E + ε−β−

I

. (16)

We note here that the result of Theorem III.2 is only a
sufficient condition unlike that of Theorem III.1. This is due
to the bounds (15) used to ensure the matrix Q is Hurwitz.
The following necessary condition is obtained in a similar
fashion by exchanging the upper and lower bounds in (16).

Corollary III.3 (Necessary condition for global expo-
nential stability) Given a directed contact graph G with
adjacency matrix A, if the disease-free equilibrium of (3) is
globally exponentially stable, then

λmax(A) <
δ−ε−θ−

γ+(δ+β+
E + ε+β+

I )
+

δ−ε−

δ+β+
E + ε+β+

I

.

IV. SIMULATIONS

For our simulations we consider an undirected Erdos-
Renyi graph with N = 40 nodes and connection probability
p = 0.1 defined by adjacency matrix A. For the particular
graph we consider, we have λmax(A) = 4.5111. For sim-
plicity, we consider homogeneous infection parameters. We
leave the parameters δ = 1, ε = 0.9, γ = 0.25, and θ = 0.25
fixed and vary the infection rates βI and βE = βI + 0.1.

We denote by

s = λmax(A)
γ(δβE + εβI)

δε(θ + γ)

the strength of the infection for a given graph and infection
parameters. Note that the condition of Theorem III.1 is
equivalent to s < 1. In Figure 3 we show the trajectories
of the infection over time for varying parameters of βI and
βE = βI + 0.1. We use uniformly random initial conditions
for all 40 nodes of the network and look at the total probabil-
ity of infection for each node Pi(t) = Ei(t)+ Ii(t). We plot
the minimum and maximum probabilities of infection over
time given by mini∈{1,...,N} Pi(t) and maxi∈{1,...,N} Pi(t),
respectively, and the average given by 1

N

∑N
i=1 Pi(t).

In Figure 3 we consider βI = 0.05 (s = 0.5430),
βI = 0.40 (s = 2.3948), and βI = 1.10 (s = 6.0983). As
supported by Theorem III.1, we see that in Figure 3(a) the
epidemic dies out exponentially, but in (b) and (c) it reaches
a nontrivial equilibrium that grows with s.

In Figure 4 we vary βI from 0 to 1 with βE = βI + 0.1
and plot the steady state values of the minimum, maximum,
and average probabilities of infection. The bifurcation that
occurs at s = 1 is supported by Theorem III.1.

V. CONCLUSIONS

In this paper we have proposed an epidemic model that
generalizes many known models in the literature including
the well known SIS and SIR models. Further we consider
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Fig. 3. Plots of the minimum, maximum, and average probabilities of infection over time for (a) βI = 0.05, (b) βI = 0.40, and (c) βI = 1.10.
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Fig. 4. Plots of the minimum, maximum, and average probabilities of
infection Pi = Ei + Ii at steady state for various infection strengths s.

both arbitrary directed graphs and non-homogeneous infec-
tion parameters to further amplify the applicability of the
proposed model. We have rigorously studied the disease-
free equilibrium of the mean-field approximation of the
model and identified the necessary and sufficient condition
for global exponential stability in the case of homogeneous
parameters. For heterogeneous parameters, we are able to
show both a sufficient condition and a separate necessary
condition for global exponential stability. We illustrate the
results through simulations of a 40 node Erdos-Renyi graph.

In future works involving analysis we are interested in
determining the existence of a nontrivial non-disease-free
equilibrium in the case that the conditions of this paper are
not satisfied and studying the stability of this equilibrium. We
are also interested in using this analysis to facilitate control
of the epidemic given different measurements of the state
and methods of control.
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